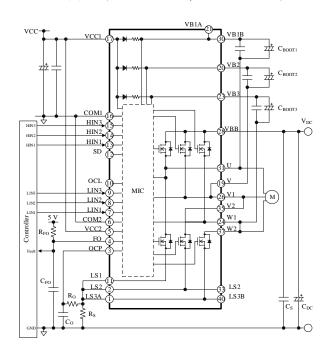
500 V / 600 V 高圧 3 相モータドライバ SIM6800M/MV シリーズ

概要

SIM6800M/MV シリーズは、出力素子、プリドライバおよび制限抵抗付きブートストラップダイオードを 1 パッケージにした、高圧 3 相モータ用ドライバです。

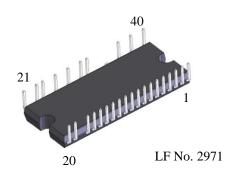
3シャント方式に対応し、ユニバーサル入力仕様の小~中容量モータのインバータ制御に最適です。

特長


- ブートストラップダイオード内蔵 (制限抵抗 60 Ω)
- CMOS (3.3 V、5 V系) 入力レベル対応
- Pb フリー (RoHS 対応)
- 絶縁耐圧 1500 V (1 分) 保証 UL 認定済み (File No.: E118037) (SIM6880M は申請中)
- 保護回路動作時エラー信号出力(FO端子)
- ハイサイドシャットダウン信号入力(SD端子)
- 保護機能

過電流制限機能(OCL):自動復帰 過電流保護機能(OCP):自動復帰

電源電圧低下保護機能


ハイサイド (UVLO_VB) : 自動復帰ローサイド (UVLO_VCC) : 自動復帰サーマルシャットダウン (TSD) : 自動復帰

応用回路例(SIM6811M、SIM6812M)

パッケージ

DIP40 (ボディサイズ: 36.0 mm×14.8 mm×4.0 mm)

原寸大ではありません。

SIM6800M/MV シリーズ

出力耐圧	電流定格	製品名	特長
500 V	2.0 A	SIM6811M	パワーMOSFET
300 V	2.5 A	SIM6812M	/\gamma - MOSFET
600 V	3.0 A	SIM6880M	IGBT + FRD、 低スイッチング 損失
600 V	5.0 A	SIM6822MV	IGBT + FRD、 低スイッチング 損失

アプリケーション

- 冷蔵庫のコンプレッサ駆動
- 洗濯乾燥機のファン・ポンプ駆動
- エアコンのファンモータ駆動
- 空気清浄機・扇風機のファンモータ駆動

目次

概要		1
目次		2
1. 絶対最大	、定格	4
	·· F条件	
	F朱什 导性	
	『部特性	
	- トストフッフダイオート特性 氐抗	
	ऽ///	
3.4 四人 3.4.1	J条于特性	
3.4.2	SIM6812M	
3.4.3	SIM6880M	9
3.4.4	SIM6822MV	
4. 機械的裝	b性	11
5. 絶縁距離	隹	11
6. 真理値表	₹	12
	· ダイアグラム	
	ゲタイテクラム	
	各例	
	ŧ	
	月	
	カ、停止時の注意	
	岩子の設定	
12.2.1	U、V、V1、V2、W1、W2 端子	
12.2.2	VB1A、VB1B、VB2、VB3 端子	
12.2.3	VCC1、VCC2 端子	
12.2.4	COM1、COM2 端子	
12.2.5	HIN1、HIN2、HIN3 端子 LIN1、LIN2、LIN3 端子	
	VBB 端子	
	LS1、LS2、LS3A、LS3B 端子	
12.2.8	OCP、OCL 端子	
12.2.9	SD 端子	
	FO 端子	
	後機能	
12.3.1 12.3.2	エラー出力シャットダウン信号入力	
	でイットタリン信号人力電源電圧低下保護機能(UVLO)	
12.3.3 12.3.4	電源電圧低下保護機能(UVLO) 過電流制限機能(OCL)	
12.3.4 12.3.5	適電流制 (OCL)	
12.3.5 12.3.6	回 電流保護機能 (OCP)	
	D注意点	
	マーンレイアワト	
13.4	R命で収り刊りの防ツ住局	43

SIM6800M/MV シリーズ

13.3 IC の特性を測定する際の注意 2	26
14. 損失の計算とジャンクション温度の推定 2	27
14.1 IGBT の場合 2	
14.1.1 IGBT の定常損失 Pon 2	27
14.1.2 IGBT のスイッチング損失 Psw 2	27
14.1.3 IGBT のジャンクション温度の推定 2	27
14.2 パワーMOSFET の場合 2	28
14.2.1 パワーMOSFET の定常損失 Pron 2	28
14.2.2 パワーMOSFET のスイッチング損失 Psw 2	
14.2.3 ボディーダイオードの定常損失 P _{SD} 2	28
14.2.4 パワーMOSFET のジャンクション温度の推定 2	29
15. 代表特性グラフ 3	30
15.1 過渡熱抵抗特性グラフ 3	
15.2 制御部代表特性グラフ 3	
15.3 出力特性グラフ 3	36
15.3.1 出力素子特性グラフ 3	36
15.3.2 スイッチング損失特性グラフ 3	38
15.4 許容実効電流特性グラフ 4	10
15.4.1 SIM6811M 4	
15.4.2 SIM6812M 4	
15.4.3 SIM6880M 4	
15.4.4 SIM6822MV 4	
15.5 短絡 SOA 4	14
16. パターンレイアウト例 4	15
17. モータドライバ回路例 4	17
注音書き4	12

1. 絶対最大定格

電流値の極性は、IC を基準にして流入(シンク)を"+"、流出(ソース)を"-"と規定します。 特記がない場合の条件は $T_A=25$ °C です。また COM1 端子と COM2 端子を短絡し、その電位を COM と示します。

項目	記号	条件	定格	単位	備考
主電源電圧(連続)(1)	V_{DC}	VBB-LSx 間	450	V	SIM6822MV SIM6880M
主電源電圧(サージ)(1)	V _{DC(SURGE)}	VBB–LSx 間	500	V	SIM6822MV SIM6880M
IGBT/MOSFET 出力耐圧	$V_{ m DSS}$	$V_{CC} = 15 \text{ V},$ $I_D = 1 \mu\text{A}, V_{IN} = 0 \text{ V}$	500	V	SIM6811M SIM6812M
IGBI/ MOSFEI 山川川土	V _{CES}	$V_{CC} = 15 \text{ V},$ $I_C = 1 \text{ mA}, V_{IN} = 0 \text{ V}$	600	V	SIM6822MV SIM6880M
	V_{CC}	VCCx-COMx 間	20		
制御電源電圧	V_{BS}	VB1B-U間、 VB2-V間、 VB3-W1間	20	V	
			2		SIM6811M
 出力電流 ⁽²⁾	т	$T_C = 25 ^{\circ}C_{\gamma}$	2.5		SIM6812M
四刀电弧等	I_{O}	T_J < 150 °C	3	A	SIM6880M
			5		SIM6822MV
		$T_C = 25 ^{\circ}C$	3		SIM6811M
 出力電流 (パルス)	I_{OP}	$V_{CC} = 15 \text{ V}$	3.75	A	SIM6812M
	IOP	パルス幅 ≤1 ms、	4.5	А	SIM6880M
		シングルパルス	7.5		SIM6822MV
入力電圧	V_{IN}	HINx-COMx 間、 LINx-COMx 間	-0.5~7	V	
FO 端子電圧	V_{FO}	FO-COM 間	-0.5~7	V	
OCP 端子電圧	V _{OCP}	OCP-COM 間	-0.5~7	V	
SD 端子電圧	V_{SD}	SD-COM 間	-0.5~7	V	
LSx 端子電圧(連続)	$V_{LS(DC)}$	LSx-COM 間	−0.5 ~ 7	V	
LSx 端子電圧(サージ)	V _{LS(SURGE)}	LSx-COM 間	-4~7	V	
動作ケース温度(3)	$T_{C(OP)}$		-30~100	°C	
ジャンクション温度(4)	T _J		150	°C	
保存温度	T _{STG}		-40~150	°C	
絶縁耐圧 ⁽⁵⁾	V _{ISO(RMS)}	ケース-端子間、 AC、60 Hz、1 分間	1500	V	

⁽¹⁾ IGBT を搭載した製品のみ規定

② 実際のケース温度に応じたディレーティングが必要 (15.4 項 許容実効電流特性グラフ参照)

⁽³⁾ IC 動作時のケース温度

⁽⁴⁾ IC 内部の各チップ (制御 IC、スイッチング素子、フリーホイールダイオード) のジャンクション温度

⁽⁵⁾ すべての端子(ショート)とケース間の絶縁耐圧

SIM6800M/MV シリーズ

2. 推奨動作条件

特記がない場合、COM1 端子と COM2 端子を短絡し、その電位を COM と示します。

項目	記号	条件	Min.	Тур.	Max.	単位	備考
主電源電圧	V_{DC}	VBB-COM 間		300	400	V	
	V_{CC}	VCCx-COMx 間	13.5	15.0	16.5	V	
制御電源電圧	V_{BS}	VB1B-U 間、 VB2-V 間、 VB3-W1 間	13.5		16.5	V	
入力電圧(HINx、LINx、 OCP、SD、FO)	V_{IN}		0	_	5.5	V	
 最小入力パルス幅	t _{IN(MIN)ON}		0.5	_		μs	
取/1・//// // //	t _{IN(MIN)OFF}		0.5	_	—	μs	
入力信号デッドタイム	$t_{ m DEAD}$		1.5			μs	
FO 端子プルアップ抵抗	R_{FO}		3.3	_	10	kΩ	
FO 端子プルアップ電圧	V_{FO}		3.0	_	5.5	V	
FO 端子ノイズ除去用 コンデンサ	C_{FO}		0.001	_	0.01	μF	
ブートストラップ コンデンサ	C_{BOOT}		1	_	220	μF	
		$I_{OP} \leq 3 A$	390	_	_		SIM6811M
シャント抵抗*	R_{S}	$I_{OP} \leq 3.75 A$	270	_		mΩ	SIM6812M
シャント担加*	Ks	$I_{OP} \le 4.5 A$	270	_		1115.2	SIM6880M
		$I_{OP} \le 7.5 A$	150	_	_		SIM6822MV
RC フィルタ抵抗	R_{O}		_	_	100	Ω	
RC フィルタコンデンサ	Co		1000	_	2200	рF	SIM6822MV SIM6880M
KC / 1/07 - 2 / 2 /	C ₀		1000		10000	pr.	SIM6811M SIM6812M
PWM キャリア周波数	$f_{\rm C}$		_		20	kHz	
動作ケース温度	$T_{C(OP)}$		_	_	100	°C	

^{*} インダクタンス成分が小さい抵抗を使用してください。

3. 電気的特性

電流値の極性は、IC を基準にして流入(シンク)を"+"、流出(ソース)を"-"と規定します。特記がない場合の条件は $T_A=25$ °C、 $V_{CC}=15$ V です。また COM1 端子と COM2 端子を短絡し、その電位を COM と示します。

3.1 制御部特性

項目	記号	条件	Min.	Тур.	Max.	単位	備考
電源部							
	V _{CC(ON)}	VCCx-COMx 間	10.5	11.5	12.5	V	
制御動作開始電圧	$V_{\rm BS(ON)}$	VB1B–U 間、 VB2–V 間、 VB3–W1 間	9.5	10.5	11.5	V	
	V _{CC(OFF)}	VCCx-COMx 間	10.0	11.0	12.0	V	
制御動作停止電圧	$V_{\text{BS(OFF)}}$	VB1B–U 間、 VB2–V 間、 VB3–W1 間	9.0	10.0	11.0	V	
	I_{CC}	VCC1 = VCC2、 合計 VCC 端子電流	_	3.2	4.5	mA	
制御電源電流	${ m I_{BS}}$	VB1B-U間または、 VB2-V間または、 VB3-W1間、 HINx = 5 V、 1 相あたりの VBx 端 子電流	_	140	400	μΑ	
入力信 号 部							
ハイレベル入力しきい電圧 (HINx、LINx、SD、FO)	V_{IH}		_	2.0	2.5	V	
ローレベル入力しきい電圧 (HINx、LINx、SD、FO)	V_{IL}		1.0	1.5	_	V	
ハイレベル入力電流 (HINx、LINx)	I_{IH}	V _{IN} = 5 V	_	230	500	μΑ	
ローレベル入力電流 (HINx、LINx)	I_{IL}	$V_{IN} = 0 V$	_		2	μΑ	
エラー信号出力							
エラー信号出力時 FO 端子電圧	V_{FOL}	$V_{FO} = 5 \text{ V}, R_{FO} = 10 \text{ k}\Omega$	0	_	0.5	V	
定常動作時 FO 端子電圧	V_{FOH}	$V_{FO} = 5 \text{ V}, R_{FO} = 10 \text{ k}\Omega$	4.8			V	
保護機能							
OCL 端子出力電圧(L)	V _{OCL(L)}		0		0.5	V	
OCL 端子出力電圧(H)	V _{OCL(H)}		4.5	_	5.5	V	
電流リミッタ基準電圧	V_{LIM}		0.6175	0.6500	0.6825	V	
過電流保護動作電圧	V _{TRIP}		0.9	1.0	1.1	V	
過電流保護保持時間	t _P		20	25		μs	
過電流保護ブランキング時間	t _{BK(OCP)}		_	2		μs	
電流リミッタブランキング時間	t _{BK(OCL)}		_	2		μs	
サーマルシャットダウン動作 温度	T _{DH}		135	150	165	°C	
サーマルシャットダウン動作 解除温度	T_{DL}		105	120	135	°C	

3.2 ブートストラップダイオード特性

項目	記号	条件	Min.	Typ.	Max.	単位	備考
ブートストラップ ダイオードリーク電流	I_{LBD}	$V_R = 500 \text{ V}$	_	_	10	μА	
ブートストラップ ダイオード順電圧	V_{FB}	$I_{FB} = 0.15 A$	_	1.0	1.3	V	
ブートストラップ ダイオード直列抵抗	R _{BOOT}		45	60	75	Ω	

