SanKen

STR-W6723N

2010年2月

◆概要

本製品は、パワーMOSFETと制御ICを内蔵した擬似共振型スイッチング電源用パワーICです。擬似共振動作とボトムスキップ擬似共振動作により、高効率・低ノイズ電源システムを構成できます。

◆パッケージ

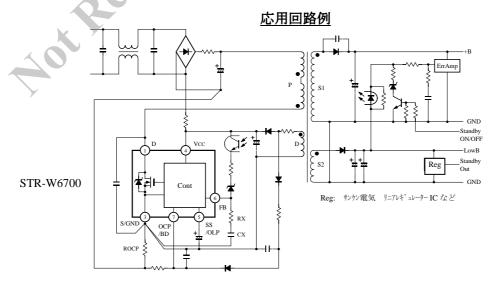
パッケージ名: TO-220F-6L(FM207)

◆アプリケーション

- LCD・PDP・ブラウン管 TV、及びデジタル家電用
- 白物家電用
- OA 機器用
- 産業機器用
- 通信機器用 などの各種電子機器用スイッチング電源

◆特長

- マルチ動作モード 負荷状態に合った動作モード切換えにより、全負荷 領域に渡り、高効率・低ノイズとなる最適な電源動 作を実現
- 電流モード制御方式
- PWM 発振器内蔵 擬似共振信号が確立するまで最低発振周波数(約 22kHz)の PWM で動作し、起動や出力短絡時の部 品ストレスを低減
- ソフトスタート機能内蔵
- ステップドライブ機能により、スイッチングノイズ 低減


◆主要スペック

MOSFET 450V(MIN), $1.4\Omega(MAX)$

- 過電流点の入力補正可能 部品 3 点を追加することにより、入力電圧変動に対 して過電流動作ポイントのバラツキ補正が可能
- ●2 チップ構造による、アバランシェ・エネルギー耐量 保証(サージ吸収回路の簡素化が可能)
- 保護機能

過電流保護 (OCP) ------ パルス・バイ・パルス 過負荷保護 (OLP) -----ラッチオフ * 過電圧保護 (OVP) -----ラッチオフ *

*ラッチオフ・・・ラッチオフは、発振停止を継続して 保護を行う動作

2010年2月

1 適用範囲

この規格は、スイッチングレギュレータ用ハイブリッド IC STR-W6723N について適用する。

2 概要

種別	ハイブリッド IC	
構造	樹脂封止型(トランスファー	モールド)
主用途	スイッチングレギュレータ	5

3 絶対最大定格 (Ta=25℃)

項目	端子	記号	規格値	単位	備考
ドレイン電流	1–3	I _{Dpeak} **1	11.3	A	シングルパルス
最大スイッチング電流	1–3	I _{DMAX} ^{**2}	11.3	A	Ta=-20∼+125°C
アバランシェエネルギ耐量	1–3	E _{AS} **3	112	mJ	シングルパルス
	1-3	LAS	y 112	1113	V_{DD} = 99V,L=20mH I_{Lpeak} =3.35A
制御部電源電圧	4–3	V_{CC}	35	V	
S S / O L P 端 子 電 圧	5–3	V _{SSOLP}	-0.5~6.0	V	
FB端子流入電流	6–3	I_{FB}	10	mA	
F B 端 子 電 圧	6–3	V_{FB}	-0.5~9.0	V	I _{FB} の制限内
OCP/BD端子電圧	7–3	V_{OCPBD}	-1.5~5.0	V	
MOS FET 部許容損失	1–3	${ m P_{D1}}^{\divideontimes 4}$	23.5	W	無限大放熱器にて
MOS ILI WHATE	1 3	1 DI	1.3	W	放熱器無し
制御部許容損失(MIC)	4–3	P_{D2}	0.8	W	$V_{cc} imes I_{cc}$ にて規定
動作時内部フレーム温度	-	T_{F}	−20~+115	$^{\circ}\!$	推奨動作温度参照
動作周囲温度	_	T_{OP}	−20~+115	${}^{\sim}$	
保 存 温 度	_	T_{stg}	-40~+125	${}^{\sim}$	
チャネル温度	-	T_{ch}	+150	${\mathbb C}$	

