Selection Guide

IC for LED Lighting

All the contents in this document are as of date of publication. Make sure that this is the latest revision of the document before use. Please check the details of the product by data sheet.

https://www.sanken-ele.co.jp/en
Contents

LED Driver IC Overview .. P.3

Application

• Off-line Buck Type (Low Power Application) P.4
• Off-line Flyback Type (Low to Middle Power Application) P.5
• DC/DC Converter ... P.6
• High Power and Intelligent Application P.7

Off-line LED Driver IC Selection Guide P.8
DC/DC LED Driver IC Selection Guide P.11
Selection Guide For High Power and Intelligent LED Lighting P.15
Important Notes ... P.18
Isolated Flyback Convertor
- No PFC Circuit Required
- High Power Factor in Light Load (Class-C)

LC5540LD Series
DIP8

Non-isolated Buck and Buck-boost Convertor
- Low Component Count
- High Power Factor
- High Power Factor (Class-C)

LC5560LD Series
(Support of Buck, Buck-boost and Flyback circuit)
DIP8

Processes offers to meet various needs such as various form and loads of the lamp.

High Power and Smart Application
- PFC IC: SSC2016S (CRM Type)
- Main Converter: LLC Type
- Microcomputer: MD660x (8bit MCU)

Downsized PCB
- Spot light
- LED bulb
- LED fluorescent lamp
- Down light
- Ceiling light
- Street light

DC/DC
- LC5700 Series
- SOP8
- HSOP8

LED Driver IC Overview
Off-line Buck Type (Low Power Application)

Buck Converter

LC5560LD Series

- LED Bulb
- Down Light
- LED Fluorescent Lamp

Freewheeling Diodes

Buck-boost Converter

LC5560LD Series

- LED Bulb
- Down Light
- LED Fluorescent Lamp

Freewheeling Diodes

Note:
Refer to the selection guide of diode about peripheral diodes.
Off-line Flyback Type (Low to Middle Power Application)

LED Driver within power MOSFET

LC5540LD Series (Non-isolated Type)
- Down Light
- LED Fluorescent Lamp → P.9

LC5560LD Series (Isolated Type)
- LED Bulb
- Down Light
- LED Fluorescent Lamp → P.10

Note:
Peripheral diodes are shown in the selection guide of diode.
DC/DC Converter

Buck Converter

![Buck Converter Diagram]

LED Driver

- **LC5710S**
- **LC5720S**

SOP8 → [P.13]

HSOP8 → [P.14]

Boost Converter

![Boost Converter Diagram]

LED Driver

- **LC5710S**
- **LC5720S**

SOP8 → [P.13]

HSOP8 → [P.14]

Buck-boost Converter

![Buck-boost Converter Diagram]

LED Driver

- **LC5710S**
- **LC5720S**

SOP8 → [P.13]

HSOP8 → [P.14]

Note:
- Peripheral diodes are shown in the selection guide of diode.
- Built in power MOSFET with * mark.
Notes:

• Peripheral diodes are shown in the selection guide of diode.
• PFC, LLC and PWM ICs are shown in selection guide of AC/DC Convertor and PFC.
Off-line LED Driver IC Selection Guide

- **High Power Factor in Light Load (Class-C)**
- **No Input Electrolytic Capacitor Required**
- **Isolated and Non-isolated Type**

Series LC5540LD

<table>
<thead>
<tr>
<th>Series</th>
<th>$V_{IN(MAX)}$</th>
<th>Package</th>
<th>Applications</th>
<th>Features</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC5540LD</td>
<td>650 V</td>
<td>DIP8</td>
<td>• Down light
• LED fluorescent lamp</td>
<td>• Isolated type</td>
<td>P.9</td>
</tr>
</tbody>
</table>

Series LC5560LD

<table>
<thead>
<tr>
<th>Series</th>
<th>$V_{IN(MAX)}$</th>
<th>Package</th>
<th>Applications</th>
<th>Features</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC5560LD</td>
<td>650 V</td>
<td>DIP8</td>
<td>• LED bulb
• Down light
• LED fluorescent lamp</td>
<td>• Non-isolated type
• Dimming</td>
<td>P.10</td>
</tr>
</tbody>
</table>
No Input Electrolytic Capacitor Required, IEC61000-3-2 class-C
Isolated LED Driver IC