3.3 熱抵抗

項目	記号	条件	Min.	Тур.	Max.	単位	備考
	R_{J-C}	パワーMOSFET 全素子動作時			3.6	°C/W	SIM6811M SIM6812M
ジャンクション-ケース 間熱抵抗 ⁽¹⁾	R _{(J-C)Q} ⁽²⁾	IGBT 全素子動作時		_	3.6	°C/W	SIM6822MV SIM6880M
	$R_{(J-C)F}^{(3)}$	フリーホイールダイ オード全素子動作時			4.2	°C/W	SIM6822MV SIM6880M
	R_{J-A}	パワーMOSFET 全素子動作時			25	°C/W	SIM6811M SIM6812M
ジャンクション-周囲間 熱抵抗	$R_{(J-A)Q}$	IGBT 全素子動作時		_	25	°C/W	SIM6822MV SIM6880M
	$R_{(J-A)F}$	フリーホイールダイ オード全素子動作時	_		29	°C/W	SIM6822MV SIM6880M

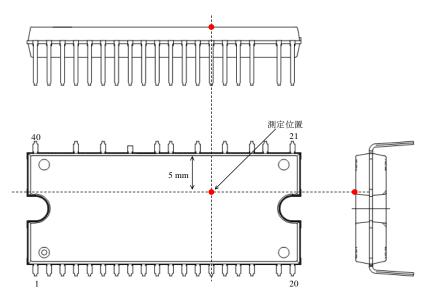


図 3-1 ケース温度測定位置

⁽¹⁾ ケース温度は図 3-1 で規定

⁽²⁾ 内部スイッチング素子のジャンクションとケース間の定常熱抵抗(過渡熱特性は15.1 項を参照)

⁽³⁾ 内部フリーホイールダイオードのジャンクションとケース間の定常熱抵抗

3.4 出力素子特性

本項に示すスイッチング特性の定義は図 3-2 のとおりです。

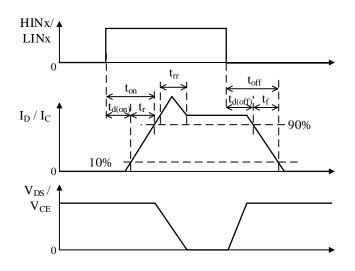


図 3-2 スイッチング時間の定義

3.4.1 SIM6811M

項目	記号	条件	Min.	Typ.	Max.	単位
ドレイン-ソース間漏れ電流	I_{DSS}	$V_{DS} = 500 \text{ V}, V_{IN} = 0 \text{ V}$	_	_	100	μΑ
ドレイン-ソース間オン抵抗	R _{DS(ON)}	$I_D = 1.0 \text{ A}, V_{IN} = 5 \text{ V}$	_	3.2	4.0	Ω
ソース-ドレイン間ダイオード 順電圧	V_{SD}	$I_{SD} = 1.0 \text{ A}, V_{IN} = 0 \text{ V}$	_	1.0	1.5	V
ハイサイドスイッチング特性						
ソース-ドレイン間ダイオード 逆回復時間	t_{rr}	$V_{DC} = 300 \text{ V}, I_D = 2.0 \text{ A},$	_	150	_	ns
ターンオン遅延時間	t _{d(on)}	$V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V},$	_	770	_	ns
上昇時間	t _r	$T_J = 25 ^{\circ}C$	_	70	_	ns
ターンオフ遅延時間	$t_{d(off)}$	誘導負荷	_	690	_	ns
下降時間	t_{f}		_	30	_	ns
ローサイドスイッチング特性						
ソース-ドレイン間ダイオード 逆回復時間	t _{rr}	Vng = 300 V In = 2.0 A		150		ns
ターンオン遅延時間	t _{d(on)}	V _{DC} = 300 V、I _D = 2.0 A、 V _{IN} = 0 V ↔ 5 V、 T _J = 25 °C、 誘導負荷		690		ns
上昇時間	t _r		_	90	_	ns
ターンオフ遅延時間	$t_{d(off)}$		_	650	_	ns
下降時間	t_{f}		_	50		ns

3.4.2 SIM6812M

項目	記号	条件	Min.	Typ.	Max.	単位
ドレイン-ソース間漏れ電流	I_{DSS}	$V_{DS} = 500 \text{ V}, V_{IN} = 0 \text{ V}$		_	100	μΑ
ドレイン-ソース間オン抵抗	R _{DS(ON)}	$I_D = 1.25 \text{ A}, V_{IN} = 5 \text{ V}$	_	2.0	2.4	Ω
ソース-ドレイン間ダイオード 順電圧	V_{SD}	$I_{SD} = 1.25 \text{ A}, V_{IN} = 0 \text{ V}$		1.0	1.5	V
ハイサイドスイッチング特性						
ソース-ドレイン間ダイオード 逆回復時間	t _{rr}			140	_	ns
ターンオン遅延時間	$t_{d(on)}$	$V_{DC} = 300 \text{ V}, I_D = 2.5 \text{ A},$ $V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V},$		910	_	ns
上昇時間	$t_{\rm r}$	$T_J = 25 ^{\circ}C$	_	100	_	ns
ターンオフ遅延時間	$t_{d(off)}$	誘導負荷	_	700	_	ns
下降時間	t_{f}		_	40	_	ns
ローサイドスイッチング特性						
ソース-ドレイン間ダイオード 逆回復時間	t _{rr}		_	155	_	ns
ターンオン遅延時間	t _{d(on)}	$V_{DC} = 300 \text{ V}, I_D = 2.5 \text{ A},$ $V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V},$	_	875	_	ns
上昇時間	$t_{\rm r}$	VN=0 V ↔ 3 V、 T _J = 25 °C、 誘導負荷	_	110		ns
ターンオフ遅延時間	$t_{d(off)}$		_	775	_	ns
下降時間	t_{f}		_	35		ns

3.4.3 SIM6880M

項目	記号	条件	Min.	Typ.	Max.	単位
コレクタ-エミッタ間漏れ電流	I_{CES}	$V_{CE} = 600 \text{ V}, V_{IN} = 0 \text{ V}$	_	_	1	mA
コレクタ-エミッタ間飽和電圧	V _{CE(SAT)}	$I_C = 3.0 \text{ A}, V_{IN} = 5 \text{ V}$		1.85	2.30	V
ダイオード順電圧	V_{F}	$I_F = 3.0 \text{ A}, V_{IN} = 0 \text{ V}$	_	2.0	2.4	V
ハイサイドスイッチング特性						
ダイオード逆回復時間	t _{rr}		_	100	_	ns
ターンオン遅延時間	t _{d(on)}	$V_{DC} = 300 \text{ V}, I_C = 3.0 \text{ A},$	_	880	_	ns
上昇時間	$t_{\rm r}$	$V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V},$ $T_{J} = 25 \text{ °C},$		120	_	ns
ターンオフ遅延時間	$t_{d(off)}$	誘導負荷		740	_	ns
下降時間	t_{f}		_	210	_	ns
ローサイドスイッチング特性						
ダイオード逆回復時間	t _{rr}		_	100	_	ns
ターンオン遅延時間	t _{d(on)}	$V_{DC} = 300 \text{ V}, I_C = 3.0 \text{ A},$	_	820	_	ns
上昇時間	t _r	$V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V},$ $T_J = 25 \text{ °C},$	_	140	_	ns
ターンオフ遅延時間	$t_{d(off)}$	誘導負荷	_	660	_	ns
下降時間	t_{f}		_	200	_	ns

SIM6800M/MV シリーズ

3.4.4 SIM6822MV

項目	記号	条件	Min.	Typ.	Max.	単位
コレクタ-エミッタ間漏れ電流	I_{CES}	$V_{CE} = 600 \text{ V}, V_{IN} = 0 \text{ V}$	_	_	1	mA
コレクターエミッタ間飽和電圧	V _{CE(SAT)}	$I_C = 5 A$, $V_{IN} = 5 V$	_	1.75	2.2	V
ダイオード順電圧	V_{F}	$I_F = 5 A$, $V_{IN} = 0 V$	_	2.0	2.4	V
ハイサイドスイッチング特性						
ダイオード逆回復時間	t _{rr}		_	80	_	ns
ターンオン遅延時間	t _{d(on)}	$V_{DC} = 300 \text{ V}, I_C = 5 \text{ A},$	_	740	_	ns
上昇時間	$t_{\rm r}$	$V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V},$ $T_J = 25 \text{ °C},$	_	70	_	ns
ターンオフ遅延時間	$t_{d(off)}$	誘導負荷	_	570	_	ns
下降時間	t_{f}		_	100	_	ns
ローサイドスイッチング特性						
ダイオード逆回復時間	t _{rr}		_	80	_	ns
ターンオン遅延時間	$t_{d(on)}$	$V_{DC} = 300 \text{ V}, I_{C} = 5 \text{ A},$	_	690	_	ns
上昇時間	t _r	$V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V},$ $T_J = 25 \text{ °C},$	_	100	_	ns
ターンオフ遅延時間	$t_{d(off)}$	誘導負荷	_	540	_	ns
下降時間	t_{f}		_	100	_	ns

4. 機械的特性

項目	条件	Min.	Typ.	Max.	単位	備考
締付けトルク	*	0.294	_	0.441	N·m	
放熱面平坦度	図 4-1 参照	0	_	60	μm	
質量		_	5.2	_	g	

^{*} φ6.0 の平座金と M2.5 のネジを使用してください。締付けの際の注意事項は、13.2 項を参照してください。

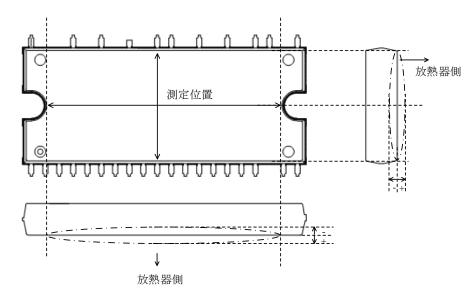


図 4-1 放熱面平坦度測定位置

5. 絶縁距離

項目	条件	Min.	Typ.	Max.	単位	備考
空間距離	放熱器*_リード間	1.5		2.1	mm	
沿面距離	図 5-1 参照	1.7	_	_	mm	

^{*} 放熱器の形状が平坦の場合です。本規格値以上の空間距離を確保する場合は、放熱器の形状を凸にするなどの対応が必要です。

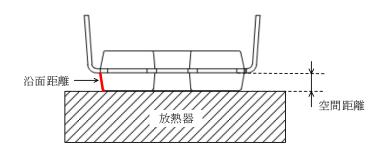


図 5-1 絶縁距離測定位置

6. 真理值表

表 6-1 に各動作モードの真理値表を示します。

各相において、HINx 端子と LINx 端子に"H"を入力した場合、出力素子はハイサイド、ローサイド共にオンになります(同時オン)。同時オンが発生しないように、入力を設定する必要があります。

ローサイド電源電圧低下保護(UVLO_VCC)から復帰した後は、ローサイドの出力素子は入力論理に応じてオン/オフし(レベル動作)、ハイサイドの出力素子は、次の立ち上がりエッジからオン/オフします(エッジ動作)。

ハイサイド電源電圧低下保護(UVLO_VB)から復帰した後は、次の立ち上がりエッジからハイサイドの出力素子をオン/オフします(エッジ動作)。

表 6-1 各動作モードの真理値表

モード	HINx	LINx	ハイサイドスイッチ	ローサイドスイッチ
	L	L	OFF	OFF
定常動作	Н	L	ON	OFF
(上帝朝)[F]	L	Н	OFF	ON
	Н	Н	ON	ON
	L	L	OFF	OFF
外部シャットダウン信号入力	Н	L	ON	OFF
FO = "L"	L	Н	OFF	OFF
	Н	Н	ON	OFF
	L	L	OFF	OFF
ハイサイド電源電圧低下	Н	L	OFF	OFF
保護動作(UVLO_VB)	L	Н	OFF	ON
	Н	Н	OFF	ON
	L	L	OFF	OFF
ローサイド電源電圧低下	Н	L	OFF	OFF
保護動作(UVLO_VCC)	L	Н	OFF	OFF
	Н	Н	OFF	OFF
	L	L	OFF	OFF
過電流保護動作(OCP)	Н	L	ON	OFF
则电视床设制件(OCF)	L	Н	OFF	OFF
	Н	Н	ON	OFF
	L	L	OFF	OFF
過電流制限保護機能(OCL)	Н	L	OFF	OFF
(OCL = SD)	L	Н	OFF	ON
	Н	Н	OFF	ON
	L	L	OFF	OFF
サーマルシャットダウン動作	Н	L	ON	OFF
(TSD)	L	Н	OFF	OFF
	Н	Н	ON	OFF

7. ブロックダイアグラム

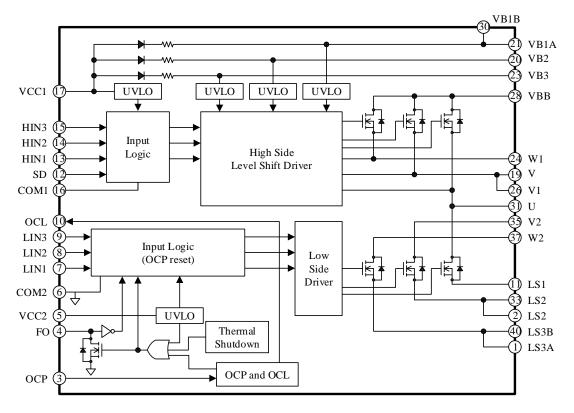


図 7-1 SIM6811M、SIM6812M ブロックダイアグラム

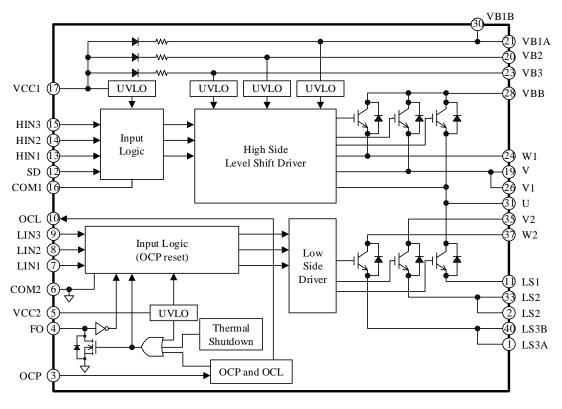
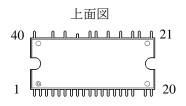



