

Mixed Signal MCU MD6603

Contents

Co	ontents		C-1
1.	Produc	t Overview	1-1
2.	Block I)iagram	2-1
3.	Pin Co	nfiguration Definitions	3-1
	3.1. Pi	n Configuration	3-1
	3.2. Pi	n Definitions (QFN40)	3-2
4.		Controller (SYSC)	
		verview	
	4.2. Cl	ock System	4-2
	4.2.1.	Clock Sources	
	4.2.2.	PLL Clock	
	4.2.3.	Distribution Clocks	
	4.2.4.	Module Clocks	
	4.2.5.	Clock Setting Procedure	4-5
		w Power Consumption Modes	4-6
	4.3.1.	Sleep Mode	4-6
	4.3.2.	Standby Mode	
	4.3.3.	Inserting NOP Instruction at Transition to Sleep and Standby Modes	4-8
	4.4. Re	set Circuit	4-9
	4.5. Lo	w Voltage Detection (LVD)	4-10
		nalog Infrastructure Control	
		gister Descriptions	
	4.7.1.	CLKCFG0 (Clock Configuration0 Register)	4-13
	4.7.2.	CLKCFG1 (Clock Configuration1 Register)	4-14
	4.7.3.	PLLCFG (PLL Configuration Register)	4-15
	4.7.4.	MCLKE0 (Module Clock Enable0 Register)	4-15
	4.7.5.	MCLKE1 (Module Clock Enable1 Register)	4-16
	4.7.6.	MCLKE2 (Module Clock Enable2 Register)	
	4.7.7.	MCLKE3 (Module Clock Enable3 Register) MCLKE4 (Module Clock Enable4 Register)	
	4.7.8.	MCLKE5 (Module Clock Enable5 Register) MCLKE5 (Module Clock Enable5 Register)	4-1/ 4-10
	4.7.9.	MCLKE6 (Module Clock Enable6 Register) MCLKE6 (Module Clock Enable6 Register)	4-18
	4.7.10.	PWMENBL (PWM Clock Enable Control Register)	4-18
	4.7.11. 4.7.12.	PWMCSC0 (PWM Clock Source Control Register)	4-19 1 10
	4.7.12. 4.7.13.	LVDCTRL (Low Voltage Detector Control Register)	4-19
	4.7.13. 4.7.14.	REFCTRL (Reference Control Register)	4-20 4-21
	4.7.15.	RESCTRL (Resistor Control Register)	4-21 4-21
	4.7.16.	LPCTRL (Low Power Control Register)	4-21
	4.7.17.	CSBYCR (CMP Standby Control Register)	4-22 4-23
	4.7.18.	DEVER (Device Version and Revision Register)	4-23
	4.7.19.	REMAP (Remap Control Register)	
	4.7.20.	BUSBUFCR (BUS Buffer Control Register)	
	4.7.21.	LINECTRL (DBG Line Control Register)	4-25
	4.7.22.	TMR2INCR (TMR2 Input Control Register)	4-25
	4.8. Us	age Notes and Restrictions	4-26
5.		PU	
		verview	
	5.2. Cl	PU Peripheral System Configurations	5-2
	5.3. M	emory Map	5-3
		struction Code Map	
	5.4.1.	Notes on CPU Instruction	
	5.4.2.	Execution Cycle Counts per Instruction	5-6
	5.5. Bu	is Configurationss Operational Descriptions	5-7
		ss Operational Descriptions	5-8 0 =
	5.6.1. 5.6.2	Bus Master	
	5.6.2. 5.6.3	Arbitration Circuit	
	5.6.3. 5.6.4.	16-bit Access Buffer	
		age Notes and Restrictions	
	J.1. US	age more and Acsumeuris	3-12

5.7.1.	Restrictions on XDATA BUS Buffer	5 12
5.7.1. 5.7.2.	Conflict between 16-bit Register Write and Interrupt	
5.7.2. 5.7.3.	Access to RAM1 Area	5-12
5.7.4.	Access to XDATA Space	
5.7.5.	MOVX Instructions to Peripheral Registers of XDATA Space	5-12
5.7.6.	EPU Operation While CPU Is Accessing UART Register	5-12
5.7.7.	CPU and EPU Simultaneous Access to XDATA Space	5-14
C Dominte	r Mapping	6.1
6. Registe 6.1. Po	eripheral Address on XDATA BUS	0-1 6 1
6.2. Po	eripheral Address on SFR BUS	
6.3. SI	PRn (Scratch Pad Register n) (n = 0 to 7)	6-5
	PIO Structureegister Descriptions	
	PFS0 (Pin Function Select for GPIO0)	
7.2.1. 7.2.2.	PFSH0 (Pin Function Select High for GPIO0)	7-5
7.2.2.	PFS1 (Pin Function Select for GPIO1)	
7.2.3.	PFSE1 (Pin Function Extend Select for GPIO1)	
7.2.5.	PFS2 (Pin Function Select for GPIO2)	
7.2.6.	PFSE2 (Pin Function Extend Select for GPIO2)	7-8
7.2.7.	PDD0 (Pin Data Direction for GPIO0)	7-8
7.2.8.	PDD1 (Pin Data Direction for GPIO1)	
7.2.9.	PDD2 (Pin Data Direction for GPIO2)	7-9
7.2.10.	PDR0 (Pin Data for GPIO0)	
7.2.11.	PDR1 (Pin Data for GPIO1)	
7.2.12.	PDR2 (Pin Data for GPIO2)	7-12
7.2.13.		7-13
7.2.14.		7-1 3
7.2.15.		
7.2.16.	PIEO (Pin Interrupt Enable for GPIOO)	
7.2.17.		
7.2.18.	(
7.2.19. 7.2.20.	PIFU (Pin Interrupt Flag for GPIOU)PIF1 (Pin Interrupt Flag for GPIO1)	
7.2.20.		
