800V-SiC-MOSFET の開発

Development of 800V-SiC-MOSFET

韋	寧*	馬	場	良	平*	熊	倉	弘	道*
Ning Wo	ei	ŀ	}yohe	ei Bal	ba	Hiron	nichi	Kum	akura

概要 SiCウェーハの大口径化によってコストが徐々に下がってきている。Siパワーデバイスより 高速動作や高温動作が可能であるSiCパワーデバイスは、小型電源やインバータなどの部品点数を削 減して小型化,軽量化および大電力化に大きく寄与することが期待される。今回,中耐圧領域のスイッ チング電源やモータインバータに向けた800V SiC MOSFETを開発するにあたり、先行開発している 1200V開発品のコンセプトを踏襲しながらデバイスシミュレーションによって素子設計を検討した。 Siデバイスの一つであるSuper Junction MOSFETと比較し、スイッチング損失に対して優位性を確 認したので報告する。

1. まえがき

近年,環境保護のためCO₂排出の削減が厳しくなり, エコ・省エネが強く要求されている。化合物半導体で あるシリコンカーバイド (SiC) やガリウムナイトライド (GaN)は、より優れた材料特性を有し、Siの性能限界を超 えるデバイスを実現できることから注目されている⁽¹⁾。

表1 半導体材料の物理定数とパワー素-	子性能指標
---------------------	-------

Properti	Si	4H-SiC	GaN	
バンドギャップ	eV	1.1	3.3	3.4
電子移動度	cm ² /Vs	1350	700	1500
絶縁破壊電界	MV/cm	0.3	3.0	3.3
熱伝導度	W/cmK	1.5	4.9	2.0
性能指数	εμeEc ³	1	440	1130

表1に示されるように,SiCの絶縁破壊電界強度はSi より10倍大きく,デバイス耐圧を保持するためのドリ フト層を薄くかつ高濃度に作製できるため,低損失デバ イスを実現できる。バンドギャップ幅はSiの3倍である ことから,SiCは高温下においてもリーク電流が少なく 正常の動作ができる。また,SiCの熱伝導度はSiの3倍 以上であり,冷却装置の簡素化や削減を期待できること から,電源装置やインバータの小型化,軽量化,大電力 化に大きく貢献できる。

SiCの利点を生かして、当社は既に民生、産業機器や EV/HEVのモーター向けに1200VのSiC Trench MOSFET

* デバイス事業本部 技術本部 マーケティング統括部 SiC 技術部 開発 1 課

の開発を進めている⁽²⁾。

現在、SiCパワーデバイスの普及における課題は、 ウェーハコストが高いことである。しかし、SiCウェー ハは近年、4インチから6インチに大口径化が進んでお り、さらに8インチ化技術が確立すればさらなるコスト 削減が期待できる。課題であったSiデバイスとの価格 差が改善されればSiCのメリットを生かした応用技術が 市場に浸透し、中耐圧領域のニーズも高まってくると予 測できる。SiCパワーデバイスが中耐圧領域で適用され るアプリケーションの一例として、図1のようにキャリ ア周波数が数+kHzのモータインバータから、数百kHz の民生・産機のスイッチング電源などが挙げられる。こ の領域に対応するため当社は800V SiC MOSFETの開発 を着手した。

図1 800V SiC MOSFET の市場位置付け

本稿では,800V開発品の構造設計をデバイスシミュ レーションで検討した結果を報告する。

2. デバイス設計

2.1 設計コンセプト

今回800V開発品の素子設計は、先行開発している 1200V開発品の設計をベースにデバイスシミュレーショ ンを用いて検討した。すでに実績を得ている1200V開発 品の設計結果を活用することで、開発期間を大きく短縮 した。

図2(a)のように、当社の1200V開発品は、微細化に よる面積オン抵抗を低減するため、トレンチゲート構造 を採用し、埋め込み型ゲート電極構造としている。トレ ンチゲート底端部のゲート酸化膜にかかる電界緩和のた めにトレンチ間に高エネルギー注入によるDeep P領域 (DP)を設けた。トレンチ底部にラウンディング加工を 施し、さらに底部のゲート酸化膜を選択的に厚くするこ とで、ゲート酸化膜にかかる電界集中を抑制した。この 厚膜ゲート酸化膜は、スイッチング特性改善にも有効で ある。デバイスのしきい値電圧およびOFF時のゲート 酸化膜中の電界強度が設定値を超えないよう、ゲート酸 化膜の厚みを決定した⁽¹⁾。

図2 1200V 開発品のセル構造(a)と面積オン抵抗成分比率(b)

1200V開発品の面積オン抵抗成分は**図2(b)**のように 構成され、主にChannel抵抗 R_{ch} ,JFET抵抗 R_{JFET} ,N drift抵抗 R_{Ndrift} とSub抵抗 R_{sub} の和である⁽²⁾。トレンチゲー ト構造によるチャネルの高密度化とMOS界面の改善に より R_{ch} の比率を全体の25%程度まで低減できている。 その結果、 R_{Ndrift} の比率は全体の約30%と大きいことが わかる。また、MOSFETがOFF動作する時、N drift層に 空乏層が広がり、耐圧は空乏層の厚さで決まる。耐圧と R_{Ndrift} はN drift層の濃度および厚さに大きく左右される。