- ※1 MOS FET A.S.O.曲線参照
- ※2 最大スイッチング電流について

最大スイッチング電流とは IC 内部のドライブ電圧と MOS FET の Vth により決定するドレイン電流です。

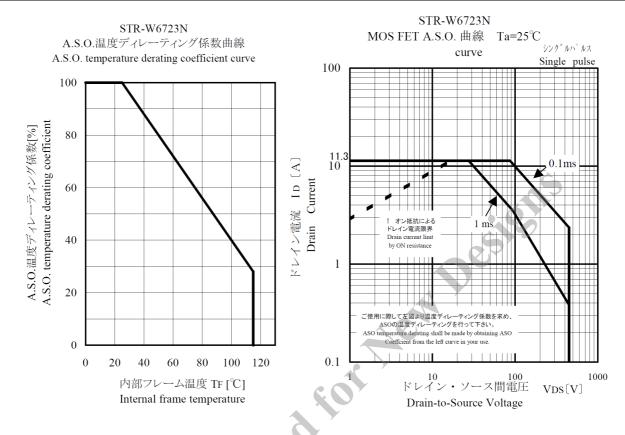
- ※3 MOS FET T_{ch}-E_{AS} 曲線参照
- ※4 MOS FET Ta-PD1 曲線参照

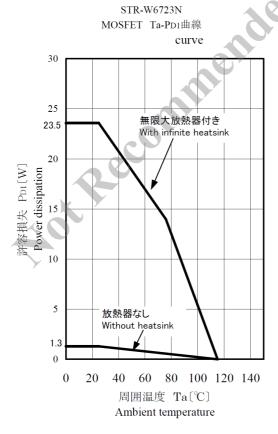
2010年2月

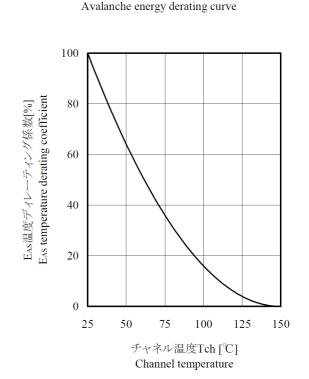
4 電気的特性

4.1 制御部電気的特性(特記なき場合の条件 Ta=25 \mathbb{C} , $V_{CC}=20$ V

項目	端子	記 号	規 MIN	格工ソル	値	単位	備考
電源起動動作			MIN	TYP	MAX		
動作開始電源電圧	4–3	V _{CC(ON)}	16.3	18.2	19.9	V	
動作停止電源電圧	4–3	V _{CC(OFF)}	8.8	9.7	10.6	V	
動 作 時 回 路 電 流	4–3	I _{CC(ON)}	_	_	6	mA	
非 動 作 時 回 路 電 流	4–3	I _{CC(OFF)}	_	_	100	μΑ	
発 振 周 波 数	1–3	Fosc	19	22	25	kHz	?
ソフトスタート動作停止電圧	5–3	V _{SSOLP(SS)}	1.1	1.2	1.4	V	
ソフトスタート動作充電電流	5–3	$I_{SSOLP(SS)}$	-710	-550	-390	μA	
通常動作					3		
ボトムスキップ動作しきい値電圧1	7–3	$V_{\text{OCPBD(BS1)}}$	-0.720	-0.665	-0.605	V	
ボトムスキップ動作しきい値電圧2	7–3	$V_{OCPBD(BS2)}$	-0.485	-0.435	-0.385	V	
過電流検出しきい値電圧	7–3	$V_{\text{OCPBD(LIM)}}$	-0.995	-0.940	-0.895	V	
ОСР/ВО 端子流出電流	7–3	I_{OCPBD}	-250	-100	-40	μA	
擬似共振動作しきい値電圧 1	7–3	$V_{\text{OCPBD(TH1)}}$	0.28	0.40	0.52	V	
擬似共振動作しきい値電圧 2	7–3	$V_{\text{OCPBD(TH2)}}$	0.67	0.80	0.93	V	