7.2.21.	PISO (Pin Interrupt Sense for GPIO0)	
7.2.23	PIS1 (Pin Interrupt Sense for GPIO1)	
7.2.24	PIS2 (Pin Interrupt Sense for GPIO2)	
7.2.25	· · · · · · · · · · · · · · · · · · ·	
7.2.26.	PIL1 (Pin Interrupt Level for GPIO1)	7-19
7.2.27		
7.2.28.	PIB0 (Pin Interrupt Both Edge for GPIO0)	
7.2.29	PIB1 (Pin Interrupt Both Edge for GPIO1)	7-20
7.2.30.	PIB2 (Pin Interrupt Both Edge for GPIO2)	7-21
7.2.31.		7-21
7.2.32.		7-22
7.2.33.		7-22
7.2.34.		7-23
7.2.35		7 24
7.2.36. 7.2.37.		/-24 7 24
7.2.38		
7.2.39		
7.2.40.	PEMETHOD (PWM and ADC Event Gathering Method)	7-26
7.2.41		. 20 7-26
7.2.42	SIS (Serial Input Select)	7-27
7.2.43.	I2CIS (I ² C Input Select)	7-27
7.2.44.	TMRIS (TMR Input/Output Select)	7-28
7.2.45.	CLKIS (Clock Input Select)	7-28
7.3. U	sage Notes and Restrictions	7-29
7.3.1.	Reading from PDRx Register after Writing to PDRx Register	7-29
7.3.2.	Setting the Pin Functions: GPIO14, GPIO15, GPIO16, GPIO17, and GPIO21	7-29
8 Event	Connection	Q_1

9. Ev	4 C		0.1
		ontroller (EVC)	
9.1.		erview	
9.2.	Op	eration	9-2
9.2	2.1.	Interrupt Generation	
9.2	2.2.	Event Selection	9-2
9.2	2.3.	Event Integration	9-5
9.2	2.4.	GPIO Event Edge Detection	9-5
9.3.		gister Descriptions	9.6
	3.1.	EVINTE0 (EVC Interrupt Enable0)	0.7
		EVINTEO (EVC Interrupt Enableo) EVINTFO (EVC Interrupt Flag0)	9-7
	3.2.	EVIN1F0 (EVC Interrupt Flagu)	9-8
	3.3.	EVMGAC0 (EVC Event Merge A Configuration0)	9-10
9.3	3.4.	EVMGAC1 (EVC Event Merge A Configuration1)	
9.3	3.5.	EVMGBC0 (EVC Event Merge B Configuration0)	9-12
9.3	3.6.	EVMGBC1 (EVC Event Merge B Configuration1)	9-13
9.3	3.7.	EVMGCC0 (EVC Event Merge C Configuration0)	9-14
	3.8.	EVMGCC1 (EVC Event Merge C Configuration1)	9.15
	3.9.	EVMGDC0 (EVC Event Merge D Configuration0)	0 16
		EVMGDC0 (EVC Event Merge D Configuration)	0.17
	3.10.	EVMGDCI (EVC Event Merge D Configuration1)	9-17
	3.11.	EVSEL0 (EVC Select0)	9-18
9.3	3.12.	EVSEL1 (EVC Select1)	9-19
9.3	3.13.	EVSEL2 (EVC Select2)	
9.3	3.14.	EVSEL3 (EVC Select3)	9-21
9.3	3.15.	EVSEL4 (EVC Select4)	9-22
	3.16.	EVSEL5 (EVC Select5)	9-23
	3.17.	EVSEL6 (EVC Select6)	0.24
		EVSEL7 (EVC Select7)	9-24
	3.18.		
	3.19.	EVSEL8 (EVC Select8)	9-26
9.3	3.20.	EVSEL9 (EVC Select9)	
9.3	3.21.	EVSEL10 (EVC Select10)	
9.3	3.22.	EVSEL11 (EVC Select11)	9-28
10. Ev	ent P	rocessing Unit (EPU)	10-1
10.1.	Ove	erview	10-1
10.2.	Blo	ck Diagram	
			10-3
10.3	Cor		
10.3.		mmon Resource	10-3
10.4.	Res	mmon Resource	10-3 10-4
10.4. 10.5.	Res Ins	mmon Resource source of Each Threadtruction	10-3 10-4 10-5
10.4. 10.5. 10	Res Ins	nmon Resource	10-3 10-4 10-5
10.4. 10.5. 10	Res Ins .5.1. .5.2.	nmon Resource	10-3 10-4 10-5 10-6
10.4. 10.5. 10	Res Ins .5.1. .5.2.	nmon Resource Source of Each Thread	
10.4. 10.5. 10 10 10.6.	Res Ins .5.1. .5.2.	nmon Resource Source of Each Thread	
10.4. 10.5. 10 10 10.6.	Res Ins 5.1. 5.2. Op 6.1.	nmon Resource Source of Each Thread	
10.4. 10.5. 10 10 10.6. 10	Res Ins .5.1. .5.2. Op .6.1. .6.2.	nmon Resource Source of Each Thread	
10.4. 10.5. 10 10 10.6. 10	Res Ins .5.1. .5.2. Op .6.1. .6.2. .6.3.	nmon Resource Source of Each Thread	
10.4. 10.5. 10 10 10.6. 10 10	Res Ins 5.5.1. 0.5.2. Op 6.6.1. 6.6.2. 6.6.3.	mmon Resource	
10.4. 10.5. 10 10 10.6. 10 10 10	Res Ins .5.1. .5.2. Op .6.1. .6.2. .6.3. .6.4.	mmon Resource fource of Each Thread	
10.4. 10.5. 10 10.6. 10 10 10 10	Res Ins .5.1. .5.2. Op .6.1. .6.2. .6.3. .6.4. .6.5.	mmon Resource	
10.4. 10.5. 10 10.6. 10 10 10 10	Res Ins .5.1. .5.2. Op .6.1. .6.2. .6.3. .6.4.	mmon Resource fource of Each Thread	
10.4. 10.5. 10 10.6. 10 10 10 10 10	Res Ins .5.1. .5.2. Op .6.1. .6.2. .6.3. .6.4. .6.5.	mmon Resource	
10.4. 10.5. 10 10.6. 10 10 10 10 10 10	Res Ins .5.1. .5.2. Op .6.1. .6.2. .6.3. .6.4. .6.5. .6.6. .6.7. .6.8.	mmon Resource	
10.4. 10.5. 10 10.6. 10 10 10 10 10 10 10 10 10	Res Ins 5.1. .5.2. Op .6.1. .6.2. .6.3. .6.4. .6.5. .6.6. .6.7. .6.8.	mmon Resource Source of Each Thread	
10.4. 10.5. 10 10.6. 10 10 10 10 10 10 10	Res Ins 5.1. 5.2. Op 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9.	mmon Resource fource of Each Thread	
