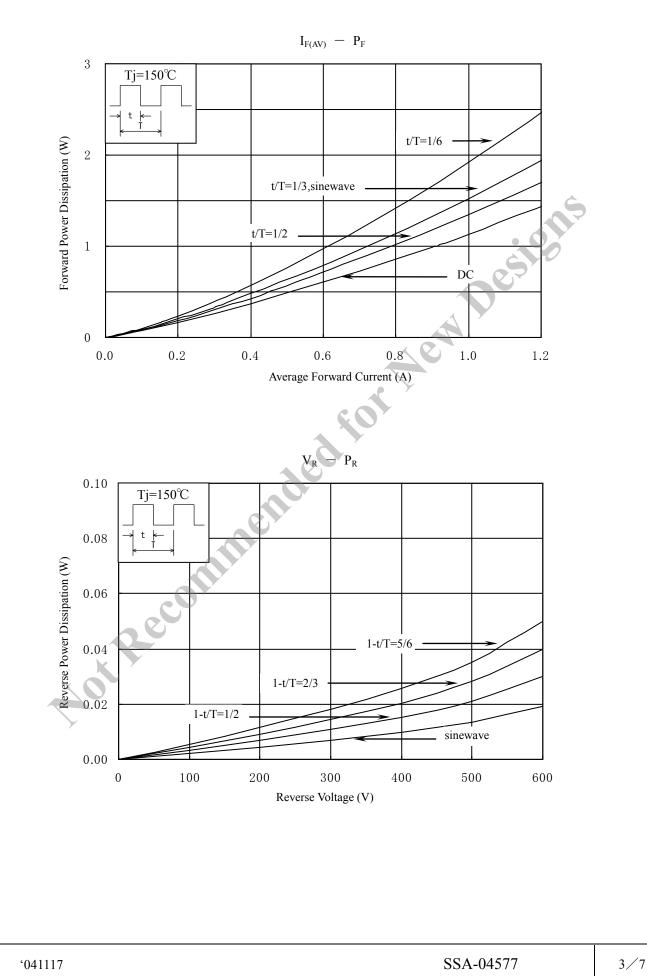
1. Scope

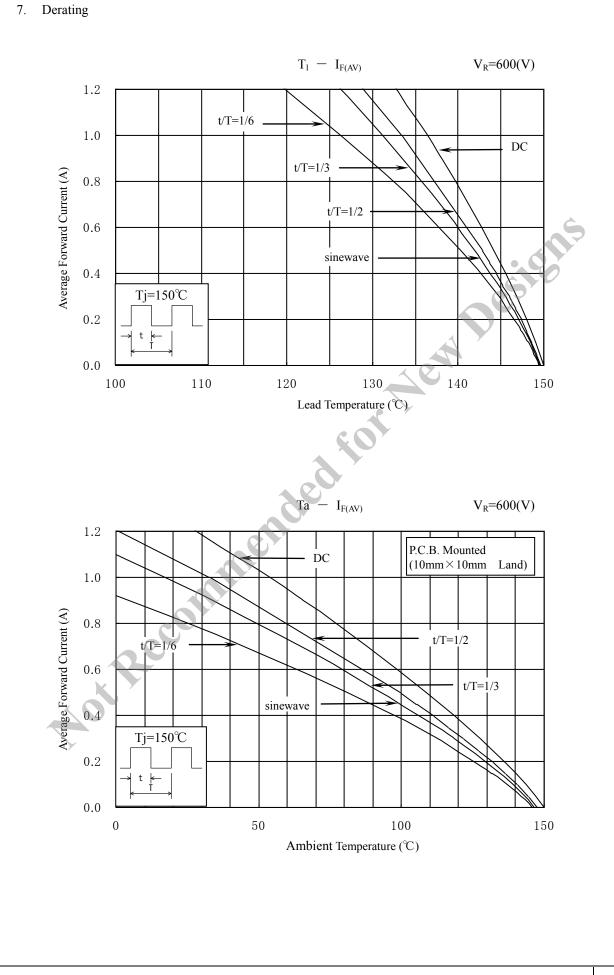
The present specifications shall apply to an RD2A.

