

SX68200M Series: Motor Drivers with Sensorless Vector Control

A Quick Start Guide to Demo Board Evaluation

Precautions for High Voltage

Dangerously high voltages exist inside the demonstration board.

Mishandling the demonstration board may cause the death or serious injury of a person.

Before using the demonstration board, read the following cautions carefully, and then use the demonstration board correctly.

DO NOT touch the demonstration board being energized.

Dangerously high voltages that can cause death or serious injury exist inside the demonstration board being energized.

Electrical shock may be caused even by accidental short-time contact or by putting hands close to the demonstration board.

Electrical shock can result in death or serious injury.

Before touching the demonstration board, make sure that the capacitors have been discharged.

For safety purpose, an operator familiar with electrical knowledge must handle the demonstration board.

The demonstration board is for evaluation of all the features of the SX68200M series.

The demonstration board shall not be included or used in your mass-produced products.

Before using the demonstration board, see this document and refer to the SX68200M series data sheet.

Be sure to use the demonstration board within the ranges of the ratings for input voltage, frequency, output voltage, and output current.

Be sure to strictly maintain the specified ambient environmental conditions, such as ambient temperature and humidity.

Contents

Precautions for High Voltage	2
Contents	3
Introduction	4
1. Demo Board Overview	5
 Evaluating the Demo Board	8 8 0 2 4
3. FAQ1	6
4. About Trademarks and Registered Trademarks1	6
Important Notes1	7

Introduction

The SX68200M series are 3-phase brushless motor drivers in which output transistors, pre-drive circuits, bootstrap diodes with current-limiting resistors are highly integrated. Employing a sinusoidal driving strategy with a sensorless vector control, the SX68200M series brings a small-sized, high-efficient, and low-noise motor controlling into your application.

The SX68200M series incorporates a microcontroller, allowing users to set individual parameters with a dedicated GUI. This application note describes how to evaluate a demo board equipped with an SX68200M series device. For more details, refer to the SX68200M series data sheet. For more details on how to adjust parameters with the GUI, refer to the following application note: A Guide to Demo Board Evaluation and Parameter Adjustment (AN0009).

SX68200M Series Features

- Pb-free (RoHS Compliant)
- Sinusoidal Current Waveform (Low Noise, High Efficiency) Sensorless Vector Control (High Efficiency at Load Variation, Small Size)
- Built-in Bootstrap Diodes with Current-limiting Resistors
- EEPROM as a Control Parameter Storage
- Two Speed Control (PI Control) Modes:
 - Analog Voltage Control (VSP Pin)
 - Serial Communications Control (I²C Compatible)
- 3-shunt Current Detection
- DIAG Pin Fault Signal to Be Output
- Protections Include:
 - V3 Pin Undervoltage Protection
 - Watchdog Timeout Detection
 - Memory Error Detection
 - Overvoltage Protection and Undervoltage Lockout for Main Power Supply (VM Pin)
 - Soft Overcurrent Protection
 - Hard Overcurrent Protection
 - Thermal Warning
 - Thermal Shutdown
 - Undervoltage Lockout for Logic Supply
 - Loss-of-Synchronization Protection

Applications

- Fan Motor for Air Conditioner
- Fan Motor for Air Purifier and Electric Fan

SX68200M Series Package

SOP36

Not to scale

SX68200M Series Demo Board

SX68200M Series GUI

1. Demo Board Overview

Table 1-1 provides the specifications of the demo boards for evaluating the SX68200M series devices. Select a demo board based on your applications and power supply specifications. The demo boards are available from the URL below.

URL: https://www.semicon.sanken-ele.co.jp/support/evalboard/hvmd.html

No.	On-board IC (V _{DSS} , I _O)	Motor Type	Input Supply Voltage	Rectified Voltage	VCCx Pin Voltage
Demo Board 1	SX68201M (250 V, 2.0 A)	100 V system	100 VAC	141 VDC	
Demo Board 2	SX68203M (600 V, 1.5 A)	100 V system / 200 V system	100 VAC / 200 VAC	141 VDC / 282 VDC	15 V
Demo Board 3	SX68205M (600 V, 2.0 A)	100 V system / 200 V system	100 VAC / 200 VAC	141 VDC / 282 VDC	

Table 1-1. Demo Board Specifications

Figure 1-1 is the circuit diagram of a demo board populated with an SX68200M series device.