開発する 800V開発品の面積オン抵抗 (A・R_{on}) は 1200V 開発品に対し約 15% 削減を目標値とした。 1200V開発品の素子耐圧設計は、セル部ではなく活性 領域外周部でアバランシェ降伏させる設計とした。その 理由は、SiC基板は結晶欠陥がSiに比べて多く内在する ため、広い面積のセル部より狭い外周部でアバランシェ 降伏現象を生じさせる方が、結晶欠陥の影響を低減でき るためである⁽¹⁾。

800V開発品は1200V開発品と同様に活性領域外周部 でアバランシェ降伏させる設計とし,FLR構造(Field Limiting Ring)を採用する。製品仕様800Vを保証し,セ ル部耐圧より低くなるようFLR構造を設計することが 求められる。

1200V開発品と同様,OFF動作時においてはゲート酸 化膜に強い電界がかかることから信頼性,寿命保証の観 点で設計の段階からゲート酸化膜中電界を重要なパラ メータとし検討を進めた。

MOSFETの耐圧と面積オン抵抗は、N drift層に大き く影響されることから、目標特性を満足するようデバイ スシミュレーションを用いてN drift層の設計をおこなっ た。

2.2 セル構造設計

2.2.1 耐圧検討

N drift層の濃度および厚さを検討した。1200V開発品 のシミュレーション結果を参考に,N drift層の厚みを 1200V開発品の30%~80%,濃度を100%~200%の範 囲でセル部耐圧シミュレーションをおこなった。

図3に示す結果のように、検討した範囲内において、 目標耐圧を満足するいくつかの濃度および厚さの条件を 見出すことができた。

2.2.2 面積オン抵抗検討

面積オン抵抗とN drift層の濃度および厚さとの依存 性の検討もおこなった。

結果は図4のように、N drift層の厚さを一定にし、濃度を高くすると面積オン抵抗が低減する傾向であった。

2.2.3 OFF動作時ゲート酸化膜中最大電界検討

OFF動作時においては、トレンチ底端部のゲート酸 化膜に強い電界がかかることから信頼性、寿命保証の観 点よりゲート酸化膜中電界は重要なパラメータである。 そのため、N drift層の濃度および厚さに対しその依存性 を確認した。

図5のようにN drift層の厚さを一定にし,濃度を低く すると,OFF動作時の酸化膜中最大電界が低減する傾 向であった。

セル部素子耐圧,面積オン抵抗,OFF動作時のゲー

ト酸化膜中電界に対してNdrift層濃度および厚さを検討 した結果,1200V開発品に対してそれぞれ130%と60% の条件にて特性を満足することを確認した。

選定したN drift層条件において製造ばらつきを±15% と想定し、特性ばらつきを検討した。

図6 N drift 層濃度に対する面積オン抵抗とゲート酸化膜中最大電界

図7 N drift 層厚さに対する面積オン抵抗とゲート酸化膜中最大電界

図6,7に示すように、N drift層の濃度と厚さの製造 ばらつきが想定範囲内であれば、面積オン抵抗とOFF 動作時の酸化膜中最大電界は、目標値を満足する結果を 得ることができた。

2.3 素子外周構造検討

耐圧設計においてはSiCが持つ結晶欠陥の影響を低減 するため、セル耐圧>外周耐圧の関係を有し、外周でブ レークダウンする動作状況が望ましい。そのため外周 FLR構造においては製造ばらつきや外部イオン侵入など の動作に影響を与えることを想定し、安定的に主接合で アバランシェ動作するよう設計する必要がある。今回検 討したN drift層濃度と厚さ条件を用いて、OFF動作に おけるセル部と外周部の耐圧比較および外周耐圧を制御 するためのFLR構造最適化を検討した。

図8は検討したFLR構造の耐圧とセル耐圧を比較した 結果である。得られた特性は目標耐圧を満足し、セル耐 圧に対して十分なマージンを有する結果となった。また、 N drift層の濃度と厚みの製造ばらつき範囲内においても FLRの耐圧はセル部の耐圧より常に一定以上のマージン を有し、耐圧の逆転現象が生じないことを確認した。

図9に、アバランシェ降伏時の電子電流分布を示す。 FLRリングの幅と間隔の調整によりブレークポイントが 決定される。図9(b)に示すように、OFF動作時のアバ ランシェ降伏が主接合で生じるよう、FLR設計の最適化 を実施した。

3. 電力損失検討

図10に示す回路構成を用いて、キャリア周波数500kHz を想定したダブルパルス評価法による電力損失シミュ レーションを実施した。Super Junction MOSFET (以下 SJ-MOSFET)を比較対象とした。定常状態のオン抵抗を 規格化してスイッチング損失を抽出した。比較評価結果 を図11に示す。今回設計した800V開発品のスイッチン グ損失は他社のSJ-MOSFETに比べ1/7~1/105に損失 低減できることが示唆された。キャリア周波数の高いス イッチング電源への適用についても優位性が期待できる。

4. むすび

デバイスシミュレーションを用いて800V SiC-MOSFET の基礎設計の検討をおこなった。

N drift層の濃度および厚さをそれぞれ,1200V SiC MOSFETの130%と60%の条件を適用し,面積オン抵抗 を約15%低減できた。また,デバイス耐圧は目標設計 値以上が得られた。

電力損失に関しては、キャリア周波数500kHzのスイッ チング電源用途を想定した場合、SJ-MOSFETより低損 失で、強い競争力を示すことがわかった。

今後, 試作をおこない検討結果の妥当性を確認しなが ら 800V SiC MOSFETの開発を早期におこなっていく。

参考文献

(1) 熊倉,馬場:サンケン技報,vol 50, p.19-22,(2018.11)
(2) 熊倉:サンケン技報,vol 51, p.29-32,(2019.11)