図 7-2 SIM6822MV、SIM6880M ブロックダイアグラム

8. 各端子機能

端子番号	端子名	機能
1	LS3A	W 相 IGBT エミッタ/パワーMOSFET ソース
2	LS2	V相IGBTエミッタ/パワーMOSFETソース
3	OCP	過電流保護信号入力
4	FO	エラー出力、シャットダウン信号入力
5	VCC2	ローサイド制御回路電源入力
6	COM2	ローサイド制御グランド
7	LIN1	U相ローサイド制御信号入力
8	LIN2	V相ローサイド制御信号入力
9	LIN3	W相ローサイド制御信号入力
10	OCL	過電流制限信号出力
11	LS1	U相 IGBT エミッタ/パワーMOSFET ソース
12	SD	ハイサイドシャットダウン信号入力
13	HIN1	U相ハイサイド制御信号入力
14	HIN2	V相ハイサイド制御信号入力
15	HIN3	W相ハイサイド制御信号入力
16	COM1	ハイサイド制御グランド
17	VCC1	ハイサイド制御回路電源入力
18	_	(抜きピン)
19	V	V相ブートストラップコンデンサ接続
20	VB2	V 相ハイサイド・フローティング電源入力
21	VB1A	U相ハイサイド・フローティング電源入力
22	_	(抜きピン)
23	VB3	W 相ハイサイド・フローティング電源入力
24	W1	W 相出力 (W2 と外部ショート)
25	—	(抜きピン)
26	V1	V 相出力 (V2 と外部ショート)
27	_	(抜きピン)
28	VBB	DC(+)電源入力
29	_	(抜きピン)
30	VB1B	U相ハイサイド・フローティング電源入力
31	U	U相出力
32	_	(抜きピン)
33	LS2	V相IGBTエミッタ/パワーMOSFETソース(カットピン)
34	_	(抜きピン)
35	V2	V 相出力 (V1 と外部ショート)
36	_	(抜きピン)
37	W2	W 相出力 (W1 と外部ショート)
38	_	(抜きピン)
39	_	(抜きピン)
40	LS3B	W相 IGBT エミッタ/パワーMOSFET ソース

9. 応用回路例

各端子にサージが印加されると、IC の誤動作の原因になったり、サージ電圧が絶対最大定格を超えると IC の破壊の原因になったりします。そのため、必要に応じて CR フィルタ回路やツェナーダイオードなどを各端子に追加し、問題がないか実働で確認をしてください。

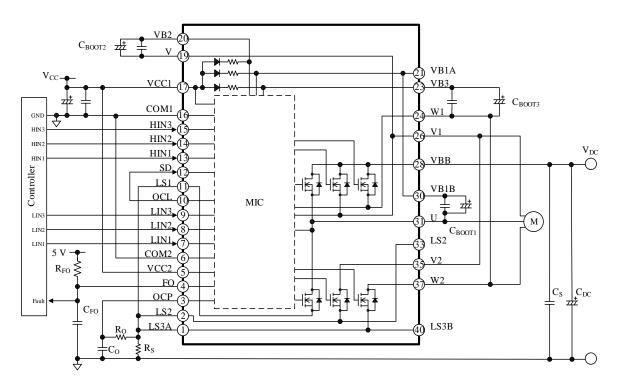


図 9-1 応用回路例 (SIM6811M、SIM6812M、1シャント検出方式)

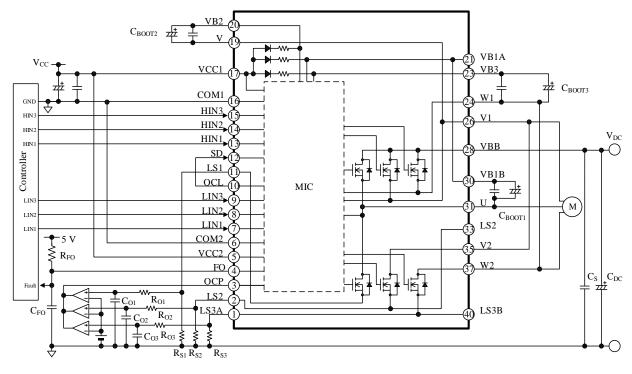
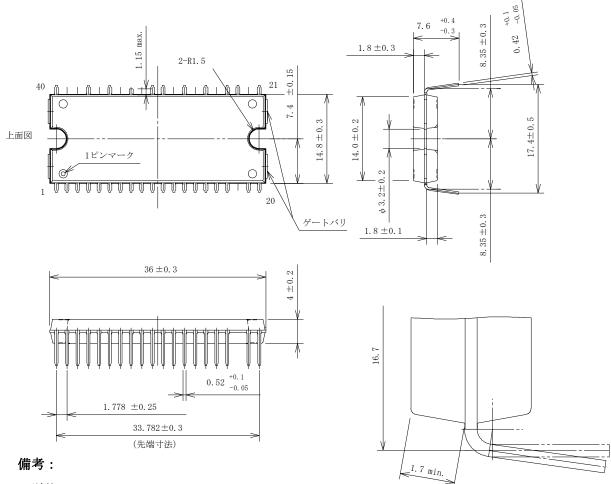
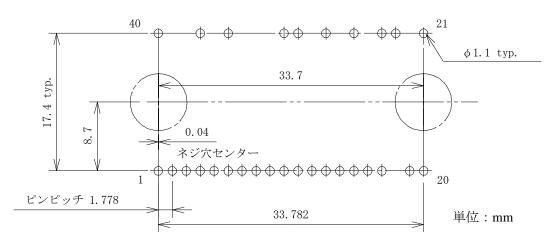
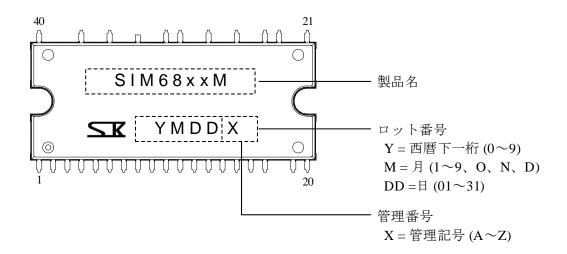



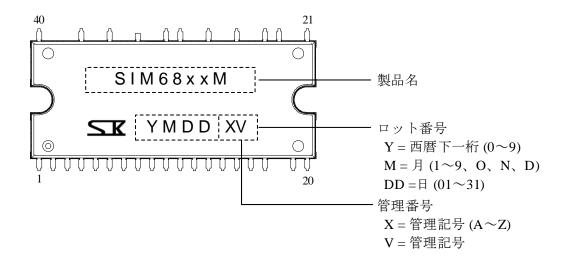
図 9-2 応用回路例 (SIM6811M、SIM6812M、3 シャント検出方式)


10. 外形図

• DIP40 パッケージ


- 単位:mm
- Pb フリー (RoHS 対応)
- 端子部の曲げ状態は、実際と異なる場合があります
- ゲートバリ高さ: 0.3 mm (max.)

● 部品挿入穴サイズ、レイアウト (参考)



11. 捺印仕様

• SIM6800M シリーズ

• SIM6800MV シリーズ

12. 機能説明

特記のない場合、本項では以下のように定義します。

- 特性数値は Typ.値を表記します。
- 説明に使用する回路図はパワーMOSFET タイプ です。IGBT タイプの IC の機能は、パワー MOSFET タイプと同等です。
- 端子記号や部品記号の数字(1~3 など)を"x"で表記している場合は、そのすべての端子や部品を指します。たとえば"VCCx 端子"は VCC1 端子、VCC2 端子を指します。
- COM1 端子と COM2 端子は短絡です。

12.1 起動、停止時の注意

電源の起動時は、本 IC の VCCx 端子電圧が制御動作開始電圧 $V_{CC(ON)}$ の最大値 12.5 V 以上になってから、VBB、HINx、LINx 端子への電圧印加を推奨します。

起動時は、ブートストラップ回路用コンデンサ CBOOTx を十分に充電してください(12.2.2 項参照)。また電源の停止時は、IC への制御信号をすべて "L"にしてから、本 IC の VCCx 端子電圧を下げてください。

12.2 各端子の設定

12.2.1 U、V、V1、V2、W1、W2 端子

U、V1、V2、W1、W2 端子は U 相、V 相、W 相 の出力端子で、モータに接続します。V 端子には V 相用のブートストラップコンデンサを接続します。V 端子をモータに接続しないでください。V1 端子と V2 端子、W1 端子と W2 端子は、基板上で必ず接続してください。

また、U、V (V1)、W1 端子は、それぞれ VB1A (VB1B)、VB2、VB3 に対する基準端子です。U、V、W1 端子には、ブートストラップコンデンサ C_{BOOTx} のマイナス側を接続します。V 端子と V1 端子は、IC 内部で接続されています。

出力端子(U、V1、V2、W1、W2)には高圧が 印加されるため、基板レイアウトで低圧ラインと 十分に距離を確保したり、端子にコーティング剤 を塗布したりするなど、絶縁対策が必要です。

12.2.2 VB1A、VB1B、VB2、VB3 端子

VB1A、VB1B、VB2、VB3 端子はハイサイド・フローティング電源のブートストラップコンデンサ接続用端子です。

VB1A 端子と VB1B 端子は IC 内部で接続されているので、どちらか一方を使用します。

各相の VBx 端子と出力端子間に印加する電圧は、 推奨制御電源電圧 V_{BS} (2 項 推奨動作条件参照) を満たすようにします。

ブートストラップ回路用コンデンサ C_{BOOTx} を VB1A または VB1B 端子と U 端子、VB2 端子と V 端子、VB3 端子と W1 端子の間にそれぞれ接続します。

起動時は、ローサイドのパワー素子をオンして C_{BOOTx} を十分に充電します。

CBOOTX の値は、式(1)と式(2)を満たす値から選定します。このとき、静電容量の許容誤差や DC バイアス特性を十分に考慮する必要があります。

$$C_{BOOTx}(\mu F) > 800 \times t_{L(OFF)} \tag{1}$$

$$1 \,\mu\text{F} \le C_{\text{BOOTx}} \le 220 \,\mu\text{F} \tag{2}$$

-- 7

t_{L(OFF)}: ローサイドパワー素子の最長オフ時間(s) (C_{BOOTx} を充電しない時間)

ハイサイドのスイッチング動作が停止しているときも、 C_{BOOTx} の電圧は IC の電力消費で低下します。VBx 端子の電圧が制御動作停止電圧 $V_{BS(OFF)}$ 以下に低下すると、ハイサイドの電源電圧低下保護回路($UVLO_VB$)が動作します(12.3.3.1 項参照)。最終的に実働動作で、起動時などの低周波数動作時も VBx 端子電圧が $V_{BS(OFF)}$ の最大値 11.0 V より高い電圧を維持しているか確認が必要です。

図 12-1 のように SIM6800M/MV シリーズは、 VCC1 端子と VBx 端子の間にブートストラップダイオード D_{BOOTx} と突入電流制限用抵抗 R_{BOOTx} を直列に内蔵しています。 C_{BOOTx} 充電時の時定数 τ は式 (3)で算出できます。

$$\tau = C_{BOOTx} \times R_{BOOTx} \tag{3}$$

ここで、

C_{BOOTx}:調整した C_{BOOTx}の値

 R_{BOOTx} : 60 $\Omega \pm 25$ %

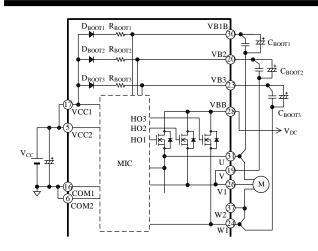


図 12-1 ブートストラップ回路

図 12-2 に IC 内部のレベルシフト部の回路を示します。ハイサイドの出力信号 HOx は HINx 端子の入力信号に応じて生成されます。HINx 端子の信号のアップエッジからセット信号、ダウンエッジからリセット信号が生成され、それぞれレベルシフト回路でハイサイドに伝達されます。それぞれの信号が RS フリップフロップ回路に入力され、Q (HOx) が出力されます。

図 12-3 のようにノイズなどの影響で VBx 端子と出力端子(U、V、W1)間(以下、VBx-HSx 間とする)の電圧が急変し、セット信号伝達後に、リセット信号だけがハイサイドに伝達されない場合、ハイサイドの出力素子はオン固定になります。次の LINx 信号でローサイドの出力素子がオンすると同時オン状態となり、IC が破壊する可能性があります。そこで、VBx 端子がノイズの影響を受けないように、 C_{BOOTx} は必ず IC の近くに配置し、できるだけ短いパターンで VBx-HSx 間に接続します。電解コンデンサを使用する場合は、バイパスコンデンサ C_{Px} (0.01 μ F \sim 0.1 μ F) を並列に挿入し、各端子にできるだけ短いパターンで接続します。

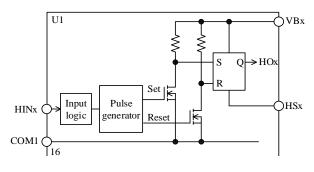


図 12-2 レベルシフト部回路図

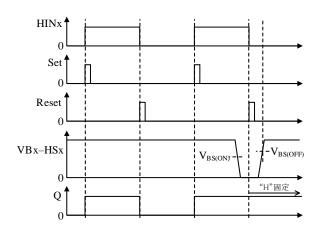


図 12-3 VBx 端子と出力端子間の電圧低下による 誤動作波形

12.2.3 VCC1、VCC2 端子

VCC1、VCC2 端子は IC の制御回路電源入力端子です。VCC1、VCC2 端子は IC 内部では接続していないので、基板のパターンで接続します。電源リップルなどによる誤動作を防止するため、各端子にできるだけ短いパターンでコンデンサ C_{VCC} (0.01 $\mu F \sim 0.1 \mu F$) を接続します。また、サージ電圧による破壊を防止するため VCCx 端子と COMx 端子間にツェナーダイオード DZ (18 $V \sim 20$ V) を接続します。