Figure 1-1. Circuit Diagram of Demo Board

• Bill of Materials

II UI Materi	a15				
Symbol	Part Type	Ratings	Symbol	Part Type	Ratings
C3	Electrolytic	120 μF, 400 V	R109*	General	Open
C4	Electrolytic	100 μF, 25 V	R110	General	10 kΩ, 0.25 W
C5	Electrolytic	10 µF, 50 V	R111	General	100 Ω, 0.25 W
C6	Ceramic	0.22 μF, 50 V	R112	General	100 Ω, 0.25 W
C100	Film	0.047 µF, 400 V	R113	General	100 Ω, 0.25 W
C101	Ceramic	1 μF, 50 V	R114	General	10 kΩ, 0.25 W
C102	Ceramic	1 μF, 50 V	R115	General	10 kΩ, 0.25 W
C103	Ceramic	1 μF, 50 V	R116	General	2.2 kΩ, 0.25 W
C104	Electrolytic	100 µF, 25 V	R117	General	Open
C105	Ceramic	1 μF, 50 V	R119	General	3.3 kΩ, 0.25 W
C106	Ceramic	1 μF, 50 V	R120	General	10 kΩ, 0.25 W
C107	Ceramic	100 pF, 50 V	R121	General	10 kΩ, 0.25 W
C108*	Ceramic	Open	R201	General	1 kΩ, 0.25 W
C109	Ceramic	0.1 µF, 50 V	R202	General	100 Ω, 0.25 W
C110	Ceramic	1 μF, 50 V	R203	General	Open
C111	Ceramic	0.1 µF, 50 V	R204	General	100 Ω, 0.25 W
C112	Ceramic	0.1 µF, 50 V	R205	General	1 kΩ, 0.25 W
C113	Ceramic	1000 pF, 50 V	RS1*	Metal plate	0.36 Ω, 1 W
C114	Ceramic	1000 pF. 50 V	RS2*	Metal plate	0.36 Ω, 1 W
C115	Ceramic	1000 pF, 50 V	RS3*	Metal plate	0.36 Ω, 1 W
C116	Ceramic	100 pF. 50 V	RD0	Metal plate	1 MΩ. 1 W
C117	Ceramic	100 pF. 50 V	TH0	Thermistor	10 Ω. 1800 mW
C201*	Ceramic	Open	VSP VR	Trimmer	20 kΩ, 0.5 W
C202*	Ceramic	Open	D1	Fast recovery	200 V. 1 A
C203	Ceramic	0.1 uF. 50 V	D2	Fast recovery	500 V. 1 A
C204	Ceramic	Open	D3	Fast recovery	500 V, 1 A
C205	Ceramic	1 µF, 50 V	D4	Zener diode	1 W, Vz = 18.8 V (min.)
C206	Ceramic	0.1 µF, 50 V	L1	Filter	74.5 mH
C207	Ceramic	Open	L2	Inductor	1 mH
CX0	Film	22 nF, 275 VAC	F1	Fuse	250 VAC, 1 A
CY1	Ceramic	4.7 nF, 250 VAC	LED1	LED	5 V, 30 mA
CY2	Ceramic	4.7 nF, 250 VAC	LED2	LED	5 V, 30 mA
R1	General	10 kΩ, 0.25 W	LED3	LED	5 V, 30 mA
R2	General	47 kΩ, 0.25 W	LED4	LED	5 V, 30 mA
R3	General	4.7 kΩ, 0.25 W	RESET	Switch	TS-AGGNH-G
R4	General	4.7 kΩ, 0.25 W	DIR SW	Switch	1MS1-T2-B1-M1-Q-N-S
		,	1	Micro USB	
R5	General	33 kΩ, 0.25 W	USB_Micro	Type-b	ZX62-B-5PA
				connector	
R6	General	33 kΩ, 0.25 W	CN1	Connector	Equiv. to B2P3-VH
R7	General	33 kΩ, 0.25 W	CN2	Connector	Equiv. to B3P5-VH
R8	General	33 kΩ, 0.25 W	CN3	Pin header	2.54 mm pitch
R9	General	33 kΩ, 0.25 W	CN4	Pin header	2.54 mm pitch
R101	Metal plate	1 MΩ, 0.25 W	DC-Link	Connector	Equiv. to B2P3-VH
R102	Metal plate	1 MΩ, 0.25 W	RC1	Bridge diode	D3SBA60
R103	Metal plate	1 MΩ, 0.25 W	Q1	NPN transistor	Open
R104	Metal plate	10 kΩ, 0.25 W	IPM1	IC	SX68200M series
R105	General	47 kΩ, 0.25 W	IC1	IC	STR5A464D
R106	General	5.6 kΩ, 0.25 W	IC2	IC	FT232RL
R107	General	10 kΩ, 0.25 W	JP1	Jumper	Short
R108	General	10 kΩ, 0.25 W	JP2	Jumper	Short

* Refers to a part that requires adjustment based on operation performance in an actual application.