LC5540LD Series

Package
DIP8

Features
- No Input Electrolytic Capacitor Required
- PWM and Quasi-resonant topology
- High Efficiency
- Low Noise
- High Power Factor in Light Load (IEC61000-3-2 class C)
- Protections
 - OCP: Pulse-by-Pulse
 - OLP, OVP, and TSD: Latched Shutdown

Typical Application

Selection Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>PWM Frequency</th>
<th>MOSFET V_DSS</th>
<th>R_DSO(ON)</th>
<th>P_OUT AC230V</th>
<th>P_OUT Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC5545LD</td>
<td>72kHz</td>
<td>650V</td>
<td>3.95Ω</td>
<td>13W</td>
<td>10W</td>
</tr>
<tr>
<td>LC5546LD</td>
<td>60kHz</td>
<td>1.9Ω</td>
<td>20W</td>
<td>16W</td>
<td></td>
</tr>
</tbody>
</table>

Pin Configuration Definitions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Symbol</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S/GND</td>
<td>Power MOSFET source and ground</td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>Supply voltage input and OVP signal input</td>
</tr>
<tr>
<td>3</td>
<td>OCP</td>
<td>OCP and QR signal input, and OVP signal input</td>
</tr>
<tr>
<td>4</td>
<td>FB</td>
<td>Feedback signal input and OLP signal input</td>
</tr>
<tr>
<td>5</td>
<td>NF</td>
<td>No function</td>
</tr>
<tr>
<td>6</td>
<td>OVP</td>
<td>OVP signal input</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>Pin removed</td>
</tr>
<tr>
<td>8</td>
<td>D/ST</td>
<td>Power MOSFET drain and startup current input</td>
</tr>
</tbody>
</table>
No Input Electrolytic Capacitor Required, IEC61000-3-2 Class-C
Non-isolated LED Driver IC
LC5560LD Series

Features
- Allows Buck, Buck Boost and Flyback Circuit
- No Input Electrolytic Capacitor Required
- PWM and Quasi-resonant Topology
- High Efficiency
- Low Noise
- High Power Factor in Light Load (IEC61000-3-2 class C)
- Dimming Function
- Protections
 - OCP: Pulse-by-Pulse
 - OLP, OVP, and TSD: Latched Shutdown

Typical Application (Flyback Circuit)

Selection Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>PWM Frequency</th>
<th>Power MOSFET</th>
<th>P_OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC5566LD</td>
<td>60 kHz</td>
<td>650V, 1.9 Ω</td>
<td>20 W, 16 W</td>
</tr>
</tbody>
</table>

Pin Configuration Definitions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Symbol</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S/GND</td>
<td>Power MOSFET source and ground</td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>Supply voltage input and OVP signal input</td>
</tr>
<tr>
<td>3</td>
<td>OCP</td>
<td>OCP and QR signal input, and OVP signal input</td>
</tr>
<tr>
<td>4</td>
<td>COMP</td>
<td>Feedback phase-compensation input</td>
</tr>
<tr>
<td>5</td>
<td>VREF</td>
<td>Dimming control signal input</td>
</tr>
<tr>
<td>6</td>
<td>ISENSE</td>
<td>Output current sensing voltage input</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>Pin removed</td>
</tr>
<tr>
<td>8</td>
<td>D/ST</td>
<td>Power MOSFET drain and startup current input</td>
</tr>
</tbody>
</table>
DC/DC LED Driver IC Selection Guide

- For Intelligent LED Lighting Application
- For LED Back Light Application
- Individual Channels Control