FB端子しきい値電圧	6–3	$V_{FB(OFF)}$	1.32	1.45	1.58	V	
FB 端子流入電流 (通常時)	6–3	$I_{FB(ON)}$	600	1000	1400	μA	
スタンバイ動作	1				T	1	
スタンバイ時動作開始電源電圧	4–3	$V_{CC(S)}$	10.3	11.1	12.1	V	
スタンバイ時電源電圧間隔	4–3	$V_{CC(SK)}$	1.10	1.35	1.65	V	
スタンバイ時非動作時回路電流	4–3	$I_{CC(S)}$	_	20	56	μA	
FB 端子流入電流 (スタンバイ時)	6–3	$I_{FB(S)}$	_	4	14	μA	
FB 端子スタンバイ動作しきい値電圧	6–3	$V_{FB(S)}$	0.55	1.10	1.50	V	
最 小 O N 時 間	1–3	$t_{ON(MIN)}$	0.55	0.95	1.35	μs	
保護動作							
最大ON時間	1–3	t _{ON(MAX)}	27.5	32.5	39.0	μs	
OLP 動作しきい値電圧	5–3	V _{SSOLP(OLP)}	4.0	4.9	5.8	V	
OLP動作時充電電流	5–3	$I_{SSOLP(OLP)}$	-16	-11	-6	μA	
OVP動作電源電圧	4–3	$V_{CC(OVP)}$	25.5	27.7	29.9	V	
ラッチ 回路保持電流 ※6	4–3	$I_{CC(H)}$	_	45	140	μA	
ラッチ 回路解除電源電圧 ^{※6}	4–3	V _{CC(La.OFF)}	6.0	7.2	8.5	V	


^{※6} ラッチ回路とは、OVP, OLP により動作する回路を示す。


4.2 MOSFET 部電気的特性(Ta=25℃)

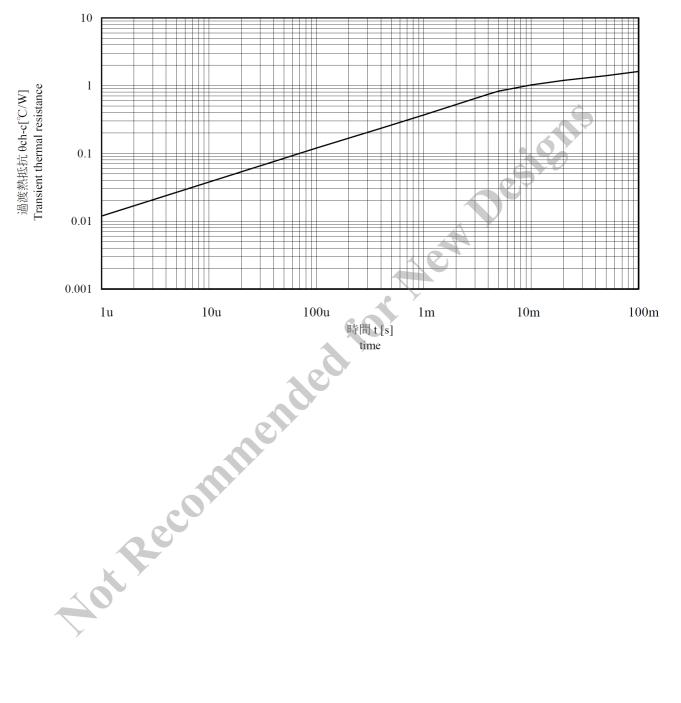

項目	端子	記号	規	格	値	単位	備考
TR L	VIII 1	Ę ,	MIN	TYP	MAX	十二	MH. G
ドレイン・ソース間電圧	1–3	$V_{ m DSS}$	450	_	_	V	
ドレイン漏れ電流	1-3	I_{DSS}	_	_	300	μA	
O N 抵 抗	1–3	$R_{DS(ON)}$	_	-	1.4	Ω	
スイッチング・タイム	1–3	t_{f}	_	ı	400	ns	
熱 抵 抗	_	$\theta_{ ext{ch-F}}$	_	_	2.5	°C/W	升剂—片部几一4間