VCCx 端子と COMx 端子間に印加する電圧は、推奨制御電源電圧 V_{CC} (2 項 推奨動作条件参照) を満たすように設定します。

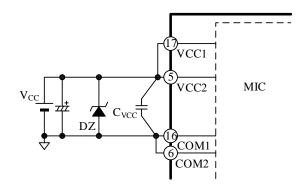


図 12-4 VCCx 端子周辺回路

12.2.4 COM1、COM2 端子

COM1、COM2 端子は、IC の制御グランド端子です。COM1、COM2 端子は IC 内部では接続していないので、基板のパターンで接続します。制御グランドの電位が変動すると IC の誤動作の原因と

なるため、制御グランドの配線はパワーグランド と分けて、シャント抵抗 R_{Sx} のできるだけ近くに 1 点で、かつできるだけ短く接続します(図 12-5 参照)。

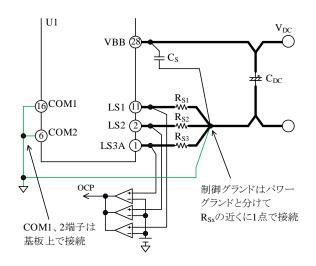


図 12-5 制御グランドの配線

12.2.5 HIN1、HIN2、HIN3 端子 LIN1、LIN2、LIN3 端子

モータ制御用の各相入力端子です。HINx 端子は ハイサイドの制御信号入力、LINx 端子はローサイ ドの制御信号入力です。

HINx 端子と LINx 端子は、図 12-6 に示すように $20 \text{ k}\Omega$ のプルダウン抵抗を内蔵し、CMOS シュミットトリガ回路で構成しています。入力論理はアクティブハイです。

各相の HINx 端子と COMx 端子間、LINx 端子と COMx 端子間に印加する信号は表 12-1 の範囲に設定します。本 IC にはデッドタイム生成回路はありません。HINx と LINx の入力信号は、必ずデッドタイムの設定が必要です。

周波数が高くなるとスイッチング損失が増加するため、動作時のケース温度およびジャンクション温度が、1項 絶対最大定格の値に対し十分に余裕のある値になるよう、周波数を設定する必要があります。

マイコンからの入力信号が不定になると、IC が誤動作する可能性があるため、マイコンの出力はハイインピーダンスにならないように設定してください。また、マイコンから HINx、LINx 端子までの配線が長くノイズの影響を受けやすい場合は、図 12-7 のように入力フィルタやプルダウン抵抗をHINx、LINx 端子の近くに追加します。

フィルタの定数の目安は以下のとおりです。

$$\begin{split} R_{IN1x} : 33 \, \Omega {\sim} 100 \, \Omega \\ R_{IN2x} : 1 \, k\Omega {\sim} 10 \, k\Omega \\ C_{INx} : 100 \, pF {\sim} 1000 \, pF \end{split}$$

 R_{INIx} 、 R_{IN2x} を接続すると、HINx、LINx 端子の入力電圧がマイコンの出力電圧より少し低くなるため注意が必要です。

表 12-1 HINx、LINx 端子入力信号

項目	"H"レベル信号	"L"レベル信号	
入力電圧	$3 \text{ V} < V_{IN} < 5.5 \text{ V}$	$0 \ V < V_{IN} < 0.5 \ V$	
入力	≥0.5 µs	≥0.5 μs	
パルス幅	≥0.5 μs	≥0.5 μs	
キャリア	<20 kHz		
周波数	≥20) КП2	
デッド	>1 5 a		
タイム	≥1.5 µs		

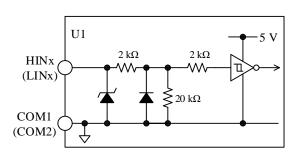


図 12-6 HINx 端子、LINx 端子の内部回路図

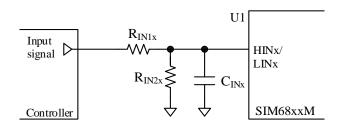


図 12-7 HINx 端子、LINx 端子のフィルタ回路

12.2.6 VBB 端子

VBB 端子は、DC (+) 電源入力端子です。全相のハイサイドのパワーMOSFET ドレイン (IGBT コレクタ) に接続されています。VBB 端子と COMx間に印加する電圧は、主電源電圧 V_{DC} (2項 推奨動作条件参照) を満たすように設定します。

VBB 端子には、サージ電圧を抑えるためコンデンサ C_S (0.01 μ F \sim 0.1 μ F) を接続します。 C_S は平滑用電解コンデンサ C_{DC} と VBB 端子のできるだけ近くに配置し、VBB 端子に最短で接続します。

12.2.7 LS1、LS2、LS3A、LS3B 端子

各相のパワーMOSFET ソース(IGBT エミッタ) 端子です。電流検出用のシャント抵抗 R_{Sx} を接続し ます。LS3A と LS3B は IC 内部で接続されている ので、どちらか一方を使用します。

 R_{Sx} は IC のできるだけ近くに配置し、LSx 端子と COMx 端子に最短で接続します。また、 R_{Sx} はインダクタンス成分が小さい抵抗を使用してください。配線が長くなるなどでインダクタンス成分が大きくなると、LSx 端子に負電位が発生しやすくなり、誤動作の要因になります。そのため、インダクタンス成分が極力小さくなるようにパターンを設計します。この配線が長い場合は、誤動作を防止するため LSx 端子と COMx 端子間に高速整流ダイオード D_{RSx} を接続します。LSx 端子電圧(サージ) $V_{LS(SURGE)}$ が、-4 V 以下にならないように設計してください。

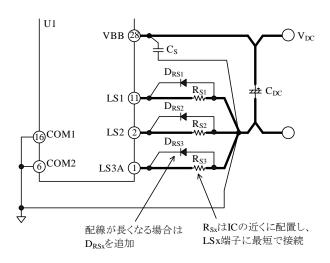


図 12-8 LSx 端子周りの配線

12.2.8 OCP、OCL 端子

OCP 端子は、出力素子に流れる電流の過電流保護信号を入力する端子です。OCL 端子は、定常時は"L"です。OCP 端子に入力された信号で、以下の保護機能が動作すると、OCL 端子が"L"から"H"になります。OCL 端子の信号を SD 端子に入力すると、OCL と OCP が動作した際に、ハイサイドの出力素子をターンオフできます。

● 過電流制限(OCL: Overcurrent Limit)機能

OCP 端子電圧がしきい電圧 V_{LIM} を超えると、OCL 端子が"H"になります。このとき、出力素子は HINx、LINx 端子の信号に従って動作します。OCL 端子を SD 端子に接続している場合は、ハイサイドの出力素子がオフします。詳細は 12.3.4 項

を参照してください。

● 過電流保護 (OCP: Overcurrent Protection)

OCL よりも急峻な過大電流に対する保護です。 OCP 端子電圧がしきい電圧 V_{TRIP} を超えると、OCL 端子が"H"、ローサイドの出力素子がオフ、FO 端 子出力が"L"になります。OCL 端子を SD 端子に接 続している場合は、ハイサイドの出力素子もオフ します。詳細は 12.3.5 項を参照してください。

12.2.9 SD 端子

SD 端子に 5 V もしくは 3.3 V の信号を入力する と、HINx 端子の信号とは関係なく、ハイサイドの 出力素子をターンオフします。SD 端子の内部には 3.3 μ s (typ.)のフィルタがあり、これ以下の幅のパルスには応答しません。

SD 端子と OCL 端子を接続すると、過電流制限機能と過電流保護機能が動作したときに、ハイサイドの出力素子をターンオフできます。また、FO端子の反転信号を SD 端子に接続すると、異常動作(TSD、OCP、UVLO)の検出時にハイサイドとローサイドすべての出力素子をオフできます。

12.2.10 FO 端子

エラー出力および、ローサイドシャットダウン信号の入力端子です。機能の詳細は 12.3.1 項と 12.3.2 項を参照してください。図 12-9 に FO 端子の周辺回路と内部回路を示します。

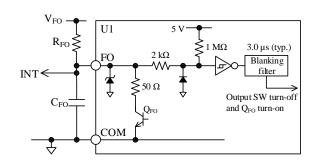


図 12-9 FO 端子の周辺回路と内部回路

FO 端子はオープンコレクタになっているため、 プルアップ抵抗 R_{FO} で外部電源に接続します。外 部電源の電圧 V_{FO} は、 $3.0~V\sim5.5~V$ を接続します。

 R_{FO} の値が小さすぎると Q_{FO} の電圧降下によりエラー信号出力時の FO 端子電圧が高くなります。 R_{FO} は、 $3.3~k\Omega\sim10~k\Omega$ を推奨します。

また、ノイズ除去用コンデンサ C_{FO} は、IC のできるだけ近くに配置し、FO 端子と COMx 端子の間

に最短で接続します。

過電流保護機能 (OCP) が動作した場合、繰り返しの OCP 動作を避けるため、マイコンは Q_{FO} がオンしてから $t_P=15~\mu s$ (温度特性を含む最小値)以内に IC の入力信号を停止する必要があります(詳細は 12.3.5~項参照)。 C_{FO} の値は $0.001~\mu F\sim0.01~\mu F$ を推奨します。

12.3 保護機能

SIM6800M/MV シリーズは電源電圧低下保護機能 (UVLO: Undervoltage Lockout)、過電流保護機能 (OCP: Overcurrent Protection)、サーマルシャットダウン機能 (TSD: Thermal Shutdown)を搭載しています。UVLO、OCP、TSD 動作時は、FO 端子からエラー信号を出力し、マイコンから全相の動作を停止できます。また、マイコンからシャットダウン信号を FO 端子に入力することもできます。

以降の説明で使用する HOx はハイサイドスイッチのゲート入力、LOx はローサイドスイッチのゲート入力です。VBx-HSx は VBx 端子と出力端子間(U、V、W1)の電圧です。

12.3.1 エラー出力

以下の保護機能が動作すると、FO 端子に接続している内部のトランジスタ(Q_{FO})がオンし、FO端子は"L" 状態($\leq 0.5~V$)になります。

- 1) ローサイド電源電圧低下保護機能(UVLO VCC)
- 2) 過電流保護機能 (OCP)
- 3) サーマルシャットダウン (TSD)

FO 端子が"L"の期間は、すべてのローサイド出力素子がオフになります。定常動作時の FO 端子は"H"状態で、約 5 V を出力します。エラー信号検出時は、すぐにマイコンでモータの運転を停止する設定にしてください。なお、OCP 動作時の FO 端子のエラー出力時間は、IC 内部で $t_P=25$ μ s (typ.)に固定されています。OCP 動作時は、IC を保護するため t_P 以内にモータを停止するように処理してください(12.3.5 項参照)。その後、モータの運転を再開させる場合は、動作停止から 2 秒以上経過してから、再開するように設定してください。

12.3.2 シャットダウン信号入力

FO 端子には、シャットダウン信号を入力できます。FO 端子を"L"にすると、ローサイドの出力素子をすべてオフします。入力するシャットダウン信号の電圧とパルス幅は、表 12-2 の範囲に設定し

ます。

表 12-2 シャットダウン信号

項目	"H"レベル信号	"L"レベル信号
入力電圧	$3 \text{ V} < V_{IN} < 5.5 \text{ V}$	$0\ V < V_{IN} < 0.5\ V$
入力		> 6 μα
パルス幅	_	≥ 6 µs

12.3.3 電源電圧低下保護機能(UVLO)

出力素子のゲート駆動電圧が低下すると、出力素子の定常損失が増加して熱破壊する場合があります。これを防止するために、電源電圧低下保護機能(UVLO)を搭載しています。UVLOはハイサイドとローサイドそれぞれに搭載しています。

12.3.3.1. ハイサイド (UVLO_VB)

図 12-10 にハイサイドの電源電圧低下保護機能 (UVLO_VB) 動作時の波形を示します。

VBx-HSx 間電圧が制御動作停止電圧 $V_{BS(OFF)}=10.0~V$ 以下になると $UVLO_{L}$ VB が動作し、 HOx を"L"にします。VBx-HSx 間電圧が上昇し、 制御動作開始電圧 $V_{BS(ON)}=10.5~V$ 以上になると、 $UVLO_{L}$ VB を解除し最初の入力パルス(アップエッジ)を検出して HOx を"H"にします。 $UVLO_{L}$ VB 動作期間は、エラー信号が FO 端子から出力されません。 10 以上になるとは力されません。 11 以上になるによる誤動作を防止するため、12 以上になるによる誤動作を防止するため、13 以来の 14 以外を搭載しています。

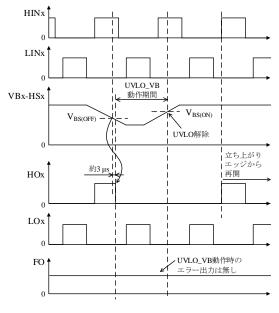


図 12-10 UVLO_VB 動作波形

12.3.3.2. ローサイド (UVLO_VCC)

図 12-11 にローサイドの電源電圧低下保護機能 (UVLO VCC) 動作時の波形を示します。

VCC2 端子の電圧が制御動作停止電圧 $V_{CC(OFF)}=11.0$ V以下になると UVLO_VCC が動作し、HOx、LOx を"L"にします。VCC2 端子の電圧が上昇し、制御動作開始電圧 $V_{CC(ON)}=11.5$ V以上になると、UVLO_VCC を解除します。UVLO_VCC が解除されると、LOx は LINx 端子の入力信号に従って出力、HOx は次の立ち上がりエッジから HINx 端子の入力信号に従って出力します。UVLO_VCC 動作期間は FO 端子出力が"L"になり、エラー信号を出力します。

ノイズなどによる誤動作を防止するため、VCC2 端子には約 3 μs の $UVLO_VCC$ フィルタを搭載しています。

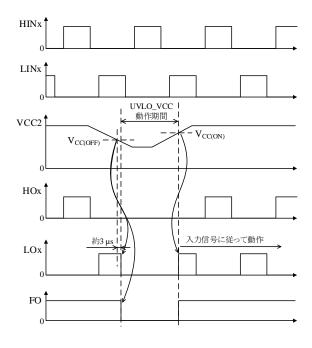


図 12-11 UVLO VCC 動作波形

12.3.4 過電流制限機能 (OCL)