<table>
<thead>
<tr>
<th>Series</th>
<th>Output Count</th>
<th>$V_{\text{IN(MAX)}}$</th>
<th>I_0</th>
<th>$V_{\text{LED(MAX)}}$</th>
<th>Package</th>
<th>Features</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC101N (Current Balancer)</td>
<td>1</td>
<td>35 V</td>
<td>150 mA</td>
<td>35 V</td>
<td>DFN8</td>
<td>Balancer</td>
<td>P.12</td>
</tr>
<tr>
<td>LC5710S</td>
<td>1</td>
<td>58 V</td>
<td>1.0 A</td>
<td>58 V</td>
<td>SOP8</td>
<td>• Allows buck, buck-boost, and boost circuit</td>
<td>P.13</td>
</tr>
<tr>
<td>LC5720S</td>
<td>1</td>
<td>50 V</td>
<td>2.0 A</td>
<td>50 V</td>
<td>HSOP8</td>
<td>• Allows buck, buck-boost, and boost circuit</td>
<td>P.14</td>
</tr>
</tbody>
</table>

- Balancer
- Allows buck, buck-boost, and boost circuit
- PWM dimming
- Built-in power MOSFET
I_{LED} = 150 mA

LED Current Balancer

LC101N

Package
- **DFN8**

Features
- Current Balancer Across LED String
- Small Package (DFN8)
- Power Dissipation, P_D : 1.3 W
- No Input and Output Capacitor Required
- Maximum Dropout Voltage, ΔV_{DIF} : 350 mV
- Protections
 - OCP
 - TSD: Activation Temperature is 130 °C without Hysteresis

Pin Configuration Definitions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Symbol</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN</td>
<td>Input</td>
</tr>
<tr>
<td>2, 3</td>
<td>NC</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>LED</td>
<td>Output</td>
</tr>
<tr>
<td>5</td>
<td>FB</td>
<td>LED current detection signal input (positive side)</td>
</tr>
<tr>
<td>6, 7</td>
<td>NC</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>LO</td>
<td>LED current detection signal input (negative side)</td>
</tr>
</tbody>
</table>

Selection Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>I_{LED(MAX)}</th>
<th>V_{LED MAX}</th>
<th>V_{IN}</th>
<th>V_{FB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC101N</td>
<td>15 mA to 150 mA</td>
<td>35 V</td>
<td>2.4 V to 35 V</td>
<td>200 mV ± 3%</td>
</tr>
</tbody>
</table>

Typical Application
LC5710S

Features
- Allows Buck, Buck-boost, and Boost Circuit
- Maximum LED Current, \(I_{LED} : 1.0 \) A
- Adjustable Frequency Range: 100 kHz to 500 kHz
- \(V_{CS} : 100 \text{ mV} \pm 3 \% \)
- High Accuracy Dimming Control
- Maximum PWM Frequency: 20 kHz
- DC Input Voltage: 0.2 V to 2 V
- Protections
 - UVLO, OCP, TSD, LED OVP,
 - LED Open and LED Cross Connection Detection

Typical Applications

<table>
<thead>
<tr>
<th>Part Number</th>
<th>(I_{LED(MAX)})</th>
<th>(V_{IN})</th>
<th>MOSFET (R_{DS(ON)})</th>
<th>(f_{OSC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC5710S</td>
<td>1.0 A</td>
<td>5 V to 58 V</td>
<td>0.550 Ω(typ.)</td>
<td>100 kHz to 500 kHz</td>
</tr>
</tbody>
</table>

Pin Configuration Definitions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Symbol</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COMP</td>
<td>Phase compensation</td>
</tr>
<tr>
<td>2</td>
<td>RT</td>
<td>Frequency adjust</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>SW</td>
<td>Switch output</td>
</tr>
<tr>
<td>5</td>
<td>VIN</td>
<td>DC input</td>
</tr>
<tr>
<td>6</td>
<td>CSP</td>
<td>LED current sense (+)</td>
</tr>
<tr>
<td>7</td>
<td>CSN</td>
<td>LED current sense (-)</td>
</tr>
<tr>
<td>8</td>
<td>DIM</td>
<td>Dimming signal input</td>
</tr>
</tbody>
</table>

Diagrams

- **Boost Converter**
- **Buck-boost Converter**
- **Buck Converter**

\(I_{LED} = 1.0 \text{ A}, \ V_{IN} = 5 \text{ V to 58 V} \)