10.4. 10.5. 10 10.6. 10 10 10 10 10 10 10 10 10 10	Res Ins 5.1. 5.2. Op 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. 6.10. 6.11.	mmon Resource fource of Each Thread	
10.4. 10.5. 10 10.6. 10 10 10 10 10 10 10 10 10 10	Res Ins 5.1. 5.2. Op 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.9. 6.10. 6.11. 6.12.	mmon Resource fource of Each Thread	
10.4. 10.5. 10 10.6. 10 10 10 10 10 10 10 10 10 10	Res Ins 5.5.1. 5.5.2. Op 6.6.1. 6.6.2. 6.6.3. 6.6.4. 6.6.5. 6.6.8. 6.6.9. 6.11. 6.12. 6.13.	mmon Resource fource of Each Thread	
10.4. 10.5. 10 10.6. 10 10 10 10 10 10 10 10 10 10	Res Ins 5.5.1. 5.5.2. Op 6.6.1. 6.6.2. 6.6.3. 6.6.4. 6.6.5. 6.6.8. 6.6.9. 6.11. 6.12. 6.13.	mmon Resource	
10.4. 10.5. 10 10.6. 10 10 10 10 10 10 10 10 10 10	Res Ins .5.15.2. Op .6.16.26.36.46.56.66.76.86.96.106.116.126.13. Reg .7.1.	mmon Resource fource of Each Thread fruction Instruction Format Instruction Set eration Program Allocation Thread Resource Setting Thread Activation and Stop Thread Selection (Context Switch) Event Input Event Output Bus Access MBUS Access MBUS Access XBUS Access XBUS Access XBUS Access YBUS Subordinate Register Access Pipeline Operation of Each Instruction Execution Time of Each Instruction	
10.4. 10.5. 10 10.6. 10 10 10 10 10 10 10 10 10 10	Res Ins 5.1. 5.2. Op 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. 6.10. 6.11. 6.12. 6.13. Res	mmon Resource fource of Each Thread fruction Instruction Format Instruction Set eration Program Allocation Thread Resource Setting Thread Activation and Stop Thread Selection (Context Switch) Event Input Event Output Bus Access MBUS Access XBUS Access XBUS Access SBUS Access XBUS Subordinate Register Access Pipeline Operation of Each Instruction Execution Time of Each Instruction	
10.4. 10.5. 10 10.6. 10 10 10 10 10 10 10 10 10 10	Res Ins .5.15.2. Op .6.16.26.36.46.56.66.76.86.96.106.116.126.13. Reg .7.1.	mmon Resource fource of Each Thread fruction Instruction Format Instruction Set eration Program Allocation Thread Resource Setting Thread Activation and Stop Thread Selection (Context Switch) Event Input Event Output Bus Access MBUS Access XBUS Access XBUS Access SBUS Access XBUS Subordinate Register Access Pipeline Operation of Each Instruction Execution Time of Each Instruction	
10.4. 10.5. 10 10.6. 10 10.6. 10 10 10 10 10 10 10 10 10 10 10 10 10	Res Ins .5.15.2. Opp .6.16.26.36.46.56.66.76.86.96.106.116.126.13. Reg .7.17.27.3.	mmon Resource	
10.4. 10.5. 10 10.6. 10 10.6. 10 10 10 10 10 10 10 10 10 10 10 10 10	Res Ins 5.1. 5.2. Op 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. 6.11. 6.12. 6.13. Reg 7.1. 7.2. 7.3. 7.4.	mmon Resource	
10.4. 10.5. 10 10.6. 10 10.6. 10 10 10 10 10 10 10 10 10 10 10 10 10	Res Ins .5.16.26.36.46.56.66.76.86.96.116.126.13. Reg .7.17.27.37.47.5.	mmon Resource Fource of Each Thread Instruction Format Instruction Format Instruction Set Frogram Allocation Thread Resource Setting Thread Activation and Stop Thread Selection (Context Switch) Event Input Event Output Bus Access MBUS Access XBUS Access XBUS Access XBUS Access XBUS Access EPPOLIT (EPU Master Control Register) EPCTRLn (EPU Control Register for Thread n) (n = 0 to 5) EPROLIN (EPU R0 Register Lower Side for Thread n) (n = 0 to 5) EPROLIN (EPU R0 Register Lower Side for Thread n) (n = 0 to 5) EPROLIN (EPU R0 Register Higher Side for Thread n) (n = 0 to 5) EPROLIN (EPU R0 Register Higher Side for Thread n) (n = 0 to 5)	
10.4. 10.5. 10 10.6. 10 10.6. 10 10 10 10 10 10 10 10 10 10 10 10 10	Res Ins .5.16.26.36.46.56.66.76.86.96.116.126.13. Reg .7.17.27.37.47.57.6.	mmon Resource ource of Each Thread- truction Instruction Format Instruction Set eration Program Allocation Thread Resource Setting Thread Activation and Stop Thread Selection (Context Switch) Event Input Event Output Bus Access MBUS Access XBUS Access SBUS Access SBUS Access SBUS Access YBUS Subordinate Register Access Pipeline Operation of Each Instruction Execution Time of Each Instruction Execution T	