過電流制限機能 (OCL: Overcurrent Limit) は、 低い過電流レベルの保護機能です。

図 12-12 に OCP 端子と OCL 端子の内部回路、 図 12-13 には、OCL 動作時の各端子の波形を示し ます。

OCP 端子電圧が、電流リミッタ基準電圧 $V_{LIM}=0.6500$ V 以上の状態を、過電流保護ブランキング時間 $t_{BK(OCP)}=2$ μ s 以上継続すると、OCL が動作し、OCL 端子の出力が"L"から"H"になります。このとき、ローサイド出力素子のゲート出力は

LINx 端子の信号に従います。

OCL 端子を基板上で SD 端子に接続すると、ハイサイドの出力素子をオフにできます。SD 端子の内部には 3.3 µs (typ.)のフィルタが入っています。

OCP 端子電圧が、 $V_{LIM}=0.6500$ V 未満になると、OCL 端子の出力信号は"L"になります。

ハイサイドの出力素子は、OCL 端子が"L"になった後も HINx 端子の信号が"L"から"H"になるまでオフを継続します(エッジ動作)。

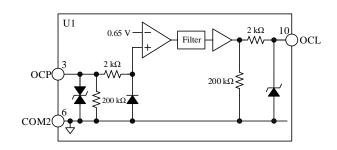


図 12-12 OCP 端子、OCL 端子の内部回路図

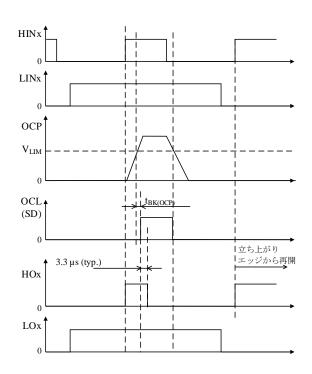


図 12-13 OCL 動作波形 (OCL 端子を SD 端子に接続した場合)

過電流保護機能(OCP) 12.3.5

過電流保護機能 (OCP: Overcurrent Protection) は、急峻な過大電流に対する保護です。図 12-14 に OCP 端子の周辺回路図と内部回路図を示します。 図 12-14 のようにシャント抵抗 R_{sx} の電圧を OCP 端子に入力し、過電流を検出します。OCP 端 子は内部でプルダウンしており、R_{Sx} に電流が流れ ると、電流に比例して OCP 端子電圧が上昇します。 図 12-15 に OCP の動作波形を示します。過大電 流が流れて OCP 端子の電圧が過電流保護動作電圧 $V_{TRIP} = 1.0 V$ 以上になり、その状態をブランキング 時間 $t_{BK} = 2 \mu s$ 以上継続すると、OCP が動作します。 OCP が動作すると、ローサイドの出力素子をオフ して FO 端子を"L"にします。

出力素子をオフにすると出力の電流は低下しま す。OCP 端子電圧が VTRIP 未満に低下しても、IC は FO 端子の出力を一定時間(過電流保護保持時間 $t_P = 25 \mu s$) "L"に保持します。その後、入力信号に 従って動作します。

過電流保護機能の目的は、出力素子の短絡など の異常状態の検出です。短絡モードを繰り返すと 出力素子が破壊する可能性があるため、エラー信 号検出時は、すぐにマイコンでモータの運転を停 止する設定にしてください。

シャント抵抗は、以下の条件を満たすように設 定します。

- シャント抵抗推奨値 R_{Sx} を満たす値(2項参照)
- OCP 端子の入力電圧が絶対最大定格の OCP 端子 電圧 Voceの範囲内(1項参照)
- 出力素子に流れる電流が絶対最大定格の出力電 流 (パルス) I_{OP}未満 (1項参照)

R_{Sx} は高周波スイッチング電流が流れるので、内 部インダクタンスが小さく、かつ許容損失を満足 するものを使用します。

OCP 端子に接続する CR フィルタ (Ro、Co) の 値を設定する際、Roと Coの時定数が大きすぎる と OCP 端子電圧が V_{TRIP} になるまでに時間がかか り、出力素子が破壊する可能性があります。IC の 遅れ時間を考慮し、Roと Coの時定数は表 12-3 の ように設定します。CoはICの近くに配置し、OCP 端子と COMx 端子に最短で接続します。

U 端子、V/V1/V2 端子、W1/W2 端子やその配線 がグランドと短絡(地絡)すると、IC は過電流を 検出できません。地絡モードになると出力素子が 破壊する可能性があるため、注意が必要です。

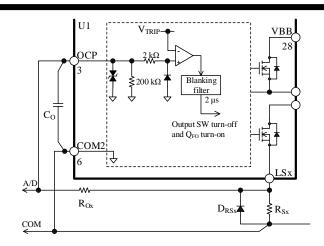


図 12-14 OCP 端子の周辺回路と内部回路図

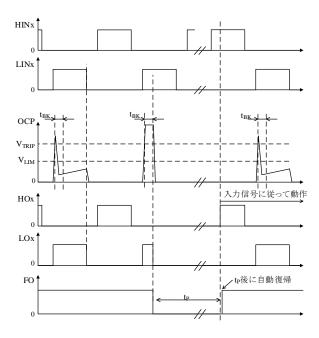


図 12-15 OCP 動作波形

表 12-3 OCP 端子の CR フィルタの時定数 (参考)

製品名	時定数 (μs)	
SIM6811M SIM6812M	≤2	
SIM6822MV SIM6880M	≤0.2	

12.3.6 サーマルシャットダウン (TSD)

本 IC はサーマルシャットダウン(TSD: Thermal Shutdown)を搭載しており、図 12-16 のように、過負荷による消費電力の増加や IC 周囲温度の上昇などで IC が過熱状態になると、ローサイドの出力素子をオフにします。

温度は制御 IC 内の TSD 回路で検出しています(7 項ブロックダイアグラム参照)。制御部の温度がサーマルシャットダウン動作温度 $T_{DH}=150$ $^{\circ}$ C (typ.)を超えると TSD が動作します。その後、制御部の温度がサーマルシャットダウン動作解除温度 $T_{DL}=120$ $^{\circ}$ C (typ.)以下になると TSD を解除します。TSD 解除後は入力信号に従って動作します。

TSD 動作期間は FO 端子出力が"L"になり、エラー信号を出力します。

ただし、出力素子のジャンクション温度と検出 温度は一致しないため、過熱破壊防止用として TSD機能を使用しないでください。

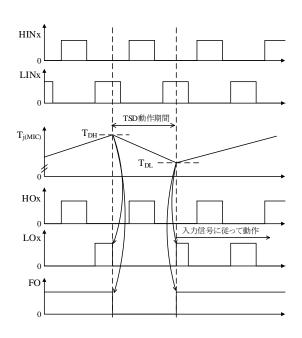


図 12-16 TSD 動作波形

13. 設計上の注意点

13.1 パターンレイアウト

図 13-1 のようにモータドライバは、高周波かつ 高電圧の電流経路が存在し、基板のパターンや部 品の実装条件が、動作、ノイズ、損失などに大きく影響します。

そのため、<u>高周波電流ループは極力小さく、パターンを太く</u>して、ラインインピーダンスを低くする必要があります。また、グランドラインは輻射ノイズに大きな影響を与えるため、<u>極力太く、</u>短く配線します。

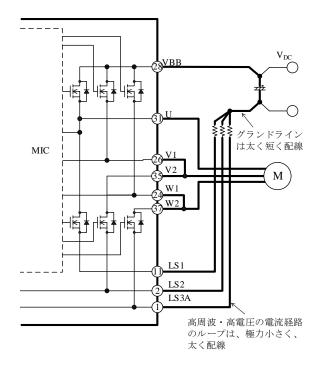


図 13-1 高周波かつ高電圧の電流経路

13.2 放熱器を取り付ける際の注意

放熱器を取り付ける際には以下の注意が必要です。

- • φ6.0 の平座金と M2.5 のネジを使用してください。 ネジ締めの際は、トルクドライバを使用し、4 項 機械的特性の締付けトルクの範囲で固定してく ださい。固定する際は、片締めにならないよう に、2 か所のネジを仮締めしてから、左右均等に 締め付けてください。

る原因になるため、これらを使用する際には、 十分な検討が必要です。

- シリコーングリースを塗布する際は、放熱器と IC の間に異物がないことを確認してください。 また、製品の端子に極力付着しないように注意 が必要です。シリコーングリースの塗布条件は 以下のとおりです。
 - 塗布厚:100 um
 - 放熱器の平坦度:±100 μm
 - 放熱器に塗布する場合の塗布範囲は図 13-2 参 照

図 13-2 シリコーングリースの塗布範囲 (参考)

13.3 IC の特性を測定する際の注意

IC 単体で内部の出力素子の耐圧やリーク電流を 測定する場合、各出力素子のゲートとソース(エミッタ)は同電位である必要があります。また、 各出力素子は、以下のように接続されているため、 注意が必要です。

- すべてのハイサイド素子のドレイン (コレクタ) は IC 内部で VBB 端子に接続
- U 相のハイサイド素子のソース(エミッタ)と ローサイド素子のドレイン(コレクタ)を IC 内 部で接続し、U 端子に接続

(V 相と W 相のハイサイドとローサイドの素子は、IC 内部で接続されていません。)

また、ハイサイド素子のゲートは出力端子(U、V/V1、W1)、ローサイド素子のゲートは COM2 端子にプルダウンされています。

耐圧やリーク電流を測定する際、出力端子や LSx 端子、COMx 端子を適切に処理しないと、出 力素子を破壊する可能性があるため、注意が必要 です。

例として、図 13-3 に U 相ハイサイド素子(Q_{IH})、図 13-4 に U 相ローサイド素子(Q_{IL})の耐圧測定回路を示します。記載のない端子はすべてオープンです。

ハイサイドの出力素子を測定する場合は、測定 する端子以外はすべてオープンにします。ローサ イドの出力素子を測定する場合は、測定する LSx 端子だけを COMx 端子に接続し、それ以外はオープンにします。

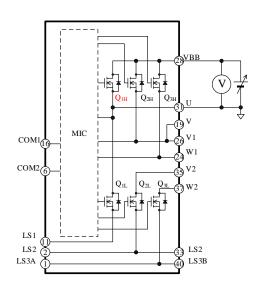


図 13-3 U相ハイサイド素子(Om)耐圧測定回路

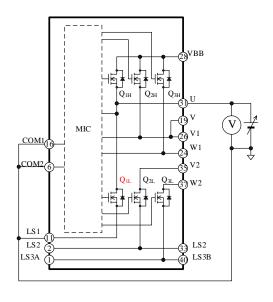


図 13-4 U相ローサイド素子(Q_{IL})耐圧測定回路

© SANKEN ELECTRIC CO., LTD. 2014

14. 損失の計算とジャンクション温度の 推定

正弦波駆動、3 相変調方式において、出力素子 (全素子)の損失とジャンクション温度の推定方 法を以下に示します。

なお、損失とジャンクション温度は、弊社 HP に 掲載している計算ツールを用いて簡単に計算でき ます。

 ● DT0050 モータ駆動用 IC (MOSFET 内蔵) 損失 計算ツール

http://www.semicon.sanken-ele.co.jp/calctool/mosfet_caltool_jp.html

 ● DT0052 モータ駆動用 IC (IGBT 内蔵) 損失計算 ツール

http://www.semicon.sanken-ele.co.jp/calctool/igbtall_caltool_jp.html

14.1 IGBT の場合

IGBT の損失は、定常損失 P_{ON} とスイッチング損失 P_{SW} の合計です。これらの損失(P_{ON} 、 P_{SW})と、ジャンクション温度(全素子動作時)は、以下の手順で算出します。

14.1.1 IGBT の定常損失 Pon

定常損失 P_{ON} は、15.3.1 項の $V_{CE(SAT)}$ – I_C 特性より、図 14-1 のように I_C の使用範囲における 1 次近似式 ($V_{CE(SAT)}$ = $\alpha \times I_C$ + β) を算出します。IGBT の定常損失 P_{ON} は、この 1 次近似式の係数を用いて、次式で計算できます。

$$P_{ON} = \frac{1}{2\pi} \int_{0}^{\pi} V_{CE(SAT)}(\phi) \times I_{C}(\phi) \times DT \times d\phi$$

$$= \frac{1}{2} \alpha \left(\frac{1}{2} + \frac{4}{3\pi} M \times \cos \theta \right) I_{M}^{2}$$

$$+ \frac{\sqrt{2}}{\pi} \beta \left(\frac{1}{2} + \frac{\pi}{8} M \times \cos \theta \right) I_{M}^{(4)}$$

ここで、

V_{CE(SAT)}: IGBT のコレクタ-エミッタ間飽和電圧(V)

I_C: **IGBT** のコレクタ電流(A)

DT: オンデューティ

$$DT = \frac{1 + M \times \sin(\phi + \theta)}{2}$$

M:変調率(0~1)

cosθ: モータ力率(0~1)

I_M: モータ電流実効値(A)

 $\alpha:V_{\text{CE(SAT)}}-I_{C}$ 特性の 1 次近似式の傾き

β: V_{CE(SAT)} - I_C 特性の1次近似式の切片

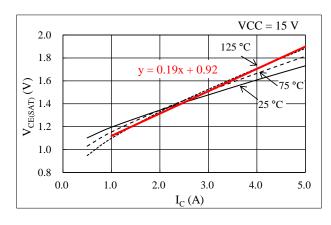


図 14-1 V_{CE(SAT)} - I_C特性の1次近似式

14.1.2 IGBT のスイッチング損失 Psw

モータの実効電流が I_M のときの IGBT のスイッチング損失 P_{SW} は、次式で算出できます。

$$P_{SW} = \frac{\sqrt{2}}{\pi} \times f_C \times \alpha_E \times I_M \times \frac{V_{DC}}{300}$$
 (5)

ここで、

f_C: PWM キャリア周波数(Hz)

 V_{DC} : 主電源電圧(V) (V_{BB} 端子入力電圧)

 $\alpha_E:$ スイッチング損失グラフの傾き

(15.3.2 項スイッチング損失特性グラフ参照)

14.1.3 IGBT のジャンクション温度の推定

全素子動作時の IGBT のジャンクション温度 T_J は次式で推定できます。

$$T_I = R_{(I-C)O} \times \{(P_{ON} + P_{SW}) \times 6\} + T_C$$
 (6)

ここで、

R_{(J-C)Q}: IGBT 全素子動作時のジャンクション-

ケース間熱抵抗(°C/W)