[※]電流の規定はICを基準として、シンクが+、ソースが-とする。

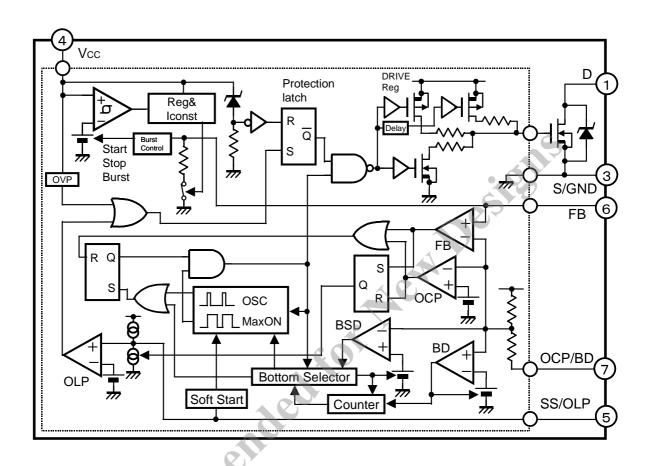
2010年2月

STR-W6723N


アバランシェ・エネルギ耐量

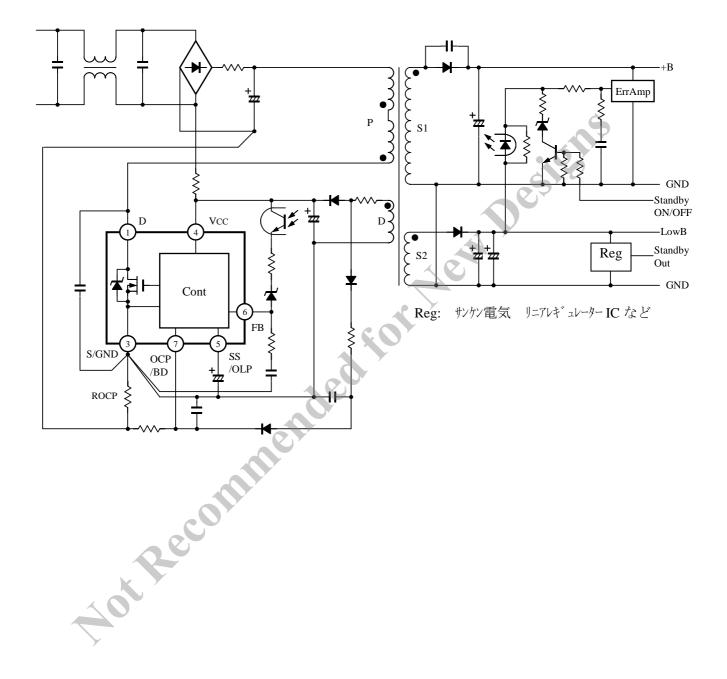

ディレーティング曲線

サンケン電気株式会社


2010年2月

2010年2月

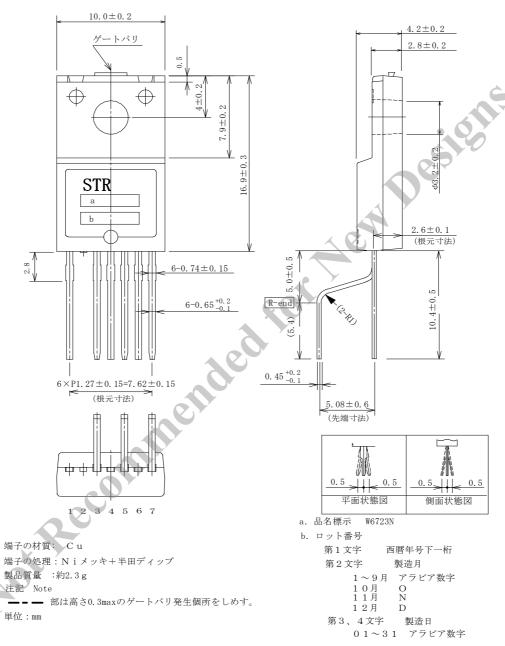
5 ブロックダイアグラム (ピン配置)


各端子機能

端子番号.	端子記号	名 称	機能
1	D	ドレイン端子	MOSFET ドレイン
3	S/GND	ソース/グランド端子	MOSFET ソース及びグランド
4	V_{CC}	電源端子	制御回路電源入力
5	SS/OLP	ソフトスタート/過負荷時遅延設 定端子	過負荷検出及びソフトスタート動作 の時間設定
6	FB	フィードバック端子	定電圧制御信号入力/間欠発振制御
7	OCP/BD	過電流保護入力/ボトム検出端子	過電流検出信号入力/ボトム検出信号入力

2010年2月

6 応用回路例



2010年2月

7 外形

7.1 外形、寸法および材質

- 7.2 外観 本体は、汚れ、傷、亀裂等なく綺麗であること。
- 7.3 標示 本体に品名及びロット番号を明瞭かつ容易に消えぬようレーザーで捺印すること。

サンケン電気株式会社

SanKen

STR-W6723N

2010年2月

8 使用上の注意

保管環境、特性検査上の取り扱い方法によっては信頼度を損なう要因となりますので、注意事項に留意されますようお願いいたします。

8.1 保管上の注意事項

- 保管環境は、常温(5~35°C)、常湿(40~75%)中が望ましく、高温多湿や温湿度変化の大きな場所を避けてください。