2. Evaluating the Demo Board

This section explains the procedure until you rotate a testing motor for the first time with your demo board.

2.1. Calculating Winding Ls

This section describes how to calculate a value to be selected from the **Winding Ls** list in the GUI, which is required when rotating a testing motor with your demo board. Note that the motor does not start to rotate unless a proper value is selected from the **Winding Ls** list.

Firstly, measure the average line inductance, L_{AVG} , of the testing motor. As Figure 2-1 shows, measure line inductances across any two phases, L_{IJ} , by an LCR meter. Measure the line inductances for multiple times since a line inductance varies according to the position of a rotor. In addition, measure the line inductances of multiple motors. After measuring the line inductances, calculate an average line inductance, L_{AVG} (see Table 2-1). The L_{AVG} is an average value from all the individual phase-to-phase inductances you measured.

Figure 2-1. Line Inductance Measurement

Motor	Number of	Line Inductance, L _{IJ} (mH)			
NIOLOF	Measurements	L _{UV}	L_{VW}	$L_{\rm UW}$	
	First	81	80	79	
No. 1	Second	82	82	81	
	Third	80	82	81	
	First	81	80	81	
No. 2	Second	82	82	82	
	Third	81	80	82	
Average (L _{AVG})			81.1		

Table 2-1. Example Results of Line Inductance Measurement

Secondly, calculate a value of the Winding L_s . We offer you Winding L_s Calculation Tool that helps you perform quick and easy calculations. Please visit the URL below to find out more:

URL: https://www.semicon.sanken-ele.co.jp/en/calc-tool/windingls_caltool_en.html

Winding L_s Calculation Tool

58.9 US Enter the value shown in the PWM Period field on the GUI.
$_{282}$ V Enter a value of the main supply voltage.
0.36 Ω Enter a value of the shunt resistor of the demo board.
0.0811 H Enter a value of the L _{AVG} you calculated.
A
A Calculation result when the value of Max Curnt field on the GUI is "50% Ifs".
Calculation Result

Figure 2-2. Winding L_S Calculation Tool

When you operate the testing motor with your demo board for the very first time, the following parameters must be calculated with their default values shown in the GUI: CS Range = 0.5 V, PWM period = 58.9 µs. For more details on the GUI and calculation methods, refer to the following application note: A Guide to Demo Board Evaluation and Parameter Adjustment (AN0009).

Section 2.4 describes how to enter a calculated value into the GUI.

2.2. Preparing the Devices and Tools for Evaluations

• Required Devices

Make sure that the following devices have been prepared before starting your demo board evaluation.

Device	Description	Remarks
AC Power Supply	Constant voltage power supply or SLIDAC	Required
USB Cable	USB A-USB micro B cable	Required
USB Isolator	Model name: 114991949 Manufacturer: Seeed Studio URL: <u>https://www.mouser.jp/ProductDetail/Seeed-</u> <u>Studio/114991949?qs=P1JMDcb91o6Z7ld6yCt%2FVQ==</u> Model name: USB Isolator USB-ISO Manufacturer: OLIMEX URL: <u>https://strawberry-linux.com/catalog/items?code=15043</u>	Required (The items at left are examples; you can use any USB isolator.)
Motor		Required
Control PC	OS: Windows 7 or later	Required
Oscilloscope		Required

• GUI Executable File

The GUI for setting parameters is available. From the URL below, download the **SX682xxM_Serial_Interface_V3p6.exe** file. URL: <u>https://www.semicon.sanken-ele.co.jp/en/support/documentsfordesign/hvmdtools/sx68200m.html#tool</u>

• Downloading an FTDI Driver

An FTDI driver is required for executing the GUI. When any FTDI driver has not been installed in your control PC, follow the steps below to download a proper driver (as of February 4, 2021). The following steps exemplify a procedure to download the driver that supports Windows[®] 64-bit operating systems.