LED Driver for Buck, Buck-boost, and Boost Converter

SGE0003 Apr. 28, 2020
LED Driver for Buck, Buck-boost, and Boost Converter

LC5720S

Package
- HSOP8

Features
- Allows Buck, Buck-boost, and Boost Circuit
- Maximum LED Current, \(I_{LED} = 1.0\) A
- Frequency: 500 kHz
- \(V_{CS} = 100\) mV ± 5%
- High efficiency, \(\eta > 90\%\) (typ.)
- Maximum PWM Dimming Frequency: 20 kHz
- Protections
 - OCP: Pulse-by-Pulse
 - OVP, TSD: Auto-restart

Pin Configuration Definitions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Symbol</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COMP</td>
<td>Phase compensation</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>SW</td>
<td>Output</td>
</tr>
<tr>
<td>5</td>
<td>VIN</td>
<td>DC input</td>
</tr>
<tr>
<td>6</td>
<td>CSP</td>
<td>Reference input pin of current detection</td>
</tr>
<tr>
<td>7</td>
<td>CSN</td>
<td>Negative input pin of current detection</td>
</tr>
<tr>
<td>8</td>
<td>DIM</td>
<td>PWM dimming signal input</td>
</tr>
</tbody>
</table>

Typical Applications

- **Boost Converter**
- **Buck-boost Converter**
- **Buck Converter**

Selection Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>(I_{LED(\text{MAX})})</th>
<th>(V_{IN})</th>
<th>MOSFET (R_{DS(\text{ON})})</th>
<th>(f_{OSC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC5720S</td>
<td>2.0 A</td>
<td>9.5 V to 50 V</td>
<td>0.215 Ω(typ.)</td>
<td>500 kHz</td>
</tr>
</tbody>
</table>

Equations

- \(I_{LED} = 2.0\) A, \(V_{IN} = 8.5\) V to 50 V
Selection Guide For High Power and Intelligent LED Lighting

- High Power Application
- PFC Circuit
- Including Microcomputer

Ceiling light with microcomputer
Down light
Street lump

<table>
<thead>
<tr>
<th>Application</th>
<th>Feature</th>
<th>Products</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC</td>
<td>CRM control</td>
<td>PFC IC</td>
<td></td>
</tr>
<tr>
<td>Main convertor</td>
<td>✓ Low noise</td>
<td>LLC control ICs</td>
<td></td>
</tr>
</tbody>
</table>
| Auxiliary power supply | ✓ PWM control
 ✓ Low power consumption at no load < 25mW
 ✓ Flyback type
 ✓ Buck type (non-isolated) | PWM control ICs | |
| Microcomputer | ✓ 8 bit MCU
 ✓ High Performance DSP
 ✓ High Resolution PWM | MD660x Series | P.16 |

PFC, LLC and PWM ICs are shown in selection guide of AC/DC Convertor and PFC.
MD660x Series

MD660x is 8 bit MCU (Micro Controller Unit) for the power control application such as digital control power supply system.

◆ Rich Analog Component
Interconnections among analog components and external pins are configurable by programmable analog network. MD660x has A/D converter, analog comparators, general purpose OPAMPS.

◆ High Performance DSP Operations
MD660x has 8 bit CPU and two 16 bit Tiny DSP. CPU controls systems, Tiny DSP does calculations. Thus, parallel processing achieves.

◆ DMA Capability Between Peripherals (DSAC)
Automatic data transfer among the registers of the built-in peripheral functions. Also, automatic data transfer among the A/D converter, the Tiny DSP, and the PWM. Feedback control can be applied without the CPU, so that the CPU will focus on system processing such as anomaly detection or communications processing.

◆ System Support Functions
FLASH Memory, Timer, Serial Communications, Oscillators, Reset Circuits, etc.