10.4. 10.5. 10 10.6. 10 10.6. 10 10 10 10 10 10 10 10 10 10 10 10 10	Res Ins .5.16.26.36.46.56.66.76.86.96.116.126.13. Reg .7.17.27.37.47.57.67.7.	mmon Resource fource of Each Thread- truction Instruction Format Instruction Set- eration Program Allocation- Thread Resource Setting Thread Activation and Stop Thread Selection (Context Switch) Event Input Event Output Bus Access MBUS Access SBUS Access SBUS Access SBUS Access SBUS Access ENBUS Subordinate Register Access Pipeline Operation of Each Instruction Execution Time of Each Instruction Execution	
10.4. 10.5. 10 10.6. 10 10.6. 10 10 10 10 10 10 10 10 10 10 10 10 10	Res Ins .5.16.26.36.46.56.66.76.86.96.106.117.27.37.47.57.67.77.8.	mmon Resource ource of Each Thread truction Instruction Format Instruction Set eration Program Allocation Thread Resource Setting Thread Activation and Stop Thread Selection (Context Switch) Event Input Event Output Bus Access MBUS Access SBUS Access XBUS Access XBUS Access YBUS Access Eyeline Operation of Each Instruction Execution Time of Each Instruction Execution Time of Eac	
10.4. 10.5. 10 10.6. 10 10.6. 10 10 10 10 10 10 10 10 10 10 10 10 10	Res Ins .5.15.2. Opp .6.16.26.36.46.56.66.76.86.96.106.117.27.37.47.57.67.77.87.7.	mmon Resource	
10.4. 10.5. 10 10.6. 10 10.6. 10 10 10 10 10 10 10 10 10 10 10 10 10	Res Ins .5.15.2. Opp .6.16.26.36.46.56.66.76.86.96.106.117.27.37.47.57.67.77.87.77.87.77.87.77.87.77.87.77.87.77.87.77.8.	mmon Resource ource of Each Thread truction Instruction Format Instruction Set eration Program Allocation Thread Resource Setting Thread Activation and Stop Thread Selection (Context Switch) Event Input Event Output Bus Access MBUS Access SBUS Access XBUS Access XBUS Access YBUS Access Eyeline Operation of Each Instruction Execution Time of Each Instruction Execution Time of Eac	

10.5.10 EDELGI (EDILE AL AGAID LA LA GUAR EL LA CALE	10.04
10.7.12. EPEICLn (EPU Event Input Control Register Lower Side for Thread n) (n = 0 to 5)	
10.7.13. EPEICHn (EPU Event Input Control Register Higher Side for Thread n) (n = 0 to 5)	
10.7.14. EPEISLn (EPU Event Input Status Register Lower Side for Thread n) (n = 0 to 5)	
10.7.15. EPEISHn (EPU Event Input Status Register Higher Side for Thread n) (n = 0 to 5)	10-25
10.7.16. EPPSPn (EPU Prescaler Period Register for Thread n) (n = 0 to 5)	10-26
10.7.17. EPEISCn (EPU Event Input Status Control Register for Thread n) (n = 0 to 5)	10-27
10.8. Usage Notes and Restrictions	10-27
11. Interrupt Controller (INTC)	11.1
11.1. Overview	11 1
11.1. Overview	
11.3. Register Descriptions	
5 1	11-3
11.3.2. INTENAn (Interrupt Enable n Register) (n = 0 to 3)	11-4 11 <i>5</i>
11.3.3. INTLVLn (Interrupt Level n Register) (n = 0 to 3)	11-5
11.3.4. INTCFGn (Interrupt Configuration n Register) (n = 0 to 3)	11-5
11.3.5. INTFLGn (Interrupt Flag n Register) (n = 0 to 3)	11-6
11.4. Operational Descriptions	· 11-7
11.4.1. Initial Setting	
11.4.2. Interrupt Flag	
11.4.3. Interrupt Priority	
11.4.4. External Pin (GPIO) Interrupt	11-9
12. Direct SFR Access Controller (DSAC)	10.1
12.1. Overview	
12.2. Events	
12.3. Register Descriptions	12-4
12.3.1. DSACNTAn (DSA Control A Channel n) (n = 0 to 15)	12-6
12.3.2. DSACNTBn (DSA Control B Channel n) (n = 0 to 15)	12-7
12.3.3. DSASRCn (DSA Source Address Channel n) (n = 0 to 15)	
12.3.4. DSADSTn (DSA Destination Address Channel n) (n = 0 to 15)	
12.3.5. DSATRGm (DSA Trigger m Channel0 to Channel7) (m = 0 to 1)	12-10
12.3.6. DSATRGm (DSA Trigger m Channel8 to Channel15) (m = 0 to 1)	12-11
12.4. Operation	
12.5. Initial Setting Sequence	
12.6. Usage Notes and Restrictions	
12.6.1. Invalidating the Channels	12-16
12.6.2. Restrictions when DSAC transfer data size is 8 bits	12-16
13. Flash Memory Controller (FLC)	
13.1. Overview	
13.2. Register Descriptions	13-3
13.2.1. FMTIME (Flash Memory Control Time Register)	13-3
13.2.2. FMPAGE (Flash Memory Page Address Register)	
13.2.3. FMROW (Flash Memory Row Address Register)	13-4
13.2.4. FMCOL (Flash Memory Column Address Register)	13-5
13.2.5. FMCTRL (Flash Memory Control Register)	13-5
13.2.6. FMEXE (Flash Memory Program Execution Register)	13-6