T_C:ケース温度(°C)(測定位置は図 3-1 参照)

14.2 パワーMOSFET の場合

パワーMOSFET の損失は、定常損失 P_{RON} 、スイッチング損失 P_{SW} とボディーダイオードの定常損失 P_{SD} の合計です。ここで P_{RR} は他の損失に対して割合が小さいため無視できるものとします。

損失 $(P_{RON}, P_{SW}, P_{SD})$ とジャンクション温度 (全素子動作時) は、以下の手順で算出します。

14.2.1 パワーMOSFET の定常損失 PRON

パワーMOSFET の定常損失 P_{ON} は、15.3.1 項の $R_{DS(ON)} - I_D$ 特性より、図 14-2 のように I_D の使用範囲における 1 次近似式 $(R_{DS(ON)} = \alpha \times I_D + \beta)$ を算出します。パワーMOSFET の定常損失 P_{RON} は、この 1 次近似式の係数を用いて、次式で計算できます。

$$P_{RON} = \frac{1}{2\pi} \int_0^{\pi} I_D(\phi)^2 \times R_{DS(ON)}(\phi) \times DT \times d\phi$$

$$= 2\sqrt{2}\alpha \left(\frac{1}{3\pi} + \frac{3}{32}M \times \cos\theta\right) I_{M}^{3} + 2\beta \left(\frac{1}{8} + \frac{1}{3\pi}M \times \cos\theta\right) I_{M}^{2}$$
 (7)

ここで、

 I_D : パワーMOSFET のドレイン電流(A) $R_{DS(ON)}$: パワーMOSFET のオン抵抗(Ω)

DT: オンデューティ

$$DT = \frac{1 + M \times \sin(\phi + \theta)}{2}$$

M:変調率(0~1)

cosθ: モータ力率(0~1) I_M: モータ電流実効値(A)

 $\alpha: R_{DS(ON)} - I_D$ 特性の 1 次近似式の傾き $\beta: R_{DS(ON)} - I_D$ 特性の 1 次近似式の切片

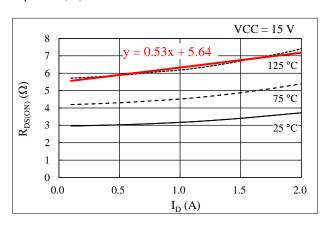


図 14-2 R_{DS(ON)} - I_D 特性の 1 次近似式

14.2.2 パワーMOSFET のスイッチング損 失 Psw

モータの実効電流が I_M のときの、パワー MOSFET のスイッチング損失 P_{SW} は、次式で算出できます。

$$P_{SW} = \frac{\sqrt{2}}{\pi} \times f_C \times \alpha_E \times I_M \times \frac{V_{DC}}{300}$$
 (8)

ここで、

fc: PWM キャリア周波数(Hz)

V_{DC}: 主電源電圧(V) (VBB 端子入力電圧)

α_E: スイッチング損失グラフの傾き (15.3.2 項スイッチング損失参照)

14.2.3 ボディーダイオードの定常損失 **P**_{SD}

パワーMOSFET のボディーダイオードの定常損失 P_{SD} は、15.3.1 項の V_{SD} の I_{SD} 特性より、図 14-3 のように I_{SD} の使用範囲における 1 次近似式 $(V_{SD}=\alpha \times I_{SD}+\beta)$ を算出します。

パワーMOSFET のボディーダイオードの定常損失 P_{SD} は、この 1 次近似式の係数を用いて、次式で計算できます。

$$P_{SD} = \frac{1}{2\pi} \int_0^{\pi} V_{SD} (\phi) \times I_{SD}(\phi) \times (1 - DT) \times d\phi$$

$$\begin{split} &= \frac{1}{2} \alpha \left(\frac{1}{2} - \frac{4}{3\pi} M \times \cos \theta \right) I_{\text{M}}^2 \\ &\quad + \frac{\sqrt{2}}{\pi} \beta \left(\frac{1}{2} - \frac{\pi}{8} M \times \cos \theta \right) I_{\text{M}} \end{split} \tag{9}$$

-- 7

 V_{SD} : ボディーダイオードの順電圧(V) I_{SD} : ボディーダイオードの順電流(A)

DT:オンデューティ

$$DT = \frac{1 + M \times \sin(\phi + \theta)}{2}$$

M:変調率(0~1)

 $\cos\theta$: モータ力率(0~1) I_M : モータ電流実効値(A)

 $\alpha: V_{SD}-I_{SD}$ 特性の1次近似式の傾き $\beta: V_{SD}-I_{SD}$ 特性の1次近似式の切片

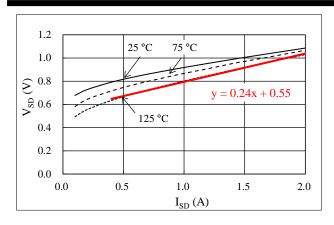


図 14-3 V_{SD}-I_{SD}特性の1次近似式

14.2.4 パワーMOSFET のジャンクション 温度の推定

全素子動作時のパワーMOSFET のジャンクション温度 T_J は次式で推定できます。

$$T_{I} = R_{I-C} \times \{ (P_{ON} + P_{SW} + P_{SD}) \times 6 \} + T_{C}$$
 (10)

R_{J-C}: 全素子動作時のパワーMOSFET 製品のジ

ャンクション-ケース間熱抵抗

T_C: ケース温度(°C) (測定位置は図 3-1 参照)

15. 代表特性グラフ

15.1 過渡熱抵抗特性グラフ

以下に、ジャンクション-ケース間の定常熱抵抗を 1 とした場合の過渡熱抵抗(過渡熱抵比率)を示します。 IGBT を搭載した製品の過渡熱抵抗は、IGBT のみの特性で FRD の特性は含まれていません。

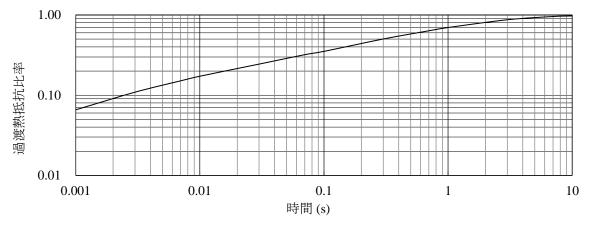


図 15-1 SIM6811M、SIM6812M 過渡熱抵抗比率

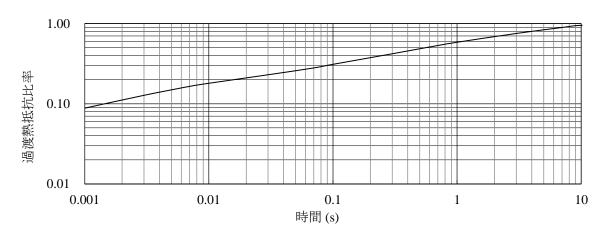
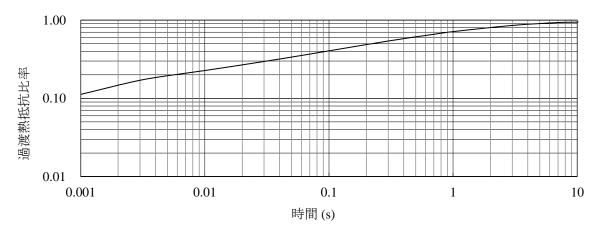
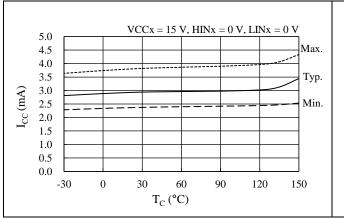


図 15-2 SIM6822MV 過渡熱抵抗比率




図 15-3 SIM6880M 過渡熱抵抗比率

15.2 制御部代表特性グラフ

図 15-4~図 15-28 に制御部の各種依存性および温度特性を示します。 T_J は制御部のジャンクション温度です。

表 15-1 制御部代表特性一覧

	図番号	表題
図	15-4	制御電源電流 I_{CC} 温度特性($INx = 0$ V)
図	15-5	制御電源電流 I _{CC} 温度特性(INx = 5 V)
図	15-6	VCCx 端子電圧 V _{CC} – 制御電源電流 I _{CC} 特性
図	15-7	制御電源電流(1 相) I_{BS} 温度特性($HINx=0V$)
図	15-8	制御電源電流(1 相) I_{BS} 温度特性($HINx = 5 V$)
図	15-9	VBx 端子電圧 V_{B-} 制御電源電流 I_{BS} 特性 ($HINx=0$ V)
図	15-10	制御動作開始電圧 $V_{BS(ON)}$ 温度特性
図	15-11	制御動作停止電圧 V _{BS(OFF)} 温度特性
図	15-12	制御動作開始電圧 $V_{CC(ON)}$ 温度特性
図	15-13	制御動作停止電圧 $V_{CC(OFF)}$ 温度特性
図	15-14	UVLO_VB フィルタ時間温度特性
図	15-15	UVLO_VCC フィルタ時間温度特性
図	15-16	ハイレベル入力しきい電圧 V _{IH} 温度特性
	15-17	ローレベル入力しきい電圧 V_{IL} 温度特性
図	15-18	HINx 端子、LINx 端子入力電流 I _{IN} 温度特性
図	15-19	ハイサイド オン信号伝達時間温度特性(HINx から HOx まで)
図	15-20	ローサイド オン信号伝達時間温度特性 (LINx から LOx まで)
図	15-21	ハイサイド最小応答パルス幅 t _{HIN(MIN)} 温度特性
図	15-22	ローサイド最小応答パルス幅 t _{LIN(MIN)} 温度特性
図	15-23	SD 端子フィルタ時間温度特性
図	15-24	FO 端子フィルタ時間温度特性
図	15-25	電流リミッタ基準電圧 V _{LIM} 温度特性
図	15-26	過電流保護動作電圧 V _{TRIP} 温度特性
図	15-27	過電流保護保持時間 t _P 温度特性
図	15-28	過電流保護ブランキング時間 $t_{BK(OCP)}$ 、電流リミッタブランキング時間 $t_{BK(OCL)}$ 温度特性

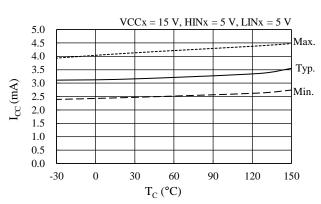
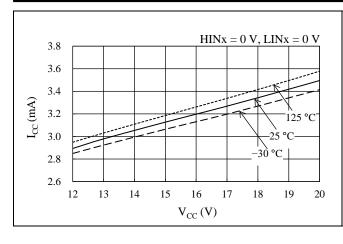



図 15-4 制御電源電流 I_{CC} 温度特性 (INx = 0 V)

図 15-5 制御電源電流 Icc 温度特性 (INx = 5 V)

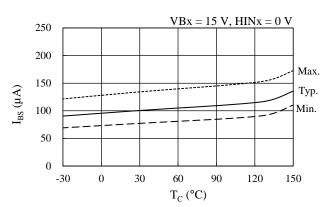
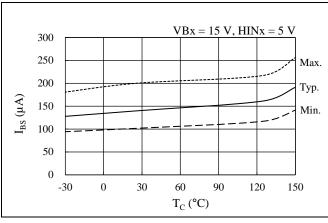



図 15-6 VCCx 端子電圧 V_{CC-} 制御電源電流 I_{CC} 特性

図 15-7 制御電源電流 (1 相) I_{BS} 温度特性 (HINx = 0 V)

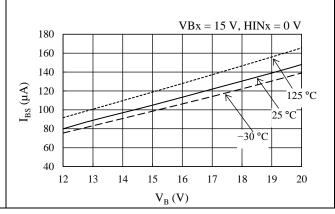
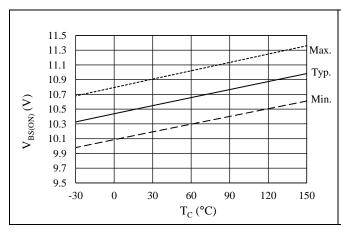



図 15-8 制御電源電流(1 相) I_{BS} 温度特性 (HINx = 5 V)

図 15-9 VBx 端子電圧 V_B - 制御電源電流 I_{BS} 特性 (HINx = 0 V)

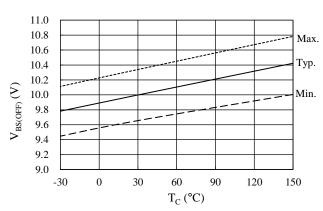


図 15-10 制御動作開始電圧 V_{BS(ON)}温度特性

図 15-11 制御動作停止電圧 V_{BS(OFF)}温度特性

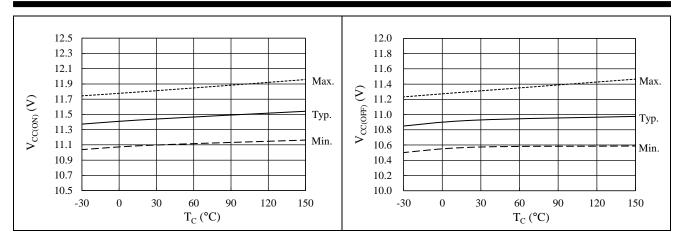


図 15-12 制御動作開始電圧 V_{CC(ON)}温度特性

図 15-13 制御動作停止電圧 V_{CC(OFF)}温度特性

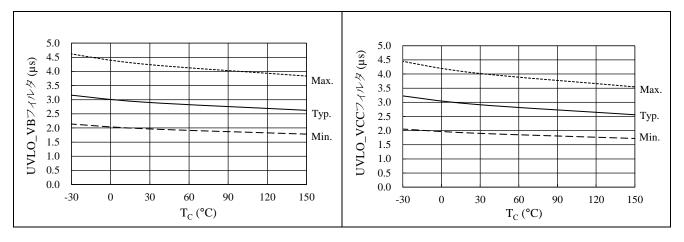


図 15-14 UVLO_VB フィルタ時間温度特性

図 15-15 UVLO_VCC フィルタ時間温度特性

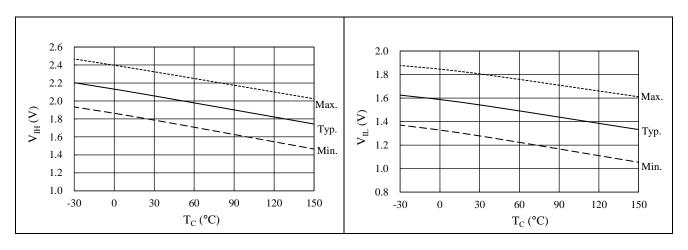
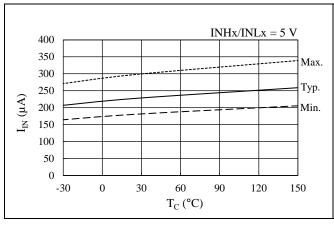