- 腐食性ガス等の有毒ガスが発生しない塵埃の少ない場所で直射日光を避けてください。
- 長期保管したものは、使用前に半田付け性やリードの錆等について再点検してください。

8.2 特性検査、取り扱い上の注意事項

● 受入検査等で特性検査を行う場合は、測定器からのサージ電圧の印加、端子間ショートや誤接続等に十分 ご注意ください。また定格以上の測定は避けてください。

8.3 放熱用シリコーングリースをご使用の際の注意

- 本製品を放熱板に取付けシリコーングリースをご使用する際は、均一に薄く塗布して下さい。必要以上に 塗布することは、無理な応力を加えることになります。
- 揮発性の放熱用シリコーングリースは長時間経過しますとヒビ割れが生じ、放熱効果を悪化させます。 稠度の小さい(固い)放熱用シリコーングリースは、ビス止め時にモールド樹脂クラックの原因となります。

弊社では、寿命に影響を与えない下記の放熱用シリコーングリースを推奨しております。

品名	メーカー名
G746	信越化学工業(株)
YG6260	モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
SC102	東レ・ダウコーニング (株)

8.4 推奨動作温度

動作時内部フレーム温度

 $T_F=105$ [°C] MAX

8.5 放熱板に取り付ける時の注意点

- ねじ穴部がバーリング加工された放熱板に取り付けるなど、フィンねじ穴周辺部の平坦度が取れない場合、 推奨トルク以下でも樹脂にクラックを発生することがありますのでご注意下さい。また、半導体デバイス を取り付ける面の平坦度は 0.05mm 以下としてください。
- ネジは適切な頭径のなべネジとし、製品本体に当たらない物を選定してください。 皿小ネジ等は製品にストレスを加えるので使用しないでください。 タッピングネジは、2ヵ所以上で締め付けるパッケージにはお奨めできません。
- 推奨締付けトルク

