Selection Guide

- 3-phase DC Brushless Motor Driver IC (35 V to 60 V)
- DC Brush Motor Driver IC (44 V)
- Stepper Motor Driver IC
 - Bipolar (40 V to 60 V)
 - Unipolar (100 V)

The all contents in this document are as of date of publication. Make sure that this is the latest revision of the document before use. Please check the details of the product by data sheet. All rights and title in and to any specific trademark or tradename belong to the Company or such original right holder(s).

http://www.sanken-ele.co.jp/en
Features

Sanken has motor driver ICs for DC brush motors, DC brushless motors, and stepper motors in product lineup. You can choose the optimal ICs according to your applications.

<table>
<thead>
<tr>
<th>Item</th>
<th>DC Brush Motor</th>
<th>DC Brushless Motor</th>
<th>Stepper Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brush</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Higher</td>
<td>Highest</td>
<td>High</td>
</tr>
<tr>
<td>Circuit Size</td>
<td>Smallest</td>
<td>Small</td>
<td>Smaller</td>
</tr>
<tr>
<td>Motor Operation Sound</td>
<td>Noisy</td>
<td>Quietest</td>
<td>Quieter</td>
</tr>
<tr>
<td>Lifetime</td>
<td>Limited by brush Several hundred to several thousand hours</td>
<td>Long Several tens of thousand to several hundreds of thousand hours</td>
<td>Long Several tens of thousand hours</td>
</tr>
<tr>
<td>System Price</td>
<td>Lowest</td>
<td>Low</td>
<td>Lower</td>
</tr>
<tr>
<td>Rotation Speed</td>
<td>Faster Several thousands of rpm</td>
<td>Fastest Several thousands to several tens of thousands of rpm</td>
<td>Fast (Step-out may happen)</td>
</tr>
<tr>
<td>Position Control</td>
<td>Precise</td>
<td>Precise</td>
<td>Most precise</td>
</tr>
<tr>
<td>Other Features</td>
<td>Speed control is easy. (Feedback control)</td>
<td>Speed control is easy. (Feedback control)</td>
<td>Position is controlled by open loop</td>
</tr>
</tbody>
</table>
Applications of Motor Driver ICs (35 to 100 V)

You can choose the optimal ICs according to your applications and methods. Sanken’s unipolar method motor driver ICs guarantee the avalanche resistance.

For 3-phase Brushless Motors

- Built-in control part
- Built-in MOSFET
- Controller

For DC Brush Motors

- Gate driver

For Stepper Motors

- PAM control

For Unipolar

- Phase in
- Clock in

For Bipolar

- Clock in

Applications:

- Water heater
- General purpose motor
- Multi function printer
- Automatic teller machine
- Security camera
- Game machine

ICs:

- STA6940M
- SI-6633M
- SI-6633MR
- SI-6633C
- SPI-6631M
- SI-6632M
- SLA7080MPR
- STA7130MPR
- STA7070MPRT
- SX7232M
- SX7236M

→ P.5
→ P.12
→ P.14
Motor Driver ICs (35 to 100 V) Over View

In Sanken’s motor driver ICs, you can choose the optimal ICs according to your applications and methods of DC motors.

- **DC motor**
 - **DC brushless motor**
 - Low noise, Long lifetime, High-speed rotation, High efficiency → P.5
 - **DC brush motor**
 - Small circuit size → P.12
 - **Stepping motor**
 - Easy position control, Long lifetime → P.14

- **Unipolar drive**
 - Large torque in high-speed rotation
 - Few components

- **Bipolar drive**
 - Large torque in low-speed rotation
 - Downsizing of motor

- **DC drive**
 - SPI-6631M
 - SI-6633x
 - PAM drive
 - SI-6632M
 - DC drive
 - STA6940M

- **Phase in**
 - SLA7080MPR
- **Clock in**
 - SLA7070MPRT
 - STA7130MPR
 - SX7232M
 - SX7236M

In Sanken’s motor driver ICs, you can choose the optimal ICs according to your applications and methods of DC motors.
Motor Driver ICs (35 to 60 V) for 3-phase Brushless Over View

Optimal 3-phase brushless motor driver ICs of 12, 24, 48 V DC input. The IC for PAM control that changes the input voltage is available. You can choose optimal ICs according to your applications.