図 15-16 ハイレベル入力しきい電圧 V_{IH} 温度特 性

図 15-17 ローレベル入力しきい電圧 V_{IL} 温度特性

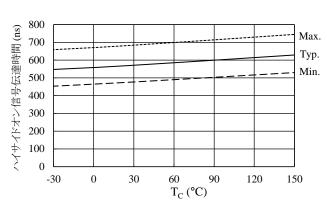
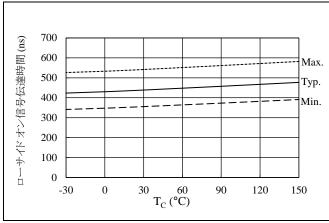



図 15-18 HINx 端子、LINx 端子入力電流 I_{IN} 温度 特性

図 15-19 ハイサイド オン信号伝達時間温度特性 (HINx から HOx まで)

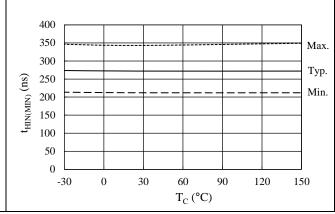
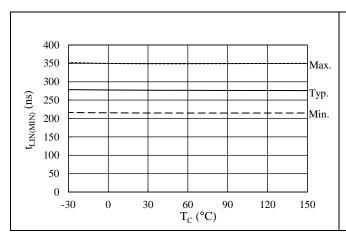
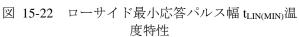




図 15-20 ローサイド オン信号伝達時間温度特性 (LINx から LOx まで)

図 15-21 ハイサイド最小応答パルス幅 t_{HIN(MIN)}温度 特性

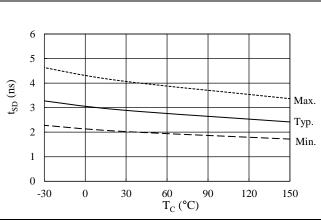


図 15-23 SD 端子フィルタ時間温度特性

SIM6800M/MV シリーズ

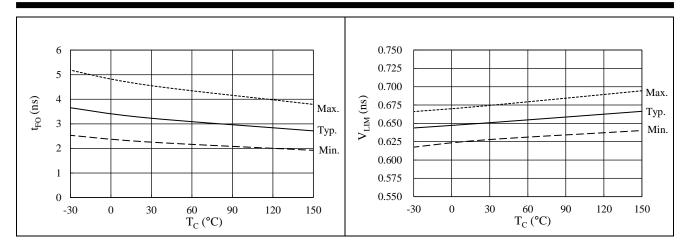


図 15-24 FO 端子フィルタ時間温度特性

図 15-25 電流リミッタ基準電圧 V_{LIM} 温度特性

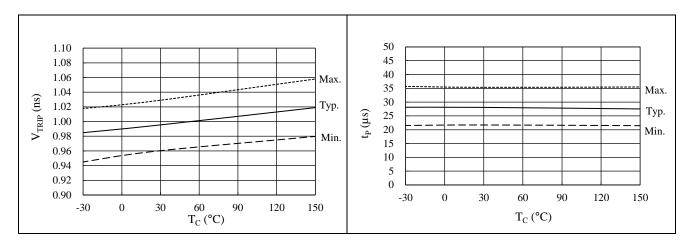


図 15-26 過電流保護動作電圧 V_{TRIP} 温度特性

図 15-27 過電流保護保持時間 tp 温度特性

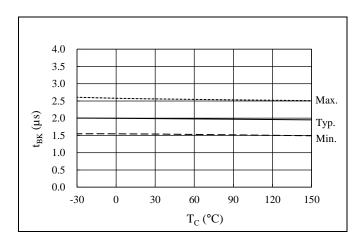


図 15-28 過電流保護ブランキング時間 $t_{BK(OCP)}$ 、電流リミッタブランキング時間 $t_{BK(OCL)}$ 温度特性

15.3 出力特性グラフ

15.3.1 出力素子特性グラフ

15.3.1.1. SIM6811M

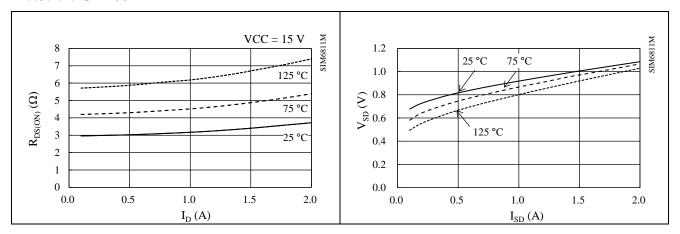


図 15-29 パワーMOSFET R_{DS(ON)} – I_D特性

図 15-30 パワーMOSFET V_{SD} – I_{SD} 特性

15.3.1.2. SIM6812M

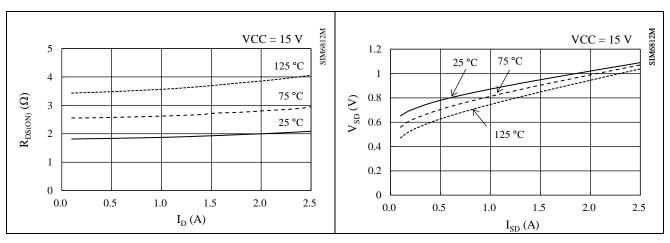


図 15-31 パワーMOSFET $R_{DS(ON)} - I_D$ 特性

図 15-32 パワーMOSFET V_{SD} – I_{SD} 特性

15.3.1.3. SIM6880M

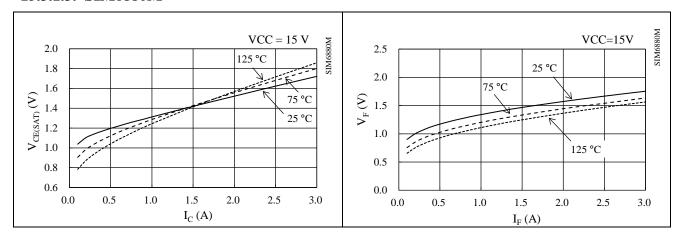


図 15-33 IGBT V_{CE(SAT)} - Ic 特性

図 15-34 FRD V_F-I_F特性

15.3.1.4. SIM6822MV

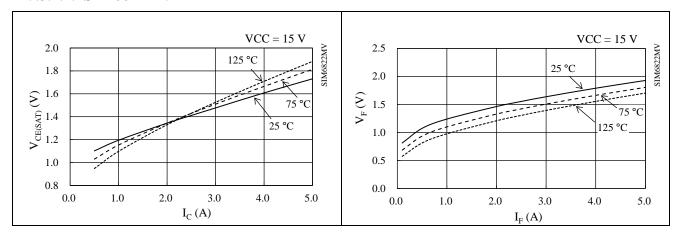


図 15-35 IGBT V_{CE(SAT)} – Ic 特性

図 15-36 FRD V_F – I_F 特性

15.3.2 スイッチング損失特性グラフ

VBB 端子電圧 = 300 V、L 負荷におけるハーフブリッジ動作時のスイッチング損失です。 スイッチング損失 E は、ターンオン損失とターンオフ損失の合計です。

15.3.2.1. SIM6811M

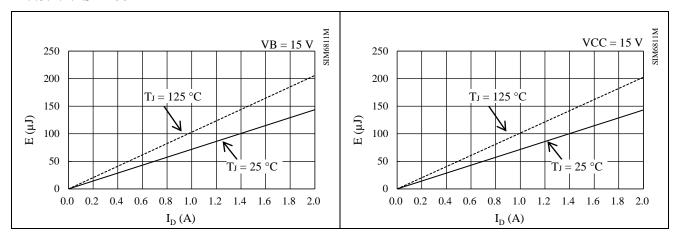


図 15-37 ハイサイドスイッチング損失特性

図 15-38 ローサイドスイッチング損失特性

15.3.2.2. SIM6812M

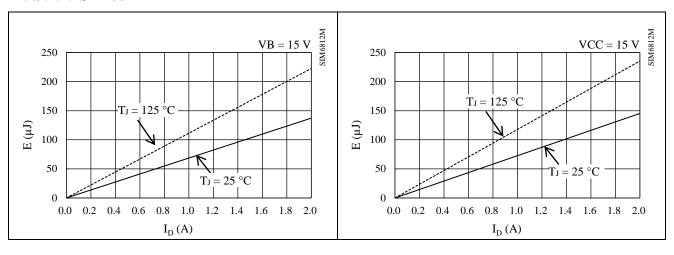


図 15-39 ハイサイドスイッチング損失特性

図 15-40 ローサイドスイッチング損失特性

15.3.2.3. SIM6880M

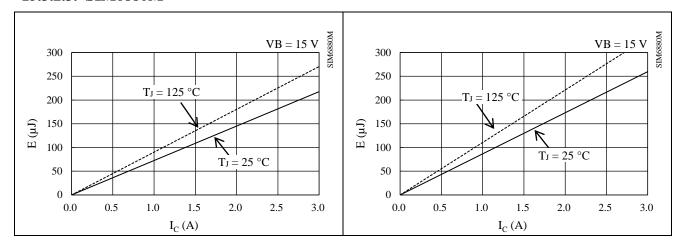


図 15-41 ハイサイドスイッチング損失特性

図 15-42 ローサイドスイッチング損失特性

15.3.2.4. SIM6822MV

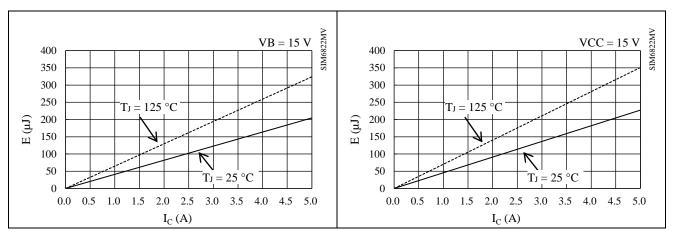


図 15-43 ハイサイドスイッチング損失特性

図 15-44 ローサイドスイッチング損失特性

15.4 許容実効電流特性グラフ

以下に示す許容実効電流特性は、正弦波駆動の 3 相変調方式、出力素子の $R_{DS(ON)}$ または $V_{CE(SAT)}$ 、およびスイッチング損失は Typ.品を想定しています。

<動作条件>

VBB 端子入力電圧 $V_{DC}=300$ V、VCC 端子入力電圧 $V_{CC}=15$ V、変調率 M=0.9、モータ力率 $\cos\theta=0.8$ 、ジャンクション温度 $T_J=150$ °C

15.4.1 SIM6811M

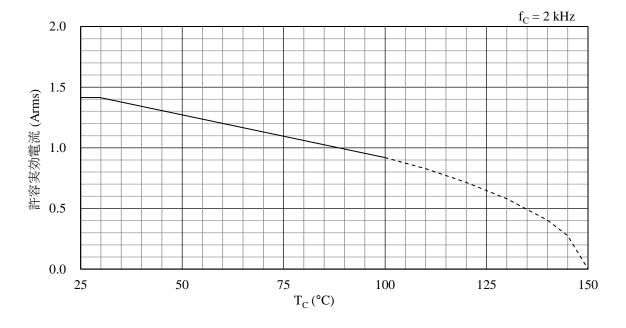


図 15-45 SIM6811M 許容電流特性(f_C = 2 kHz)

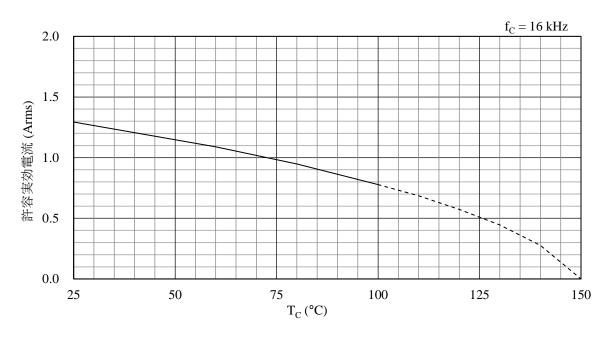


図 15-46 SIM6811M 許容電流特性 (f_C = 16 kHz)

15.4.2 SIM6812M

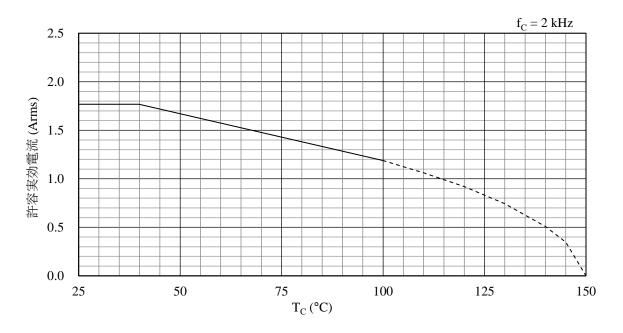


図 15-47 SIM6812M 許容電流特性 (f_C = 2 kHz)

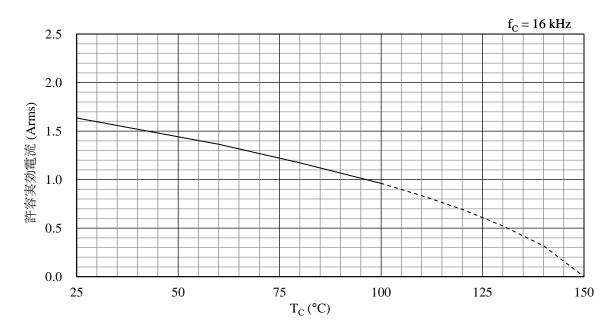


図 15-48 SIM6812M 許容電流特性 (f_C = 16 kHz)

