1 Scope

The present specifications shall apply to switching power supply IC SFA0001-VF-RP

2 Outline

Туре	Semiconductor IC (Monolithic IC)
Structure	Plastic package (Transfer mold)
Features	Build-in current limit protection, thermal shutdown protection. Built-in error-amp helps eliminate components at sensing stage such as shunt regulator.

3 Absolute maximum ratings

3-1 Absolute maximum ratings (Ta=25°C)

olute maximum ratings Absolute maximum ratings (Ta=25°C)			e	20
Parameter	Symbol	Ratings	Unit	
OCP terminal voltage	VOCP	-6~+6	v	
SS terminal voltage	VSS	-0.3~+9	v	
FB terminal voltage	VFB	-0.3~+6	v	
Input voltage for control part	VCC	0~36	v	
Phase compensation terminal voltage	VCOMP	-0.3~+6	v	
Frequency setting terminal voltage	VFREQ	-0.3~+6	v	
Drive terminal peak current	IDRV(peak)	<u>-540mA∼+270mA</u>	mA	
Drive terminal DC current	IDRV(DC)	-180mA~+90mA	mA	
Power dissipation	PD	1.2 (※1)	w	
Junction temperature	Tj	-40~150	°C	
Storage temperature	Tstg	-40~150	°C	

(%1) Mounted on glass epoxy board (The dimension of PCB : 42mm × 32mm × 1mmt)

Recommended operating conditions

Parameter	Symbol	Ratings	Unit
Input voltage for control part	VCC	6~24	V
Switching frequency	FOSC	20~200	kHz

4 Electrical characteristic

4 - 1 Electrical characteristics (VCC=14V, Ta=-40 \sim 125°C) (*1)

		Ratings			Conditions	
Parameter	Symbol	MIN	TYP	MAX	Unit	
Power supply Start-up Operation						
Operation start voltage	VCC(ON)	4.9	5.1	5.3	v	FB=0V、SS=0V、OCP=0V、FREQ=200pF VCC=0V→14V
Operation stop voltage	VCC(OFF)	4.4	4.6	4.8	V	FB=0V、SS=0V、OCP=0V、FREQ=200pF VCC=14V→0V
Circuit current in operation		1.0	2.8	1	m۸	FB=0V、SS=0V、OCP=0V、FREQ=200pF、
Circuit current in non-operation		0.3	0.6	1	mA	FB=0V、SS=0V、OCP=0V、FREQ=200pF、 VCC=4 8V
Normal Operation						FB=0V_OCP=0V_FREQ=0V_VCC=14V
SS terminal high threshold voltage	VHSS	1.9	2	2.1	V	SS=0V→2.5V
SS terminal low threshold voltage	VI 88	0.0	1	1.1	V	FB=0V、OCP=0V、FREQ=0V、VCC=14V、 SS=2 5V→0V
	VLSS	0.9		1.1	V	VHSS-VLSS
SS terminal voltage hysteresis width	∆ VSS	0.9	1	1.1	V	
SS terminal outflow current	Isrc(SS)	11	15	19	μА	FB=0V、OCP=0V、FREQ=0V、VCC=14V、 SS=0.9V
	13/0(00/		10	10		FB=0V、OCP=0V、FREQ=0V、VCC=14V、
SS terminal inflow current	Isnk(SS)	13	17	21	uA	SS=2.1V
Switching frequency	fosc(200p)	85	100	115	kHz	VCC=14V
	. (555.0)					FB=0V、OCP=0V、SS=0V、VCC=14V、
FREQ terminal outflow current	Isrc(FREQ)	27	30	33	uA	FREQ=0.9V FB=0V_OCP=0V_SS=0V_VCC=14V
FREQ terminal inflow current	Isnk(FREQ)	75	86	95	uA	FREQ=2.1V
			C C		.,	FB=0V、OCP=0V、SS=0V、VCC=14V、
Oscillation circuit high threshold voltage		1.9	- 2	2.1	V	$FREQ=0V \rightarrow 2.5V$ $FB=0V, OCP=0V, SS=0V, VCC=14V,$
Oscillation circuit low threshold voltage	VLF	0.9	1	1.1	V	FREQ=2.5V→0V
Maximum on-duty width	Dmax	70	73	79	0/	FB=0V、SS=0V、OCP=0V、FREQ=200pF、
	Dillax		/3	78	/0	FB=0V、SS=2.5V、COMP=1.3V、
Slope compensation rate	SLP	2.1	2.5	2.9	mV/%	FREQ=470p, VCC=14V, OCP=0V→1V
Feedback voltage	VEB	2 4 5	25	2 5 5	V	SS=0V、OCP=0V、FREQ=0V、VCC=14V FB=0V→2.5V
		2.10	2.0	2.00		FB=0V, OCP=0V, SS=0V, VCC=14V
Drive voltage	Vdrive	7.6	8.3	9	V	$FREQ = 3V \cdot 1 \text{ pluse}$
Minimam drive voltage	Vdrive(min)	4			V	$FREQ = 3V \cdot 1$ pluse
						FB=3V、SS=0V、OCP=1V、FREQ=200pF、
Minimum on-time	Ton(min)		400		ns	VCC=14V
Protection Operation						
Leading edge blanking time	Tbw	(70)	100	(150)	ns	(*2)
OCP threshold voltage	VOOD	0.46	0.5	0.54	V	$FB=0V, SS=0V, VCC=14V$ $FBEO=3V + 1pluse = OCP=0V \rightarrow 1V$
	VUCP	0.40	0.5	0.34	v	FB=0V, OCP=0V, SS=10nF, VCC=14V
OLP delay time	TOLP	32	42	52	ms	FREQ=3V 1 pluse
Drive stop threshold voltage	VST	35	Δ	45	V	$FBEQ = 3V \cdot 1_{pluse}, SS = 0V \rightarrow 5V$
	*31	0.0			v	
Thermal shutdown operating temperature	TiH (TSD)	150	165		°C	(*2)
Thermal shutdown release temperature	TiL (TSD)		150		°C	(*2)

*1 The ratings at Ta=-40 $^{\circ}$ C to 125 $^{\circ}$ C shall be treated as a design value.