- 1) Go to the FTDI's website.
- URL: https://ftdichip.com/
- 2) Click **DRIVERS**.

3)	Click D2XX	Drivers.							
	(Chip	HOME	PRODUCTS ~	APPLICATIONS ~	DRIVERS	$SUPPORT ^{\vee}$	About us \vee	a 👤 ۹	
		2	1	н	Drivers	1			
	12								
		R	IC.	The					
	Q Device	e Overview	VCP Drivers	D2XX Drivers	D3XX Drive	rs			S NEWSLETTE

4) Click **2.12.28**.

Currently Supported D2XX Drivers:

			Processor Architecture						
Operating System	Release Date	X86 (32- Bit)	X64 (64- Bit)	ARM	MIPS	SH4	Comments		
Windows*	2017 -08-30	<u>2.12.28</u>	<u>2.12.28</u>	-	_	-	WHQL Certified.Includes VCP and D2XX. Available as a <u>setup executable</u> Please read the <u>Release Notes</u> and <u>Installation Guides</u> .		

Select an appropriate processor architecture that supports your PC envronment from the table.

- 5) Download and unzip the .zip file you selected.
- 6) Place the **ftd2xx.dll** and **SX682xxM_Serial_Interface_V3p6.exe** files in the same hierarchy.
 - ftd2xx.dll
 SX682xxM_Serial_Interface_V3p6.exe

Note that the file name and file location of a .dill file will depend on which file you downloaded. Your .dll file downloaded through the steps above should be stored as follows:

CDM v2.12.28 WHQL Certified > i386 > ftd2xx.dll

2.3. Connecting the Devices

The following steps describe how to connect your demo board and control PC. DO NOT connect any AC power supply at this stage.

- Connect the USB isolator to the control PC. To protect the control PC from any damage, be sure to use the USB isolator you have chosen.
- 2) Connect the USB isolator and the demo board by using a USB cable.

LEDs lit by USB bus power

Figure 2-3. Connection by USB Cable

Sank	en	SX682xxM w- A9821	USB-I2C FAIL! Reg12 W 0001	Run Control DIAG Output	ault 💌	Mask	Clear
PWM	0	Current Sample	Speed Control	DIAG Drv Curnt	Positive L		POR
PWM Mode	2 ph 💌	CS Range -500~500mV -	SpeedRef Sel Ext VSP	FG Output F	G		ME
PWM Period	30.5 us 💌	CS Delay 0.0 us -	SpeedRef Unt 0.1 Hz -	FG Frequency	Fdrv		OC
PWM DeadTm	0.00 us 💌	CS MinOn 0.0 us 👻	SpeedRef Max 0 Fu -	Read Diag	Clear Fit		EE
BootC ChrgTm	0 ms 👻		SpeedRef Min 0 Fu 👻	PMRSTn Ouput =	RESETn		TW
Start Un		Hard Over Current		Stop On Fail	ESF OFF		OT
StartUp Mode	Ramp Up	HUCP Inrev 150% Its	VSP/VM Voltages	ReStart Ctrl 1	No Restart	Ē	PMF
WM Brk Curnt	25% Imax •	HOCP Hold Im 0.1 s	VOPChart Min 0.000 V V	Restart No 5	•		HOC
WM Ext Curret	6 25% Imax =	HOCP FilterTm 2.0 us	VSPStart Min 0.000 V -	LOS Hold Tm	00 ms 👻		OVM
Held Trees	0.2370 11100	- Dood Time Componention	VSPRun Min 0.000 V	Postart Torquo	Eivod		UVM
		DTCmp Enabl DTC OFF	VSP SleepV 0.000 V -	Deeles	055	Send	Registers
Hold Time	0.0 [ms]	DTCmp Gain	UVM ThrV 0.3 V	Вгаке	UFF	Read	Registers
Hold DutyC	1.5% 🗸		EEDDOM	Direction	Forward	Check	-Sum
Hold Rmp Up	6% -	DICmp MaxIm 0.0% DI	ProductNo PN	I2C Registers	Spec Regs	CS	UM: 0x44
RampU Frequ	1.6 Hz 💌	Motor Control		C0 000 C1 000	NVC 000		
RampU Curnt	1.6 % lfs 🔹	Ki Speed 0.008 Knsi 💌	Password Pwd 000	C2 000 C3 000 C4 001 C5 021	Mask 000 Diag 0000		
Motor Sensorles	c	Kp Curnt 0.008 Kncp 🔻	VVrite	C6 001 C7 000	Run 000		
Kp Snsls	0.008 Kntp 🗸	Ki Curnt 0.008 Knci 🗸		C10 000 C11 000	Default		
Ki Snsls	0.008 Knti 👻	Max Curnt 38% Ifs -		C12 001 C13 000 C14 000 C15 000	Doruun		
Freal mt Low	0.0 Hz •	OCP Curnt Disable V	-Run/Stop	C16 000 C17 000 C18 000 C19 000	Load		
Fred mt High	102.4 Hz	EWkn Curnt -26% Ifs	Run	C20 000 C21 000 C28 000 C29 000	Sava		
Winding La	41	20/0 113		C30 000 C31 000	Save		
winding LS	I LU <u>-</u>						