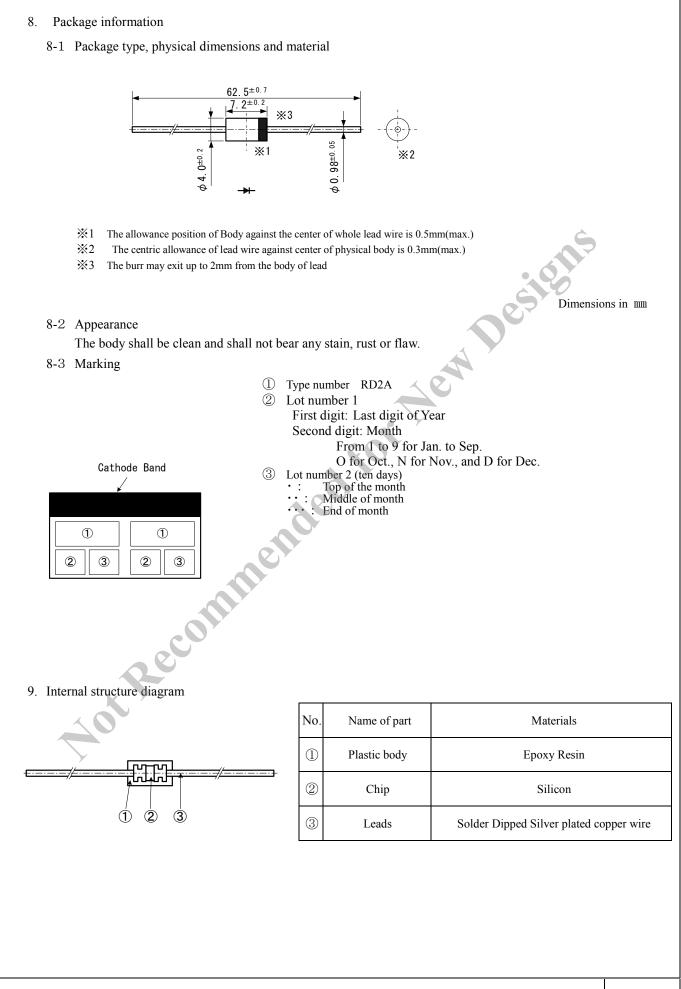
2. Outline

	Туре	Silicon Diode					
	Structure	re Resin Molded					
	Applications	High Frequency Rectification					
3. F	Flammability UL94V-0(Equivalent)						
	Flammability UL94V-0(Equivalent)						
	endedte						
	Recommended for New Y						
Aotre							

3. Flammability


4. Absolute maximum ratings


No.	Item	Symbol	Unit	Rating	Conditions
1	Transient Peak Reverse Voltage	V _{RSM}	V	600	
2	Peak Reverse Voltage	V _{RM}	V	600	
3	Average Forward Current	I _{F(AV)}	А	1.2	Refer to Derating of 7
4	Peak Surge Forward Current	I _{FSM}	А	30	10msec. Half sinewave, one shot
5	I ² t Limiting Value	I ² t	A ² s	4.5	$1 \operatorname{msec} \leq t \leq 10 \operatorname{msec}$
6	Junction Temperature	Tj	°C	-40~+150	6
7	Storage Temperature	T _{stg}	°C	-40~+150	0


5. Electrical characteristics

No.	Item	Symbol	Unit	Value	Conditions
1	Forward Voltage Drop	\mathbf{V}_{F}	V	1.55 max.	$I_F=1.2A$
2	Reverse Leakage Current	I _R	uA	50 max.	V _R =V _{RM}
3	Reverse Leakage Current Under High Temperature	H•I _R	uA	100 max.	$V_R = V_{RM}, T_j = 150^{\circ}C$
4	Reverse Recovery Time	t _{rr} 1	ns	50 max.	$I_F = I_{RP} = 100 \text{mA}$ 90% Recovery point, $T_j = 25^{\circ}\text{C}$
4	Reverse Recovery Time	t _{rr} 2	ns	35 max.	I_F =100mA, I_{RP} =200mA 75% Recovery point, T_j =25°C
5	Thermal Resistance	$R_{th(j-l)}$	°C/W	12 max.	Between Junction and Lead
	totret				