The ratings of devices shall be checked at -30°C,25°C,125°C at Outgoing Inspection.

*2 The rating of devices shall be treated as a design value.

4-2 Typical characteristics(Ta= 25° C)

7 Pins function description

		<u> </u>
Terminal No	symbols	Descripton
1	VCC	Power supply terminal
2	FB	Feedback terminal
3	GND	Ground terminal
4	ss	Soft start terminal
5	FREQ	Frequency setting terminal
6	COMP	Phase compensation terminal
7	Drive	Gate drive terminal
8	OCP	Over current protection termina
otRec		

The example of the solder pattern

	Symbol	Dimensions(mm)	
	e1	5.72	
	е	1.27	
	α	0.2 , or more	
	β1	0.2~0.5	
	β2	0.2	
	L	0.6	
	b	0.42	C O Y
	b2	0.76	
	I2	L+β1+β2	
The with	ere are refere h the EIAJ sta	ence value that are andards. (ED-7402-1	according
			elle
		ont	

There are reference value that are accordin, with the EIAJ standards. (ED-7402-1)

1. Outline This specification specifies packaging spec. for Sanken electric co., SFA0001-VF-RP as well as its related matters. Shipping is only taping as to SOP8.

Part name indication 2.

This followings specifies part name for taping spec.

2.1 Part name indication method

"Part name" - VF

2.2 IC direction in carrier tape pocket SFA0001-VF-RP is [VF type]. End of "Part name" is [- VB]: 1 pin of IC is facing to tape roll-in direction. End of "Part name" is [- VF]: 1 pin of IC is facing to tape pull-out direction.

3. Embossed taping specifications

111227

Taping type and physical dimensions 3.1 This carrier tape is treated antistatic treatment.

- 4. Packaging
 - 4.1 The number of parts per a reel: 3000 parts (MAX)
 - 4.2 Indication of part name and quantity
 - A label shows part number, quantity, and lot number.
 - 4.3 Outer packaging of reel Reel is put into moisture barrier bag and seal with desiccant and put into outer box.
- 5. Packing Dimensions and Appearance (A box is made of card boards. The following dimensions are reference value.)

6. Storage

In order to avoid failures during picking and mounting of devices by degradation of taping peel strength and to maintain mounting quality, the box shall be stored under temperature +5~+40 degree C and humidity 40%~60%. Parts shall be used within 3 months from the shipping date with unpacked state.

After unpacking the bag, the parts shall be stored under temperature 30°C and humidity 60% and used within 168hrs. Moisture sensitivity level (MSL): Level 3

CAUTION/ WARNING

- Application and operation examples described in this document are quoted for the sole purpose of reference for the use of the products herein and Sanken can assume no responsibility for any infringement of industrial property rights, intellectual property rights or any other rights of Sanken or any third party which may result from its use.
- Although Sanken undertakes to enhance the quality and reliability of its products, the occurrence of failure and defect of
 semiconductor products at a certain rate is inevitable. Users of Sanken products are requested to take, at their own risk,
 preventative measures including safety design of the equipment or systems against any possible injury, death, fires or
 damages to the society due to device failure or malfunction.
- Sanken products listed in this document are designed and intended for the use as components in general purpose electronic equipment or apparatus (home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Please return to us this document with your signature(s) or seal(s) prior to the use of the products herein. When considering the use of Sanken products in the applications where higher reliability is required (transportation equipment and its control systems, traffic signal control systems or equipment, fire/crime alarm systems, various safety devices, etc.), please contact your nearest Sanken sales representative to discuss, and then return to us this document with your signature(s) or seal(s) prior to the use of the products herein.

The use of Sanken products without the written consent of Sanken in the applications where extremely high reliability is required (aerospace equipment, nuclear power control systems, life support systems, etc.) is strictly prohibited.

• In the case that you use our semiconductor devices or design your products by using our semiconductor devices, the reliability largely depends on the degree of derating to be made to the rated values. Derating may be interpreted as a case that an operation range is set by derating the load from each rated value or surge voltage or noise is considered for derating in order to assure or improve the reliability. In general, derating factors include electric stresses such as electric voltage, electric current, electric power etc., environmental stresses such as ambient temperature, humidity etc. and thermal stress caused due to self-heating of semiconductor devices. For these stresses, instantaneous values, maximum values and minimum values must be taken into consideration.

In addition, it should be noted that since power devices or IC's including power devices have large self-heating value, the degree of derating of junction temperature (Tj) affects the reliability significantly.

- When using the products specified herein by either (i) combining other products or materials therewith or (ii) physically, chemically or otherwise processing or treating the products, please duly consider all possible risks that may result from all such uses in advance and proceed therewith at your own responsibility.
- Anti radioactive ray design is not considered for the products listed herein.
- Sanken assumes no responsibility for any troubles, such as dropping products caused during transportation out of Sanken's distribution network.