13.2.7. FMRPDn (Flash Memory Row Program Data n Register) (n = 0 to 3)	13-7
13.2.8. FMRMOD (Flash Memory Read Mode Register)	13-7
13.2.9. FMPCR (Flash Memory Program Control Register)	13-8
13.3. Flash Memory	13-9
13.4. Operation	13-10
13.4.1. Instruction Fetch	
13.4.2. Flash Memory Operation Mode	
13.5. Protection Level Control	
13.6. Runtime Flash Memory Operation	13-20
13.7. Usage Notes and Restrictions	13-21
13.7.3. Usage Notes on Erasing or Programming (Writing) Immediately after Re-protection	15-23
14. TinyDSP	14.1
14.1. Overview	
14.1. Overview	
14.2. Block Diagram	
17:01 1X:03/U1/CO	1 4- J

14.4. Tin	yDSP Instruction	14-4
14.4.1.	TinyDSP Instruction Format	14-4
14.4.2.	Instruction Set	
	erations	
	bit Register Access	
	ent Output	
14.8. Pro	gram/Data Memory	14-10
	efficient Hold Functions	
14.9.1.	CVR Function	
14.9.2.	LDR Function	
	Priority of CVR and LDR Funcitons	
	plication Examples gister Descriptions	
	DSPnCTRL (TinyDSP n Control Register) (n = 0 to 1)	
	DSPnC1RL (1inyDSP n Control Register) (n = 0 to 1) DSPnEXEC (TinyDSP n Execution Register) (n = 0 to 1)	
14.11.2.	DSPnDBG (TinyDSP n Debug Register) (n = 0 to 1)	14-22 14 22
	DSPn Rx L (TinyDSP n Rx LSB Side) (n = 0 to 1, x = 0 to 7)	
	DSPn_Rx_H (TinyDSP n Rx MSB Side) (n = 0 to 1, x = 0 to 7)	
14.11.5.	DSPn_Rx_L (TinyDSP n Rx LSB Side) (n = 0 to 1, x = 8 to 15)	14-24 14 25
14.11.0.	DSPn_Rx_H (TinyDSP n Rx MSB Side) (n = 0 to 1, x = 8 to 15)	14-23 14-26
14.11.7. 1/1 11 Q	DSPn_ACC_x (TinyDSP n ACC) (n = 0 to 1, x = 0 to 4)	14-20 14 27
14.11.0.	DSPn_PRG_DATL/H (TinyDSP n Program Memory LSB/MSB Side) (n = 0 to 1)	14-27 14-27
14.11.7.	DSPn_PRG_ADR (TinyDSP n Program/Data Memory Address) (n = 0 to 1)	14-27 14-28
14.11.10	. DSPnTRG (TinyDSP n Execution Trigger Status) (n = 0 to 1)	14-28 14-28
14.11.13	DSPnRST (TinyDSP n Access Counter Clear Register) (n = 0 to 1)	14-20 14-29
14.11.12	6. DSPnCTRL2 (TinyDSP n Control2 Register) (n = 0 to 1)	14-2 <i>)</i> 14-30
14.11.13	b. DSPnCNSTEN (TinyDSP n CVR Enable Register) (n = 0 to 1)	14-30 14-31
14.11.15	5. DSPn_Cx_L (TinyDSP n Cx LSB Side) (n = 0 to 1, x = 0 to 7)	14-32
14.11.16	6. DSPn_Cx_H (TinyDSP n C x MSB Side) (n = 0 to 1, x = 0 to 7)	14-33
14.11.17	. DSPnLDA (TinyDSP n LDR Load Address) (n = 0 to 1)	14-34
14.11.18	B. DSPnMAXxL (TinyDSP n MAX x LSB Side) (n = 0 to 1, x = 0 to 2)	14-34
14.11.19	DSPnMAXxH (TinyDSP n MAX x MSB Side) (n = 0 to 1, x = 0 to 2)	14-35
14.11.20	D. DSPnMINxL (TinyDSP n MIN x LSB Side) (n = 0 to 1, x = 0 to 2)	14-35
14.11.21	. DSPnMINxH (TinyDSP n MIN x MSB Side) (n = 0 to 1, x = 0 to 2)	14-36
14.12. Usa	ge Notes and Restrictions	14-36
	DSP_SS Bit Asserted by DIV Instruction	
14.12.2.	Restrictions on Rewriting an Argument during DIV Instruction Execution	14-36
14.12.3.	Setting the MMX Instruction	14-36
	1 .1	
	solution PWM	
	erview	
	ck Diagramources	
^	eration Direct Mode and Buffer Mode	
15.4.1.	PWM Mode 0	
15.4.2.	PWM Mode 0PWM Mode 1 (Automatic Dead Time)	
15.4.3.	rapict or Output Control Condition	
	arnet or Output Control Conditioneration Timing	
15.6. Op 15.6.1.	eration 1 iming	15-11 1 <i>1</i> 11
	CNT Clear Timing in Up Mode	
15.6.2. 15.6.3.	Up-down counter's Change from Count up to Count down in Up-down Mode	15-12 15-13
15.6.4.	Up-down counter's Change from Count down to Count up in the Up -down Mode	
	trigger Operationtrigger in one count down to Count up in the Op -down Mode	13-1 4 15 15
15.7. Ke-	Re-trigger Events	15-15
15.7.1.	Operation in Re-trigger Mode A	
15.7.2.	Operation in Re-trigger Mode B	
15.7.3. 15.7.4.	Operation in Re-trigger Mode C	
15.7.4. 15.7.5.	Buffer Updating when Operation of Re-trigger Mode C Starts	
15.7.5. 15.7.6.	Operation in Re-trigger Mode D	
15.7.0.	Re-trigger Masking Operation	
15.7.7.	Interpretation of Edge and Level Events at Masking Release	
15.7.9.	Method to Change Output Waveform by Re-trigger Operation	
	ent Output	15-23 15-23
	errupt Output	
	· · · · · · · · · · · · · · · · · · ·	

15.10. E.Ve		15.04
15.10. 2.0.	nt and Interrupt Output in Re-trigger Operation	15-24
15.11. Reg	ster Access	15-24
15.12. Reg	ster Descriptions	15-26