<table>
<thead>
<tr>
<th>Type</th>
<th>MOSFETs</th>
<th>Peak Current</th>
<th>Part Number</th>
<th>Supply Voltage</th>
<th>Package</th>
<th>Features</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Control IC</td>
<td>Built-in</td>
<td>3 A</td>
<td>SPI-6631M</td>
<td>35 V</td>
<td>HSOP16</td>
<td></td>
<td>P.6</td>
</tr>
</tbody>
</table>
| Trapezoidal Drive (120°) Hall Input | Built-in| 3 A | SI-6632M | 50 V | QFN36 | • 5 V Reg. output
| PAM Control | | | | | | • No Charge Pump circuit required | P.8 |
| Trapezoidal Control (120°) Hall | Built-in| 4 A / 2 A (DC)| SI-6633M | 38 V | QFN36 | • Speed monitor output
| Input PWM Control | | | | | | • Motor lock detection
| | Built-in| 6 A / 3 A (DC)| SI-6633MR | 38 V | | • Simultaneous on prevention | P.9 |
| | External| — | SI-6633C | 38 V | | | |
Application for 12 and 24 VDC Input
Built-in Charge Pump Circuit
Reduces Power Consumption in Standby Operation
Input Voltage Level: 3.3 V / 5.0 V
Error Output

Protection:
Overcurrent Protection (OCP)
Simultaneous On-state Prevention
Undervoltage Lockout (UVLO)
Thermal Shutdown (TSD)

Features

Package
HSOP16

Internal Block Diagram
50 V, 3 A, PAM Control 3-phase Brushless Motor Driver IC

SI-6632M

Package
QFN36

Features
- PAM (Pulse Amplitude Modulation) Control
- Trapezoidal Drive (120°)
- Hall Element and Hall IC Signal Input
- No External Components for Charge Pump (Pch MOSFET for Output High-side Switch)
- Input Voltage Level: 3.3 V / 5.0 V
- 5 V Regulator Output
- Error Output
- Protections:
 - Overcurrent Protection (OCP)
 - Simultaneous On-state Prevention
 - Undervoltage Lockout (UVLO)
 - Overheat Alarm Function
 - Thermal Shutdown (TSD)
38 V, 4 to 6 A, 3-phase Brushless Motor Driver IC

SI-6633x Series

Package

QFN36

Features

- Application for 12 and 24 VDC Input
- Trapezoidal Drive (120°)
- Current Control (off time fixed)
- Hall Element and Hall IC Signal Input
- Built-in Charge Pump Circuit
- Reduces Power Consumption in Standby Operation
- Input Voltage Level
 - SI-6633M: 5.0 V
 - SI-6633MR/C: 3.3 V / 5.0 V
- Speed Monitor Output
- Error Output
- Protections
 - Overcurrent Protection (OCP)
 - Simultaneous On-state Prevention
 - Undervoltage Lockout (UVLO)
 - Thermal Shutdown (TSD)
 - Motor Lock Detection

Series Selection Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>MOSFETs</th>
<th>I_o</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-6633M</td>
<td>Built-in</td>
<td>4 A / 2 A (DC)</td>
<td></td>
</tr>
<tr>
<td>SI-6633MR</td>
<td></td>
<td>6 A / 3 A (DC)</td>
<td></td>
</tr>
<tr>
<td>SI-6633C</td>
<td></td>
<td>—</td>
<td>Controller</td>
</tr>
</tbody>
</table>
Optimal motor driver IC for DC brushless motor of 12 and 24 VDC input.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Power Supply Voltage (max.)</th>
<th>Peak Current</th>
<th>Features</th>
<th>Page</th>
</tr>
</thead>
</table>
| STA6940M | ZIP18 | 44 V | 8 A / 4 A (DC) | ➢ Built-in OCP and TSD
➤ Overcurrent detection point is set externally. | P.10 |
STA6940M