【 Block Diagram 】

◆ Development Support Software
- IDE_MS660x : Program Development Environment
- SKDSP : Digital Filters for Tiny DSP
 Program generation for the phase compensator

◆ Development Support Hardware
- OCD I/F board (Interface for writing flash)
- CHEWING GUM (Evaluation board)
MD660x Series

Packages

<table>
<thead>
<tr>
<th>Product</th>
<th>QFN-40</th>
<th>LQFP-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>10×10 (0.5pitch)</td>
<td>6×6 (0.5pitch)</td>
</tr>
</tbody>
</table>

Power Supply Voltage
- Digital DVCC : 3.3V
- Analog AVCC : 3.3V

Operation Frequency
- 50MHz (max.)

Analog Function
- Analog interconnection : User configurable
- High speed analog comparator
- General OPAMP : Stand-alone, unity gain selectable

Digital Function
- Digital GPIO : 5V tolerant
- FLASH memory with Cache Function and Security Function
- One wire Debug Interface
 - The reading and writing of internal resource, the control of execution, the break of program execution and the writing of FLASH can be processed by one wire debug line.
- Interrupt Controller
 - Interrupt priority of 2 level, Independent vectors for each interrupt source, all GPIO can be set interrupt input.

Product Specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MD6601FNVL*</th>
<th>MD6601FNV*</th>
<th>MD6602FNV*</th>
<th>MD6602FPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>QFN-40</td>
<td>QFN-40</td>
<td>LQFP-64</td>
<td></td>
</tr>
<tr>
<td>Power Consumption(Typ.)</td>
<td>Digital : 150mW</td>
<td>Digital : 165mW</td>
<td>Analog : 20mW</td>
<td>Analog : 20mW</td>
</tr>
<tr>
<td>Analog Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 bit A/D Converter</td>
<td>2 units, 4MSPS / unit, Dual Sample-hold mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 bit A/D Converter</td>
<td>1 unit, 1MSPS / unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/A Converter</td>
<td>12 bit voltage output × 1channel</td>
<td>10 bit voltage output × 4 channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Comparator</td>
<td>4 units</td>
<td>6 units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Purpose OPAMP</td>
<td>2 units</td>
<td>4 units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Sensor</td>
<td>The voltage according to temperature is output and is read by A/D converter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 bit 8051CPU</td>
<td>8051 / 8052 instruction compatible, execution cycle : 1 cycle (min.), 3 cycle (avg.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLASH Memory</td>
<td>16 KB</td>
<td>32 KB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal RAM</td>
<td>2 unit, 16 bit (MUL, MAC, DIV)</td>
<td>2 unit, 16 bit (Min./Max. saturation, constant register)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiny DSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Resolution PWM</td>
<td>2 phase PWM × 4 pairs, 1ns resolution (for duty and cycle), Duty Cut, Cycle Cut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSAC</td>
<td>8ch</td>
<td>16ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 bit Timer</td>
<td>2 units, 16 bit counter Generates Interrupts</td>
<td>4 units, 16 bit counter Output Compare / Input Capture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPI / I2C / UART</td>
<td>Each 1 unit</td>
<td>Each 1 unit (Individual configurable)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO</td>
<td>Digital × 12</td>
<td>Digital × 12</td>
<td>Analog × 16</td>
<td>Analog × 20</td>
</tr>
<tr>
<td></td>
<td>Analog × 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WDT</td>
<td>1 unit (Watch Dog Timer to generate internal reset or interrupt request)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVD</td>
<td>Low voltage detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POR</td>
<td>Power on reset circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRC</td>
<td>Internal reference clock generator (10MHz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLL</td>
<td>Frequency multiplication by 4 of external (crystal) clock, IRC clock (50 MHz max.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Packing specifications is reel. The others are tray.
Important Notes

● All data, illustrations, graphs, tables and any other information included in this document (the “Information”) as to Sanken’s products listed herein (the “Sanken Products”) are current as of the date this document is issued. The Information is subject to any change without notice due to improvement of the Sanken Products, etc. Please make sure to confirm with a Sanken sales representative that the contents set forth in this document reflect the latest revisions before use.