15.12.1.	PWMCNTS (PWM Counter Start)	15-28
15.12.2.	$PWMnEVO0/1/T \ (PWM \ Event0/1 \ Output/ \ to \ Timer \ for \ Block \ n) \ (n=0 \ to \ 3) \$	15-29
15.12.3.	PWMnINTS0/1 (PWM Interrupt0/1 Select for Block n) (n = 0 to 3)	15-30
15.12.4.	PWMnINTF (PWM Interrupt Flag for Block n) (n = 0 to 3)	15-31
15.12.5.	PWMnACCLR (PWM Access Counter Clear Register for Block n) (n = 0 to 3)	15-32
15.12.6.	PWMnACSTS (PWM Access Status Register for Block n) (n = 0 to 3)	15-33
15.12.7.	CNTn_L/H (Counter n LSB/MSB Side) (n = 0 to 3)	15-34
15.12.8.	CMP_xxxn_L/H (CMP_xxx for Block n LSB/MSB Side) (n = 0 to 3)	15-35
15.12.9.	PWMnCNTMD (PWM Counter Mode for Block n) (n = 0 to 3)	15-43
15.12.10	PWMnHCR0 (PWMnH Output Control0) (n = 0 to 3)	15-44
15.12.11	PWMnLCR0 (PWMnL Output Control0) (n = 0 to 3)	15-45
15.12.12	PWMnHCR1 (PWMnH Output Control1) (n = 0 to 3)	15-46
15 12 13	PWMnLCR1 (PWMnL Output Control1) (n = 0 to 3)	15-47
15 12 14	PWMnMODE (PWM n Operation Mode) (n = 0 to 3)	15-48
15.12.14	PWMnRTRG (PWM Re-trigger Mode for Block n) (n = 0 to 3)	15 40
15.12.15	PWMnRTRS (PWM Re-trigger Select for Block n) (n = 0 to 3)	15-49 15-50
15.12.10	PWMnRTGC (PWM Re-trigger by CPU for Block n) (n = 0 to 3)	15-50 1 <i>E E</i> 1
15.12.17	PWMIRTIGG (PWM Re-trigger by CPU for Block ii) (n = 0 to 5)	15-51
15.12.18	PWMnRTL (PWM n Re-trigger Output Control) (n = 0 to 3)	15-52
15.12.19	PWMnRTMC (PWM n Re-trigger Mask Control) (n = 0 to 3)	15-53
15.12.20	PWMnRTMP (PWM n Re-trigger Mask Period) (n = 0 to 3)	15-53
15.12.21	$BUF_MIN/MAXn \ (BUF_MIN/MAX \ for \ Block \ n \ LSB/MSB \ Side) \ (n=0 \ to \ 3) \$	15-54
15.12.22	$BUF_A/B/C/Dn_L/H \; (BUF_A/B/C/D \; for \; Block \; n \; LSB/MSB \; Side) \; (n=0 \; to \; 3) \;$	15-58
15.13. Exa	nple of PWM Setting	15-60
15.14. Usa	e Notes and Restrictions	15-61
15.14.1.	Restrictions on Automatic Dead Time Mode	15-61
15.14.2.	Restrictions on Re-trigger Mode	15-62
	g Timer (WDT)	
	view	
	ster Descriptions	
16.2.1.	List of Registers	16-2
16.2.2.	WTCNT (Watchdog Timer Counter)	16-2
16.2.3.	WTCSR (Watchdog Timer Control/Status)	16-3
16.2.4.	WTGRD (Watchdog Timer Register Access Guard)	16-4
16.3. Rese		
	t Configuration	16-4
16.4. Inte	t Configuration	16-4
16.4. Inte	rrupt Configuration	16-4 16-4
16.4. Inte 16.5. Pres	rrupt Configurationcalercaler	16-4 16-4 16-5
16.4. Inte 16.5. Pres 16.6. Ope	rrupt Configuration	16-4 16-5 16-6
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2.	rrupt Configuration	16-4 16-5 16-5 16-6 16-7
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2.	rrupt Configuration	16-4 16-5 16-5 16-6 16-7
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3.	rrupt Configuration	16-4 16-5 16-6 16-6 16-7
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6. 17.2.7. 17.2.8.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6. 17.2.7. 17.2.8. 17.2.9.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6. 17.2.7. 17.2.8. 17.2.9.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6. 17.2.7. 17.2.8. 17.2.9. 17.2.10. 17.2.11.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6. 17.2.7. 17.2.8. 17.2.9. 17.2.10. 17.2.11.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6. 17.2.7. 17.2.8. 17.2.9. 17.2.10. 17.2.11. 17.2.12.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6. 17.2.7. 17.2.8. 17.2.9. 17.2.10. 17.2.11. 17.2.12. 17.2.13.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6. 17.2.7. 17.2.8. 17.2.9. 17.2.10. 17.2.11. 17.2.12. 17.2.13. 17.2.14.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6. 17.2.7. 17.2.8. 17.2.9. 17.2.10. 17.2.11. 17.2.12. 17.2.13. 17.2.14. 17.2.15.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6. 17.2.7. 17.2.8. 17.2.9. 17.2.10. 17.2.11. 17.2.12. 17.2.13. 17.2.14. 17.2.15. 17.2.16.	rrupt Configuration	
16.4. Inte 16.5. Pres 16.6. Ope 16.6.1. 16.6.2. 16.6.3. 17. 16-bit Ti 17.1. Ove 17.2. Reg 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6. 17.2.7. 17.2.8. 17.2.9. 17.2.10. 17.2.11. 17.2.12. 17.2.13. 17.2.14. 17.2.15. 17.2.16. 17.2.17.	rrupt Configuration	

17.2.19	. TBUFAHn (Timer n Buffer A High) (n = 0 to 3)	17-20