Package
ZIP18 (Full mold)

Features
- Application for 12 and 24 VDC Input
- Output Current: 8 A / 4 A (DC)
- Input Voltage Level: 3.3 V / 5.0 V
- Error Signal Output
- Protections:
 - Overcurrent Protection
 - Undervoltage Lockout (UVLO)
 - Thermal Shutdown (TSD)

Circuit Diagram

Block Diagram
Stepper Motor Driver IC Over View

Optimal motor driver ICs for stepper motors of 12, 24, and 48 VDC input. You can choose the optimal ICs according to your applications such as circuit method, input method, and step angle.

Sanken’s unipolar type motor driver ICs guarantee the avalanche energy resistance. Therefore, external components are not required for the protection of MOSFETs in abnormal operations such as coil open.

<table>
<thead>
<tr>
<th>Circuit Method</th>
<th>Series</th>
<th>Package</th>
<th>Supply Voltage (max.)</th>
<th>Built-in MOSFETs Breakdown Voltage</th>
<th>Peak Current</th>
<th>Input Method</th>
<th>Partition Number</th>
<th>Detection Resistance</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unipolar</td>
<td>STA7130MPR</td>
<td>ZIP18</td>
<td>46 V</td>
<td>100V</td>
<td>1 A to 2 A</td>
<td>Clock in</td>
<td>1 to 8</td>
<td>Built-in</td>
<td>P.12</td>
</tr>
<tr>
<td></td>
<td>SLA7070MPRT</td>
<td>ZIP23</td>
<td>46 V</td>
<td>100V</td>
<td>1 A to 2 A</td>
<td>Clock in</td>
<td>1 to 16</td>
<td></td>
<td>P.13</td>
</tr>
<tr>
<td></td>
<td>SLA7080MPR</td>
<td></td>
<td></td>
<td></td>
<td>2 A to 3 A</td>
<td>Phase in</td>
<td>1 to 2</td>
<td></td>
<td>P.14</td>
</tr>
<tr>
<td>Bipolar</td>
<td>SX7230M</td>
<td>SOP36</td>
<td>40 V /60 V</td>
<td>40 V /60 V</td>
<td>5 A</td>
<td>Clock in</td>
<td>1 to 16</td>
<td></td>
<td>P.15</td>
</tr>
</tbody>
</table>
STA7130MPR Series

Package
ZIP18 (Full mold)

Features
- Application for 12 and 24 VDC Input
- Clock In Type
- Partition Number: 1 to 16
- Input Voltage Level: 3.3 V / 5.0 V
- Constant Current Control (off time fixed)
- Low Power Consumption (reduces power consumption in standby operation)
- Built-in Current Detection Resistor
- Prevention of Abnormal Noise in Motor Hold
- Avalanche Energy Resistance Guaranteed
- Protections:
 - Overcurrent Protection (OCP)
 - Protection of Motor Coil Open / Short
 - Thermal Shutdown (TSD)

Circuit Diagram

Series Selection Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Input Method</th>
<th>Partition Number</th>
<th>Iₒ</th>
<th>Main Supply Voltage (Max.)</th>
<th>MOSFETs Breakdown Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA7130MPR</td>
<td>Clock in</td>
<td>1 to 8</td>
<td>1.0 A</td>
<td>46 V</td>
<td>100V</td>
</tr>
<tr>
<td>STA7131MPR</td>
<td>Clock in</td>
<td>1 to 8</td>
<td>1.5 A</td>
<td>46 V</td>
<td>100V</td>
</tr>
<tr>
<td>STA7132MPR</td>
<td>Clock in</td>
<td>1 to 8</td>
<td>2.0 A</td>
<td>46 V</td>
<td>100V</td>
</tr>
</tbody>
</table>
Features