6. Characteristics

10. Reliability

0. Reliability						
No.	Item	Rating	Conditions			
1	Thermal Fatigue Test	5000 cycles	⊿Tj=100°C			
2	High Temperature Reverse Bias Test	1000 hours	Ta=150°C, $V_R = V_{RM}$ (Half sine wave)			
3	Humidity Reverse Bias Test	500 hours	Ta=85°C, R.H.=85%, $V_R=V_{RM} \times 0.8(D.C.)$			
4	High Temperature Storage Test	1000 hours	Ta=150°C			
5	Moisture Resistance Test	1000 hours	Ta=85°C, 85%R.H			
6	Thermal Shock Test	100 cycle	Ice-water(5min.) ~ R.T.(20sec.) ~ Boiling-water(5min.)			
7	Temperature Cycle Test	100 cycle	-40°C(30min.) ~ +150°C(30min.)			
8	Pressure Cooker Test	96 hours	2.03×10^{5} Pa, 100%R.H., Unsaturated equipment			
9		10 sec.	$260\pm5^{\circ}$ C, Dipping up to 1.5mm form case			
	Resistance to Soldering Heat Test	3.5 sec.	380±5℃, Using soldering iron			
10	Solderability Test	95%	$245\pm5^{\circ}$ C, 5 ± 0.5 sec., Using rosin flux			
11	Lead Bend Test	2 cycles	Y			
12	Lead Pull Test	10 sec.	Apply EIAJ ED-4701 A-111			
13	Lead Twist Test 2 times					
14	Drop Test	10 times	Naturally drop from 1m height on maple plate			

Acceptance Criteria

(1)Item No.1~9 The product shall meet the electrical specifications in paragraph 5

(2)Item No.10 after being exposed to normal temperature for less than 24 hours in 2 hours or more (2)Item No.10 The product shall meet the rating.

(3)Item No.11~14 There shall be no trouble in testing and the electrical characteristics in paragraph 5 shall be met.

11. Cautions and warnings

- Application and operation examples described in this document are quoted for the sole purpose of reference for the use of the products herein and Sanken can assume no responsibility for any infringement of industrial property rights, intellectual property rights or any other rights of Sanken or any third party which may result from its use.
- Although Sanken undertakes to enhance the quality and reliability of its products, the occurrence of failure and defect of
 semiconductor products at a certain rate is inevitable. Users of Sanken products are requested to take, at their own risk,
 preventative measures including safety design of the equipment or systems against any possible injury, death, fires or
 damages to the society due to device failure or malfunction.
- Sanken products listed in this document are designed and intended for the use as components in general purpose electronic equipment or apparatus (home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Please return to us this document with your signature(s) or seal(s) prior to the use of the products herein. When considering the use of Sanken products in the applications where higher reliability is required (transportation equipment and its control systems, traffic signal control systems or equipment, fire/crime alarm systems, various safety devices, etc.), please contact your nearest Sanken sales representative to discuss, and then return to us this document with your signature(s) or seal(s) prior to the use of the products herein. The use of Sanken products without the written consent of Sanken in the applications where extremely high reliability is required (acrospace equipment, nuclear power control systems, life support systems, etc.) is strictly prohibited.

• In the case that you use our semiconductor devices or design your products by using our semiconductor devices, the reliability largely depends on the degree of derating to be made to the rated values. Derating may be interpreted as a case that an operation range is set by derating the load from each rated value or surge voltage or noise is considered for derating in order to assure or improve the reliability. In general, derating factors include electric stresses such as electric voltage, electric current, electric power etc., environmental stresses such as ambient temperature, humidity etc. and thermal stress caused due to self-heating of semiconductor devices. For these stresses, instantaneous values, maximum values and minimum values must be taken into consideration.

In addition, it should be noted that since power devices or IC's including power devices have large self-heating value, the degree of derating of junction temperature (Tj) affects the reliability significantly.

- When using the products specified herein by either (i) combining other products or materials therewith or (ii) physically, chemically or otherwise processing or treating the products, please duly consider all possible risks that may result from all such uses in advance and proceed therewith at your own responsibility.
- Anti radioactive ray design is not considered for the products listed herein.
- Sanken assumes no responsibility for any troubles, such as dropping products caused during transportation out of Sanken's distribution network