15.4.3 SIM6880M

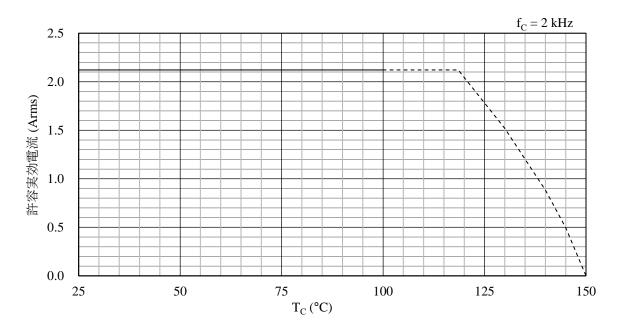


図 15-49 SIM6880M 許容電流特性 (f_C = 2 kHz)

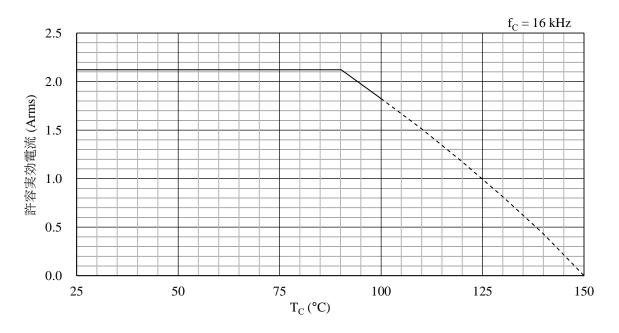


図 15-50 SIM6880M 許容電流特性 (f_C = 16 kHz)

15.4.4 SIM6822MV

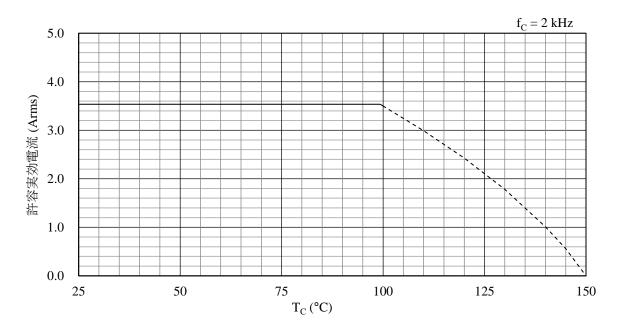


図 15-51 SIM6822MV 許容電流特性 (f_C = 2 kHz)

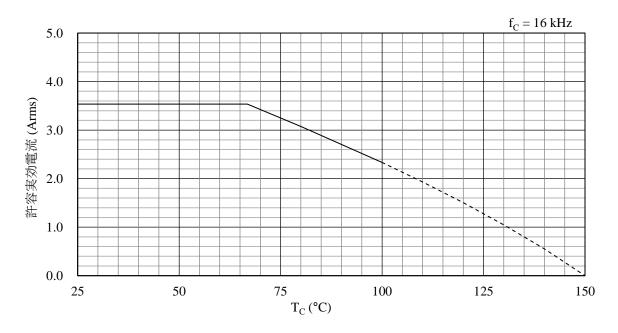


図 15-52 SIM6822MV 許容電流特性 (f_C = 16 kHz)

15.5 短絡 SOA

以下に出力素子に IGBT を内蔵している SIM6880M と SIM6822MV の短絡 SOA を示します。

条件) $V_{DC} \le 400 \text{ V}$ 、 $13.5 \text{ V} \le \text{VCC} \le 16.5 \text{ V}$ 、 $T_J = 125 \text{ }^{\circ}\text{C}$ 、1 パルス

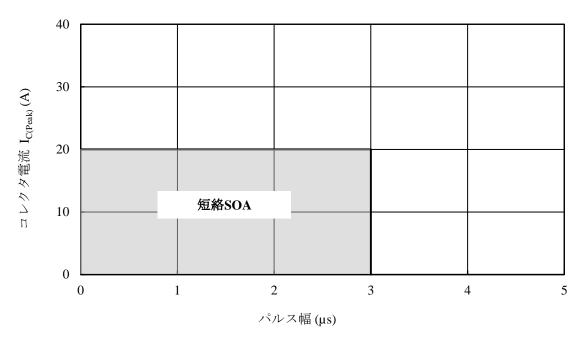


図 15-53 SIM6880M 短絡 SOA

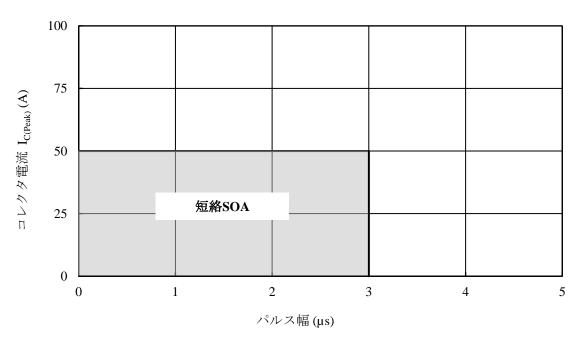


図 15-54 SIM6822MV 短絡 SOA

16. パターンレイアウト例

以下に、SIM6800M/MV シリーズを使用したパターンレイアウト例と、その回路図を示します。本 IC の挿入穴の情報は 10 項を参照してください。

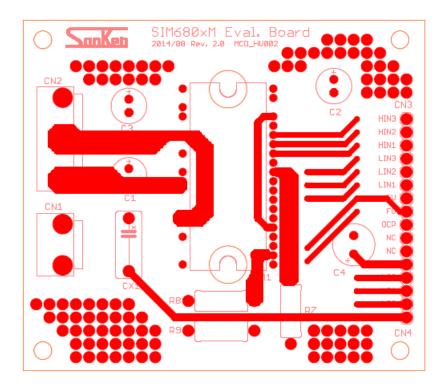


図 16-1 表面パターンレイアウト例

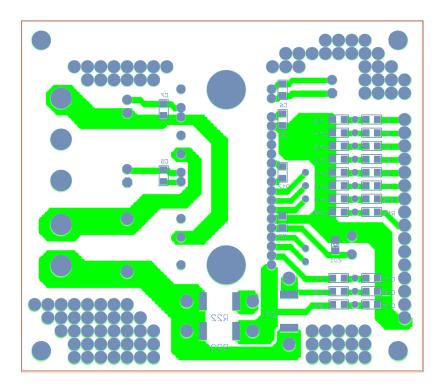


図 16-2 裏面パターンレイアウト例

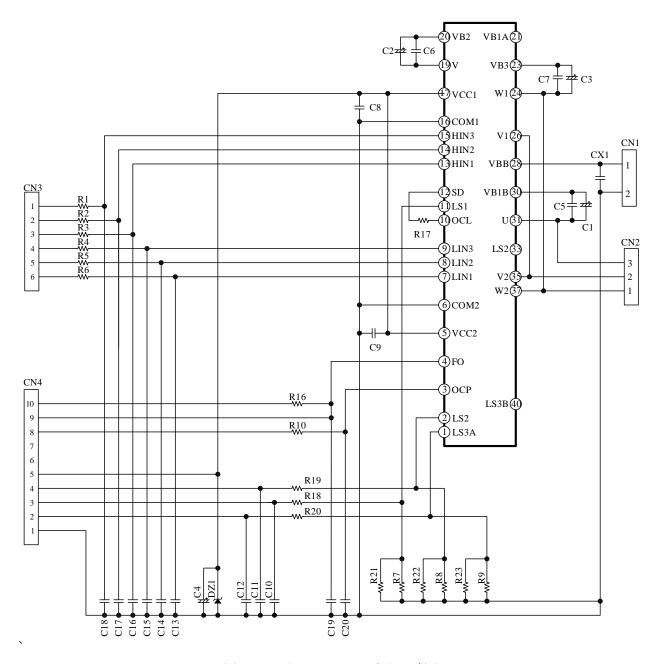


図 16-3 パターンレイアウト回路図

17. モータドライバ回路例

モータドライバの回路例として、その仕様と回路図および部品表を以下に示します。

● モータドライバ仕様

使用 IC	SIM6822MV
主電源電圧 V_{DC}	DC300 V (typ.)
定格出力電力	500 W

● 回路図

図 16-3 参照

● 部品表

記号	部品名	定格	記号	部品名	定格
C1	Electrolytic	47 μF, 50 V	R3	General	100 Ω, 1/8 W
C2	Electrolytic	47 μF, 50 V	R4	General	100 Ω, 1/8 W
C3	Electrolytic	47 μF, 50 V	R5	General	100 Ω, 1/8 W
C4	Electrolytic	100 μF, 50 V	R6	General	100 Ω, 1/8 W
C5	Ceramic	0.1 μF, 50 V	R7*	Metal plate	0.15 Ω, 2 W
C6	Ceramic	0.1 μF, 50 V	R8*	Metal plate	0.15 Ω, 2 W
C7	Ceramic	0.1 μF, 50 V	R9*	Metal plate	0.15 Ω, 2 W
C8	Ceramic	0.1 μF, 50 V	R10	General	100 Ω, 1/8 W
C9	Ceramic	0.1 μF, 50 V	R16	General	3.3 kΩ, 1/8 W
C10	Ceramic	100 pF, 50 V	R17	General	0 kΩ, 1/8 W
C11	Ceramic	100 pF, 50 V	R18	General	100 Ω, 1/8 W
C12	Ceramic	100 pF, 50 V	R19	General	100 Ω, 1/8 W
C13	Ceramic	100 pF, 50 V	R20	General	100 Ω, 1/8 W
C14	Ceramic	100 pF, 50 V	R21	General	Open
C15	Ceramic	100 pF, 50 V	R22	General	Open
C16	Ceramic	100 pF, 50 V	R23	General	Open
C17	Ceramic	100 pF, 50 V	ZD1	Zener diode	$V_Z = 21 \text{ V (max.)}$
C18	Ceramic	100 pF, 50 V	IPM1	IC	SIM6822MV
C19	Ceramic	0.01 μF, 50 V	CN1	Pin header	B2P3-VH 相当
C20	Ceramic	100 pF, 50 V	CN2	Pin header	B2P5-VH 相当
CX1	Film	0.033 μF, 630 V	CN3	Connector	MA06-1 相当
R1	General	100 Ω, 1/8 W	CN4	Connector	MA10-1 相当
R2	General	100 Ω, 1/8 W			

^{*} 実機評価で調整が必要な部品

注意書き

- 本書に記載している製品(以下、「本製品」という)のデータ、図、表、およびその他の情報(以下、 「本情報」という)は、本書発行時点のものです。本情報は、改良などで予告なく変更することがありま す。本製品を使用する際は、本情報が最新であることを弊社販売窓口に確認してください。
- 本製品は、一般電子機器(家電製品、事務機器、通信端末機器、計測機器など)の部品に使用されること を意図しております。本製品を使用する際は、納入仕様書に署名または記名押印のうえ、返却をお願いし ます。高い信頼性が要求される装置(輸送機器とその制御装置、交通信号制御装置、防災装置、防犯装置、 各種安全装置など)に本製品を使用することを検討する際は、必ず事前にその使用の適否について弊社販 売窓口へ相談いただき、納入仕様書に署名または記名押印のうえ、返却をお願いします。本製品は、極め て高い信頼性が要求される機器または装置(航空宇宙機器、原子力制御、その故障や誤動作が生命や人体 に危害を及ぼす恐れのある医療機器(日本における法令でクラスⅢ以上)など)(以下「特定用途」とい う)に使用されることは意図されておりません。特定用途に本製品を使用したことでお客様または第三者 に生じた損害などに関して、弊社は一切その責任を負いません。
- 本製品を使用するにあたり、本製品に他の製品や部材を組み合わせる際、あるいはこれらの製品に物理的、 化学的、その他の何らかの加工や処理を施す際は、使用者の責任においてそのリスクを必ず検討したうえ で行ってください。
- 弊社は、品質や信頼性の向上に努めていますが、半導体製品は、ある確率で欠陥や故障が発生することは 避けられません。本製品が故障し、その結果として人身事故、火災事故、社会的な損害などが発生しない ように、故障発生率やディレーティングなどを考慮したうえで、使用者の責任において、本製品が使用さ れる装置やシステム上で、十分な安全設計および確認を含む予防措置を必ず行ってください。ディレーテ ィングについては、納入仕様書および弊社ホームページを参照してください。
- 本製品は、耐放射線設計をしておりません。
- 本書に記載している回路定数、動作例、回路例、パターンレイアウト例、設計例、推奨例、本書に記載し ているすべての情報、およびこれらに基づく評価結果などは、使用上の参考として示したものです。
- ◆ 本情報に起因する使用者または第三者のいかなる損害、および使用者または第三者の知的財産権を含む財 産権とその他一切の権利の侵害問題について、弊社は一切その責任を負いません。
- ◆ 本情報を、文書による弊社の承諾なしに転記や複製をすることを禁じます。
- 本情報について、弊社の所有する知的財産権およびその他の権利の実施、使用または利用を許諾するもの
- 使用者と弊社との間で別途文書による合意がない限り、弊社は、本製品の品質(商品性、および特定目的 または特別環境に対する適合性を含む)ならびに本情報(正確性、有用性、および信頼性を含む)につい て、明示的か黙示的かを問わず、いかなる保証もしておりません。
- 本製品を使用する際は、特定の物質の含有や使用を規制する RoHS 指令など、適用される可能性がある環 境関連法令を十分に調査したうえで、当該法令に適合するように使用してください。
- 本製品および本情報を、大量破壊兵器の開発を含む軍事用途やその他軍事利用の目的で使用しないでくだ さい。また、本製品および本情報を輸出または非居住者などに提供する際は、「米国輸出管理規則」や 「外国為替及び外国貿易法」など、各国で適用される輸出管理法令などを遵守してください。
- 弊社物流網以外における本製品の落下などの輸送中のトラブルについて、弊社は一切その責任を負いま せん。
- 本書は、正確を期すために慎重に製作したものですが、本書に誤りがないことを保証するものではありま せん。万一、本情報の誤りや欠落に起因して、使用者に損害が生じた場合においても、弊社は一切その責 任を負いません。
- 本製品を使用する際の一般的な使用上の注意は弊社ホームページを、特に注意する内容は納入仕様書を参 照してください。
- 本書で使用されている個々の商標、商号に関する権利は、弊社を含むその他の原権利者に帰属します。

DSGN-CJZ-16003