$0.588 \sim 0.785 \,\mathrm{N \cdot m} \, (6 \sim 8 \,\mathrm{kgf \cdot cm})$

● 締め付けの際に、締め付け工具などのドライバや、冶具やネジがパッケージに当たりますと、パッケージにクラックが入るだけでなく、ストレスが内部に加わり、素子の寿命を早め、破壊、不良の原因となりますので十分注意してください。また、エアドライバでのねじ締めはストップ時の衝撃が大きく、推奨トルク以下でも樹脂にクラックを発生することがありますので、電動ドライバの使用をお奨めします。特にデバイスを 2 カ所以上で締め付ける場合は、全ての取り付け部を、軽く予備締めした後に規定のトルク値で締め付けてください。エアドライバを使用する際はトルク管理に十分注意してください。タッピングネジの場合は下穴の状態、作業状況により垂直にネジが入らず斜めに入ることが有り半導体デバイスに異常なストレスを加え、故障の原因となることがありますので注意してください。

8.6 半田付け方法

- 半田付けの際は、下記条件以内でできるだけ短時間に作業をするよう、ご配慮ください。
 - 260±5°C 10sec.
 - ・350±5℃ 3sec. (半田ごて)

半田付けは製品本体より 1.5mm のところまでとする。

サンケン電気株式会社

Sanken

STR-W6723N

2010年2月

8.7 静電気破壊防止のための取扱注意

- デバイスを取り扱う場合は、人体アースを取ってください。人体アースはリストストラップ等を用い、感電防止のため、1MΩの抵抗を人体に近い所へ入れてください。
- デバイスを取り扱う作業台は導電性のテーブルマットやフロアマット等を敷きアースを取ってください。
- カーブトレーサーなどの測定器を使う場合、測定器もアースを取ってください。
- 半田付けをする場合、半田ごてやディップ槽のリーク電圧がデバイスに印加されるのを防ぐため、半田ご ての先やディップ槽をアースしてください。
- デバイスを入れる容器は、弊社出荷時の容器を用いるか、導電性容器やアルミ箔等で、静電対策をしてく ださい。

8.8 その他

- ◆ 本資料に記載されている内容は、改良などにより予告なく変更することがあります。ご使用の際には、最新の情報であることをご確認ください。
- 本資料に記載されている動作例及び回路例は、使用上の参考として示したもので、これらに起因する当社も しくは第三者の工業所有権、知的所有権、その他の権利の侵害問題について当社は一切責任を負いません。
- 本資料に記載されている製品をご使用の場合は、これらの製品と目的物との組み合わせについて使用者の 責任に於いて検討・判断を行ってください。
- 当社は品質、信頼性の向上に努めていますが、半導体製品では、ある確率での欠陥、故障の発生は避けられません。部品の故障により結果として、人身事故、火災事故、社会的な損害等を発生させないよう、使用者の責任に於いて、装置やシステム上で十分な安全設計および確認を行ってください。
- 本資料に記載されている製品は、一般電子機器(家電製品、事務機器、通信端末機器、計測機器など)に使用されることを意図しております。ご使用の場合は、納入仕様書の締結をお願いします。 高い信頼性が要求される装置(輸送機器とその制御装置、交通信号制御装置、防災・防犯装置、各種安全装置など)への使用をご検討の際には、必ず当社販売窓口へご相談及び納入仕様書の締結をお願いします。極めて高い信頼性が要求される装置(航空宇宙機器、原子力制御、生命維持のための医療機器など)には、当社の文書による合意がない限り使用しないでください。
- 本資料に記載された製品は耐放射線設計をしておりません。
- 本資料に記載された内容を文書による当社の承諾無しに転記複製を禁じます。
- 本資料に記載されている製品(または技術)を国際的な平和及び安全の維持の妨げとなる使用目的を有する 者に再提供したり、また、そのような目的に自ら使用したり第三者に使用させたりしないようにお願いし ます。

尚、輸出等される場合は外為法のさだめるところに従い必要な手続きをおとりください。