- Application for 12 and 24 VDC Input
- Clock In Type
- Partition Number: 1 to 16
- Input Voltage Level: 3.3 V / 5.0 V
- Constant Current Control (off time fixed)
- Low Power Consumption (reduces power consumption in standby operation)
- Built-in Current Detection Resistor
- Prevention of Abnormal Noise in Motor Hold
- Avalanche Energy Resistance Guaranteed
- Protections:
 - Overcurrent Protection (OCP)
 - Protection of Motor Coil Open / Short
 - Thermal Shutdown (TSD)

Series Selection Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Input Method</th>
<th>Partition Number</th>
<th>I₀</th>
<th>Main Supply Voltage (Max.)</th>
<th>MOSFETs Breakdown Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA7072MPRT</td>
<td>Clock in</td>
<td>1 to 2</td>
<td>2 A</td>
<td>46 V</td>
<td>100V</td>
</tr>
<tr>
<td>SLA7073MPRT</td>
<td>Clock in</td>
<td>1 to 2</td>
<td>3 A</td>
<td>46 V</td>
<td>100V</td>
</tr>
<tr>
<td>SLA7078MPRT</td>
<td>1~16</td>
<td></td>
<td>3 A</td>
<td>46 V</td>
<td>100V</td>
</tr>
</tbody>
</table>

46 V, 2 A to 3 A, 2-phase Unipolar Stepper Motor Driver IC

SLA7070MPRT Series
46 V, 2 A to 3 A, 2-phase Unipolar Stepper Motor Driver IC

SLA7080MPR Series

Package
ZIP23
(with alumni fin)

Features
- Application for 12 and 24 VDC Input
- Phase In Type
- Partition Number: 1 to 2
- Input Voltage Level: 3.3 V / 5.0 V
- Constant Current Control (off time fixed)
- Low Power Consumption (reduces power consumption in standby operation)
- Built-in Current Detection Resistor
- Prevention of Abnormal Noise in Motor Hold
- Avalanche Energy Resistance Guaranteed
- Protections:
 - Overcurrent Protection (OCP)
 - Protection of Motor Coil Open / Short
 - Thermal Shutdown (TSD)

Series Selection Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Input Method</th>
<th>Partition Number</th>
<th>I₀</th>
<th>Main Supply Voltage (Max.)</th>
<th>MOSFETs Breakdown Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA7082MPR</td>
<td>Phase in</td>
<td>1 to 2</td>
<td>2 A</td>
<td>46 V</td>
<td>100V</td>
</tr>
<tr>
<td>SLA7083MPR</td>
<td>Phase in</td>
<td>1 to 2</td>
<td>3 A</td>
<td>46 V</td>
<td>100V</td>
</tr>
</tbody>
</table>

Circuit Diagram
40 V to 60 V, 5 A, 2-phase Bipolar Stepper Motor Driver IC

SX7230M Series

Package
SOP36

Features
- Application for 12, 24, and 48 V DC Input
- Clock In Type (partition number: 1 to 16)
- Input Voltage Level: 3.3 V / 5.0 V
- Constant Current Control (off time fixed)
- Low Power Consumption (reduces power consumption in standby operation)
- Built-in Dead Time Circuit
- Error Output
- Protections:
 - Overcurrent Protection (OCP)
 - Protection of Motor Coil Open / Short
 - Thermal Shutdown (TSD)

Series Selection Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Input Method</th>
<th>Partition Number</th>
<th>I₀</th>
<th>Main Supply Voltage (Max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX7232M</td>
<td>Clock in</td>
<td>1 to 16</td>
<td>5 A</td>
<td>40 V</td>
</tr>
<tr>
<td>SX7236M</td>
<td>Clock in</td>
<td>1 to 16</td>
<td>5 A</td>
<td>60 V</td>
</tr>
</tbody>
</table>
Important Notes

- All data, illustrations, graphs, tables and any other information included in this document (the “information”) as to Sanken’s products listed herein (the “Sanken Products”) are current as of the date this document is issued. The Information is subject to any change without notice due to improvement of the Sanken Products, etc. Please make sure to confirm with a Sanken sales representative that the contents set forth in this document reflect the latest revisions before use.