3) To launch the GUI, double-click the SX682xxM_Serial_Interface_V3p6.exe file.

Once the communications between the control PC and the IC become available, the **USB-I2C** indicator displays "OKAY!", changed from its default "FAIL!".

Communications	Communications
Disabled	Enabled
USB-I2C FAIL!	USB-I2C OKAY!

If the error message appears during GUI launch, the following may be possible causes:

- The FT232 driver, an essential interface between the control PC and the IC, have not been downloaded.
- The .dll file and the SX682xxM_Serial_Interface_V3p6.exe file are not placed in the same hierarchy.

Go back to *Downloading an FTDI Driver* to check if you have taken all the necessary steps, and then retry to execute the **SX682xxM_Serial_Interface_V3p6.exe** file.

2.4. Setting Up the Motor

The following steps explain how to connect the devices, to initialize the GUI settings, and to check the motor operation.

- 1) Connect the motor to the connector CN2.
- 2) Connect the AC power supply to the connector CN1.
- 3) Flip the toggle switch to "L" (i.e., push the switch lever toward the demo board edge).

- 4) Connect the current and voltage probes of your oscilloscope. To measure the U-phase waveform, connect the current probe to the U-phase. To measure the FG waveform, connect the voltage probe to the FG pin of the connector CN3. To measure the DIAG waveform, connect the voltage probe to the DIAG pin of the connector CN3.
- 5) To initialize the GUI, click the **Default** button.

6) In the **Motor Sensorless** group box, select a value from the **Winding Ls** list. Select the value you obtained by the calculations in Section 2.1.

Motor Sensories	SS	
Kp Snsls	0.5 Kntp	•
Ki Snsls	0.5 Knti	•
FreqLmt Low	0.0 Hz	•
FreqLmt High	512.0 Hz	•
Winding Ls	28 Lu	-
VM Cmpn	Enable	

7) Turn on the AC power supply.

High voltages are then applied to the demo board. Therefore, extreme care must be taken during the AC power-on. After the first AC power-on, the GUI displays error statuses in red, e.g., POR (power-on reset), on the status column.

Mask	Clear
	FF
Γ	POR
Г	ME
Г	WD
Г	OC
Г	EE
Г	TW
Γ	OT
Г	LOS
Г	PMF
	HOC
Г	OVM
Г	UVM

8) Click the **Send Registers** button

- 9) Click the **Clear** button, or press the RST_SW on the demo board (see Figure 1-1). Then the IC is reset and all the error statuses in red will turn green.
- To start the motor rotation, click the **Run** button in the **Run/Stop** field. Once you click the **Run** button, the button label switches to "Stop".
- 11) To start the motor rotation, click the **Stop** button in the **Run/Stop** field. Once you click the **Stop** button, the button label switches to "Run".

3. FAQ

Question	Answer
Why the GUI does not launch?	The operating system your control PC uses may NOT our required
	operating environment. Please check your current operating
	environment and use a PC with Windows 7 or later.
I tried to run the motor for the first time,	If you have connected the AC power supply to the connector CN1,
but it didn't rotate properly. What should I	please try a DC power supply. Here is how to run the motor with a DC
do?	power supply: First, connect the DC power supply to the DC-Link
	connector. Next, check the motor operation by applying a voltage of 40
	V. Then, increase the voltage gradually while monitoring the motor
	operation.

4. About Trademarks and Registered Trademarks

- Windows[®] is either registered trademark of Microsoft Corporation in the United States and/or other countries.
- All rights and title in and to any specific trademark or tradename belong to Sanken and such original right holder(s).