● The Sanken Products are intended for use as components of general purpose electronic equipment or apparatus (such as home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Prior to use of the Sanken Products, please put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken. When considering use of the Sanken Products for any applications that require higher reliability (such as transportation equipment and its control systems, traffic signal control systems or equipment, disaster/crime alarm systems, various safety devices, etc.), you must contact a Sanken sales representative to discuss the suitability of such use and put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken, prior to the use of the Sanken Products. The Sanken Products are not intended for use in any applications that require extremely high reliability such as: aerospace equipment; nuclear power control systems; and medical equipment or systems, whose failure or malfunction may result in death or serious injury to people, i.e., medical devices in Class III or a higher class as defined by relevant laws of Japan (collectively, the “Specific Applications”). Sanken assumes no liability or responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, resulting from the use of the Sanken Products in the Specific Applications or in manner not in compliance with the instructions set forth herein.

● In the event of using the Sanken Products by either (i) combining other products or materials or both therewith or (ii) physically, chemically or otherwise processing or treating or both the same, you must duly consider all possible risks that may result from all such uses in advance and proceed therewith at your own responsibility.

● Although Sanken is making efforts to enhance the quality and reliability of its products, it is impossible to completely avoid the occurrence of any failure or defect or both in semiconductor products at a certain rate. You must take, at your own responsibility, preventative measures including using a sufficient safety design and confirming safety of any equipment or systems in/for which the Sanken Products are used, upon due consideration of a failure occurrence rate and derating, etc., in order not to cause any human injury or death, fire accident or social harm which may result from any failure or malfunction of the Sanken Products. Please refer to the relevant specification documents and Sanken’s official website in relation to derating.

● No anti-radioactive ray design has been adopted for the Sanken Products.

● The circuit constant, operation examples, circuit examples, pattern layout examples, design examples, recommended examples, all information and evaluation results based thereon, etc., described in this document are presented for the sole purpose of reference of use of the Sanken Products.

● Sanken assumes no responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, or any possible infringement of any and all property rights including intellectual property rights and any other rights of you, users or any third party, resulting from the Information.

● No information in this document can be transcribed or copied or both without Sanken’s prior written consent.

● Regarding the Information, no license, express, implied or otherwise, is granted hereby under any intellectual property rights and any other rights of Sanken.

● Unless otherwise agreed in writing between Sanken and you, Sanken makes no warranty of any kind, whether express or implied, including, without limitation, any warranty (i) as to the quality or performance of the Sanken Products (such as implied warranty of merchantability, and implied warranty of fitness for a particular purpose or special environment), (ii) that any Sanken Product is delivered free of claims of third parties by way of infringement or the like, (iii) that may arise from course of performance, course of dealing or usage of trade, and (iv) as to the Information (including its accuracy, usefulness, and reliability).

● In the event of using the Sanken Products, you must use the same after carefully examining all applicable environmental laws and regulations that regulate the inclusion or use or both of any particular controlled substances, including, but not limited to, the EU RoHS Directive, so as to be in strict compliance with such applicable laws and regulations.

● You must not use the Sanken Products or the Information for the purpose of any military applications or use, including but not limited to the development of weapons of mass destruction. In the event of exporting the Sanken Products or the Information, or providing them for non-residents, you must comply with all applicable export control laws and regulations in each country including the U.S. Export Administration Regulations (EAR) and the Foreign Exchange and Foreign Trade Act of Japan, and follow the procedures required by such applicable laws and regulations.

● Sanken assumes no responsibility for any troubles, which may occur during the transportation of the Sanken Products including the falling thereof, out of Sanken’s distribution network.

● Although Sanken has prepared this document with its due care to pursue the accuracy thereof, Sanken does not warrant that it is error free and Sanken assumes no liability whatsoever for any and all damages and losses which may be suffered by you resulting from any possible errors or omissions in connection with the Information.

● Please refer to our official website in relation to general instructions and directions for using the Sanken Products, and refer to the relevant specification documents in relation to particular precautions when using the Sanken Products.

● All rights and title in and to any specific trademark or tradename belong to Sanken and such original right holder(s).

DSGN-CEZ-16003

SGE0003 Apr. 28, 2020