- The Sanken Products are intended for use as components of general purpose electronic equipment or apparatus (such as home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Prior to use of the Sanken Products, please put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken. When considering use of the Sanken Products for any applications that require higher reliability (such as transportation equipment and its control systems, traffic signal control systems or equipment, disaster/crime alarm systems, various safety devices, etc.), you must contact a Sanken sales representative to discuss the suitability of such use and put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken, prior to the use of the Sanken Products. The Sanken Products are not intended for use in any applications that require extremely high reliability such as: aerospace equipment; nuclear power control systems; and medical equipment or systems, whose failure or malfunction may result in death or serious injury to people, i.e., medical devices in Class III or a higher class as defined by relevant laws of Japan (collectively, the “Specific Applications”). Sanken assumes no liability or responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, resulting from the use of the Sanken Products in the Specific Applications or in manner not in compliance with the instructions set forth herein.

- In the event of using the Sanken Products by either (i) combining other products or materials or both therewith or (ii) physically, chemically or otherwise processing or treating or both the same, you must duly consider all possible risks that may result from all such uses in advance and proceed therewith at your own responsibility.

- Although Sanken is making efforts to enhance the quality and reliability of its products, it is impossible to completely avoid the occurrence of any failure or defect or both in semiconductor products at a certain rate. You must take, at your own responsibility, preventative measures including using a sufficient safety design and confirming safety of any equipment or systems in/for which the Sanken Products are used, upon due consideration of a failure occurrence rate and derating, etc., in order not to cause any human injury or death, fire accident or social harm which may result from any failure or malfunction of the Sanken Products. Please refer to the relevant specification documents and Sanken’s official website in relation to derating.

- No anti-radioactive ray design has been adopted for the Sanken Products.

- The circuit constant, operation examples, circuit examples, pattern layout examples, design examples, recommended examples, all information and evaluation results based thereon, etc., described in this document are presented for the sole purpose of reference of use of the Sanken Products.

- Sanken assumes no responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, or any possible infringement of any and all property rights including intellectual property rights and any other rights of you, users or any third party, resulting from the Information.

- No information in this document can be transcribed or copied or both without Sanken’s prior written consent.

- Regarding the Information, no license, express, implied or otherwise, is granted hereby under any intellectual property rights and any other rights of Sanken.

- Unless otherwise agreed in writing between Sanken and you, Sanken makes no warranty of any kind, whether express or implied, including, without limitation, any warranty (i) as to the quality or performance of the Sanken Products (such as implied warranty of merchantability, and implied warranty of fitness for a particular purpose or special environment), (ii) that any Sanken Product is delivered free of claims of third parties by way of infringement or the like, (iii) that may arise from course of performance, course of dealing or usage of trade, and (iv) as to the Information (including its accuracy, usefulness, and reliability).

- In the event of using the Sanken Products, you must use the same after carefully examining all applicable environmental laws and regulations that regulate the inclusion or use or both of any particular controlled substances, including, but not limited to, the EU RoHS Directive, so as to be in strict compliance with such applicable laws and regulations.

- You must not use the Sanken Products or the Information for the purpose of any military applications or use, including but not limited to the development of weapons of mass destruction. In the event of exporting the Sanken Products or the Information, or providing them for non-residents, you must comply with all applicable export control laws and regulations in each country including the U.S. Export Administration Regulations (EAR) and the Foreign Exchange and Foreign Trade Act of Japan, and follow the procedures required by such applicable laws and regulations.

- Sanken assumes no responsibility for any troubles, which may occur during the transportation of the Sanken Products including the falling thereof, out of Sanken’s distribution network.

- Although Sanken has prepared this document with its due care to pursue the accuracy thereof, Sanken does not warrant that it is error free and Sanken assumes no liability whatsoever for any and all damages and losses which may be suffered by you resulting from any possible errors or omissions in connection with the Information.

- Please refer to our official website in relation to general instructions and directions for using the Sanken Products, and refer to the relevant specification documents in relation to particular precautions when using the Sanken Products.

- All rights and title in and to any specific trademark or tradename belong to Sanken and such original right holder(s).