Important Notes

- All data, illustrations, graphs, tables and any other information included in this document (the "Information") as to Sanken's products listed herein (the "Sanken Products") are current as of the date this document is issued. The Information is subject to any change without notice due to improvement of the Sanken Products, etc. Please make sure to confirm with a Sanken sales representative that the contents set forth in this document reflect the latest revisions before use.
- The Sanken Products are intended for use as components of general purpose electronic equipment or apparatus (such as home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Prior to use of the Sanken Products, please put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken. When considering use of the Sanken Products for any applications that require higher reliability (such as transportation equipment and its control systems, traffic signal control systems or equipment, disaster/crime alarm systems, various safety devices, etc.), you must contact a Sanken sales representative to discuss the suitability of such use and put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken, prior to the use of the Sanken Products. The Sanken Products are not intended for use in any applications that require extremely high reliability such as: aerospace equipment; nuclear power control systems; and medical equipment or systems, whose failure or malfunction may result in death or serious injury to people, i.e., medical devices in Class III or a higher class as defined by relevant laws of Japan (collectively, the "Specific Applications"). Sanken assumes no liability or responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, resulting from the use of the Sanken Products in the Specific Applications or in manner not in compliance with the instructions set forth herein.
- In the event of using the Sanken Products by either (i) combining other products or materials or both therewith or (ii) physically, chemically or otherwise processing or treating or both the same, you must duly consider all possible risks that may result from all such uses in advance and proceed therewith at your own responsibility.
- Although Sanken is making efforts to enhance the quality and reliability of its products, it is impossible to completely avoid the occurrence of any failure or defect or both in semiconductor products at a certain rate. You must take, at your own responsibility, preventative measures including using a sufficient safety design and confirming safety of any equipment or systems in/for which the Sanken Products are used, upon due consideration of a failure occurrence rate and derating, etc., in order not to cause any human injury or death, fire accident or social harm which may result from any failure or malfunction of the Sanken Products. Please refer to the relevant specification documents and Sanken's official website in relation to derating.
- No anti-radioactive ray design has been adopted for the Sanken Products.
- The circuit constant, operation examples, circuit examples, pattern layout examples, design examples, recommended examples, all information and evaluation results based thereon, etc., described in this document are presented for the sole purpose of reference of use of the Sanken Products.
- Sanken assumes no responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, or any possible infringement of any and all property rights including intellectual property rights and any other rights of you, users or any third party, resulting from the Information.
- No information in this document can be transcribed or copied or both without Sanken's prior written consent.
- Regarding the Information, no license, express, implied or otherwise, is granted hereby under any intellectual property rights and any other rights of Sanken.
- Unless otherwise agreed in writing between Sanken and you, Sanken makes no warranty of any kind, whether express or implied, including, without limitation, any warranty (i) as to the quality or performance of the Sanken Products (such as implied warranty of merchantability, and implied warranty of fitness for a particular purpose or special environment), (ii) that any Sanken Product is delivered free of claims of third parties by way of infringement or the like, (iii) that may arise from course of performance, course of dealing or usage of trade, and (iv) as to the Information (including its accuracy, usefulness, and reliability).
- In the event of using the Sanken Products, you must use the same after carefully examining all applicable environmental laws and regulations that regulate the inclusion or use or both of any particular controlled substances, including, but not limited to, the EU RoHS Directive, so as to be in strict compliance with such applicable laws and regulations.
- You must not use the Sanken Products or the Information for the purpose of any military applications or use, including but not limited to the development of weapons of mass destruction. In the event of exporting the Sanken Products or the Information, or providing them for non-residents, you must comply with all applicable export control laws and regulations in each country including the U.S. Export Administration Regulations (EAR) and the Foreign Exchange and Foreign Trade Act of Japan, and follow the procedures required by such applicable laws and regulations.
- Sanken assumes no responsibility for any troubles, which may occur during the transportation of the Sanken Products including the falling thereof, out of Sanken's distribution network.
- Although Sanken has prepared this document with its due care to pursue the accuracy thereof, Sanken does not warrant that it is error free and Sanken assumes no liability whatsoever for any and all damages and losses which may be suffered by you resulting from any possible errors or omissions in connection with the Information.
- Please refer to our official website in relation to general instructions and directions for using the Sanken Products, and refer to the relevant specification documents in relation to particular precautions when using the Sanken Products.
- All rights and title in and to any specific trademark or tradename belong to Sanken and such original right holder(s).