17.2.20	. TBUFBLn (Timer n Buffer B Low) (n = 0 to 3)	17-21
17.2.21	. TBUFBHn (Timer n Buffer B High) (n = 0 to 3)	17-21
17.2.22	. TOACRn (Timer n TIOA Output Control Register) (n = 0 to 3)	17-22
17.2.23	. TOBCRn (Timer n TIOB Output Control Register) (n = 0 to 3)	17-23
17.2.24	TPCISn (Timer n Phase Counting Input Select Register) (n = 0 to 3)	17-24
	peration	
17.3.1.	16-bit Register Access	17-25
17.3.2.	Counter Operation	
17.3.2.	Compare Match Operation	
17.3.4.	Compare Match Output	
17.3.5.	Automatic Clearing	
17.3.6.	PWM Event Clearing	
17.3.0.	TIC Input Event Clearing	
	32-bit Counter Mode (Cascade Mode)	
17.3.8.	Compare Match Timing	
17.3.9.	1 0	
17.3.10		
17.3.11	. Buffer Mode	17-30
17.3.12	. Phase Counting Mode	17-30
17.3.13	. Noise Filter of Input Pins	17-35
	. Events and Interrupts	
17.3.15	. Basic Setting	17-36
10 C	eripheral Interface (SPI)	10.1
	erview	
	gister Descriptions	18-2
18.2.1.	SPICR (SPI Control Register)	18-3
18.2.2.	SPICLK (SPI Clock Divider Register)	18-5
18.2.3.	SPIFMT (SPI Data Format Register)	18-5
18.2.4.	SPISR (SPI Status Register)	18-6
18.2.5.	SPIESR (SPI Error Status Register)	
18.2.6.	SPIIER (SPI Interrupt Enable Register)	
18.2.7.	SPIDRL (SPI Data Register Low)	
18.2.8.	SPIDRH (SPI Data Register High)	18-9
18.3. Int	errupt Generation	
18.3.1.	Transmission Interrupt (INT_TX)	18-10
18.3.2.	Reception Interrupt (INT_RX)	18-11
18.4. Tiı	ning and Connection	18-12
18.4.1.	Master Mode	
18.4.2.	Subordinate Mode	18-14
18.5. On	eration	
18.5.1.	Master Mode	
18.5.2.	Subordinate Mode	
	BUS	
19.1. Ov	erview	19-1
19.2. Re	gister Descriptions	19-2
19.2.1.	ICCR (I ² C Bus Control Register)	19-3
19.2.2.	ICSR (I ² C Bus Status Register)	19-4
19.2.3.	ICRXDR (I ² C Bus Receive Data Register)	19-6
19.2.4.	ICTXDR (I ² C Bus Transmit Data Register)	19.6
19.2.5.	ICTSAR (I ² C Transmit Address Register)	19.7
19.2.6.	ICSAR (I ² C Subordinate Address Register)	19.7
19.2.7.	ICCLK (I ² C Clock Divider Register)	19-7 19-8
19.2.8.	ICCMD (I ² C Command Register)	
19.2.8.	ICSSTR (I ² C Bus SDA Setup Time Register)	10 10
	. ICSHTR (I ² C Bus SDA Hold Time Register)	19-10
19.2.10	. ICHIERD (I'C Dus SDA Houltuine Kegister)	19-12
19.2.11	. ICHDSR0 (I ² C Bus Hardware Status Register0)	19-13
19.2.12	. ICHDSR1 (I ² C Bus Hardware Status Register1)	19-14
19.2.13	. ICTIMER (I ² C Time Base Register)	19-14
19.2.14	SMBINT (SMBUS INT Status Register)	19-15
19.2.15	. ICSAA (I ² C Subordinate Alert Address Register)	19-16
19.2.16	. ICSAIR (I ² C Subordinate Address Identifier Register)	19-17
	C Bus Data Format	
	bordinate Reception	
19.5. Su	bordinate Transmission	19-21

19.6.	Mod	ster Reception	10.22
19.0. 19.7.	Mac	ster Transmission	19-25
19.8.		ordinate Alert Address (SAA), General Call Address (GCA), and Reception Address Indicator	
19.9.		se Filter	
20. UAI	RT		20-1
20.1.		rview	
		ernal Connection Pins	
20.3.	Reg	ister Descriptions	
20.3		RBR (Receiver Buffer Register)/THR (Transmitter Holding Register)	20-4
20.3		IER (Interrupt Enable Register)	
20.3		IIR (Interrupt Identification Register)	
20.3		FCR (FIFO Control Register)	20-6
20.3		LCR (Line Control Register)	
20.3		LSR (Line Status Register)	
20.3		DLB1/2 (Divisor Latch Byte1/2)	
20.3		Baud Rateration	
20.4.	Ope	ration	20-11
21. Ana	log I	nterconnect	21-1
		rview	
		AR ADC	
22.1.	Ove	rview	22-1
22.2.	Reg	ister Descriptions	22-3
22.2		ADCn (ADCn Configuration Register) (n = 0 to 1)	22-7
22.2		ADENn (ADCn Enable Register) (n = 0 to 1)	22-8
22.2		ADTn (ADCn CPU Trigger Register) (n = 0 to 1)	22-9
22.2		ADLOOPn (ADCn CPU Loop Trigger Register) (n = 0 to 1)	22-10
22.2		ADEXEn (ADCn Group Execution Status Register) (n = 0 to 1)	22-11
22.2		ADENTRYn (ADCn Group Entry Status Register) (n = 0 to 1)	22-12
22.2		ADIENn (ADCn Group Interrupt Enable Register) (n = 0 to 1)	22-13
22.2		ADSYNCn (ADCn Synchronous Control Register) (n = 0 to 1)	
22.2		ADCHSELTESTLn (ADCn Channel Select Test Low Register) (n = 0 to 1)	22-14
22.2	2.10.	ADCHSELTESTHn (ADCn Channel Select Test High Register) (n = 0 to 1)	22-15
22,2	2.11.	ADNSMPmn (ADCn Channel m Sampling Time Register) (n = 0 to 1) (m = 0 to 11)	22-16
22.2	2.12.	ADOmLn (ADCn Channel m Data Offset Low Register) (n = 0 to 1) (m = 0 to 11)	22-17
22.2	2.13.	ADOmHn (ADCn Channel m Data Offset High Register) (n = 0 to 1) (m = 0 to 11)	22-18
22.2	2.14.	ADACCLRn (ADCn Data Read Access Counter Clear Register) (n = 0 to 1)	22-19
		ADSmLn (ADCn Group m Channel Sequence Low Register) (n = 0 to 1) (m = 0 to 7)	
		ADSmHn (ADCn Group m Channel Sequence High Register) (n = 0 to 1) (m = 0 to 7)	
		ADSTSELmn (ADCn Group m Start Trigger Select Register) (n = 0 to 1) (m = 0 to 7)	
22.2	2.18.	ADEVTmLn (ADCn Group m Event Output Channel Low Register) (n = 0 to 1) (m = 0 to 7)	22-23
22.2	2.19.	ADEVTmHn (ADCn Group m Event Output Channel High Register) (n = 0 to 1) (m = 0 to 7)	22.24
22.2	2.20.	ADOmn (ADCn Channel m Data Offset Register) (n = 0 to 1) (m = 0 to 11)	22.25
22.2	2.21.	ADmn (ADCn Channel m Data Register) $(n = 0 \text{ to } 1) (m = 0 \text{ to } 1)$ ADIFn (ADCn Interrupt Flag Register) $(n = 0 \text{ to } 1)$	22.27
22.3.	2.22. One	ration	22-27
22.3.	-	Basic Operation	
22.3		Register Access	
		log Inputs and Channels	
22.4		Sample	
22.4		Offset	
		up	
22.5		Group Status	
22.5		Processes from Group Activation to Completion	
22.5		Processing of Execution Group Selection	
22.5		Channel Sequence	22-33
22.5		Event Generation Channel	
22.5		Activation Trigger	
22.5		Enable/Disable Setting of Interrupt Signal	
		put	22-36
22.6		Acquisition of Conversion Result	22-36
22.6	6.2.	ADC Event	22-36
22.6		Interrupt Signal	
22.7.	Syn	chronous Operations between Units	22-37

22.8. Usag	ge Notes and Restrictions	22-38
23. Op Amp	(OPAMP)	23-1
	view	
U	ster Descriptions	23-2
23.2.1	MIXOPAn (Mix OPAMP n Configuration Register) (n = 0 to 1)	23-2
23.2.2	MIXPGAn (Mix OPAMP n PGA Configuration Register) (n = 0 to 1)	23-3
23.2.3	MIXEEVCRn (Mix OPAMP n Enable Event Control Register) (n = 0 to 1)	23-4
23.2.4	MIXDEVCRn (Mix OPAMP n Disable Event Control Register) (n = 0 to 1)	23-5
24 Compose	tor	24.1
	view	
24.1. Over	Comparator Control	
24.1.1. 24.1.2.	DAC Control	
	ster Descriptions	
24.2.1.	MIXCMPn (Mix Comparator n Configuration) (n = 0 to 5)	24-4 24-7
24.2.1.	MIXCMSn (Mix Comparator n Functional Select) (n = 0 to 5)	24-7 24-8
24.2.3.	MIXCMRn (Mix Comparator n Result) (n = 0 to 5)	24-0 24 0
24.2.4.	MIXCMFn (Mix Comparator n Function) (n = 0 to 5)	24-9 24 10
24.2.5.	MIXCMEMn (Mix Comparator n Event Mask) (n = 0 to 5)	24-10 24 11
24.2.6.	CMIO (Mix Comparator Interrupto)	24-11 24-12
24.2.7.	CMI1 (Mix Comparator Interrupt1)	24-12 24-13
24.2.8.	MIXDACn (Mix DAC n Configuration) (n = 0 to 5)	2 4 -13
24.2.9.	MIXDAnL (Mix DAC n Data Low) (n = 0 to 5)	
	MIXDAnH (Mix DAC n Data High) (n = 0 to 5)	2 4- 15
24.2.10.	MIXDARDnL (Mix DAC n Read Data Low) (n = 0 to 5)	24-13 24-16
	MIXDARDnH (Mix DAC n Read Data High) (n = 0 to 5)	
24.2.12.	DACACCLRn (Mix DAC n Access Counter Clear Register) (n = 0 to 5)	24-10 24-17
24.2.13.	MIXDAFUNCn (Mix DAC n Function) (n = 0 to 5)	24-17 24-18
24.3 One	ration	24-10 24-19
24.3.1.	Activation and Stop	
24.3.2.	Setting and Updating of DAC	
24.3.3.	Comparator Operation Mode	24-21 24-22
24.3.4.	Comparator Output Control	
24.3.5.	Interrupt and Event Generation	
24.3.6.	Output to LUT	24-22
	re Notes and Restrictions	
•	•	
25. Temperat	ture Sensor (TEMP)	25-1
	rview	
	ster Descriptions	
25.2.1.	TEMP (Temperature Sensor Control)	25-1
26 DWM O.,	tput Controller (POC)	26.1
20. P W W Ou	view	20-1 26-1
	ster Descriptions	
26.2. Regi 26.2.1.	POCCRn (POC Control Register n) (n = 0 to 3)	26.2
26.2.1. 26.2.2.	POCSTS (POC Status Register)	20-3 26-5
26.2.2.	POCBAS (POC BUS I/F Access Status Register)	
	POCOCRn (POC Output Control Register n) (n = 0 to 3)	20-3 26 6
26.2.5.	POCTRG (POC CPU Trigger Register)	26-0 26-7
26.2.6.	POCDTCn (POC Dead Time Control Register n) (n = 0 to 3)	26 S
26.2.7.	POCDTPn (POC Dead Time Period Register n) (n = 0 to 3)	26-0
	ration	
26.3.1.	Basic Operation	26-9 26-9
26.3.2.	Control Delay Addition	
	e Notes and Restrictions	
20.4. Usaş 26.4.1.	Clock Settings	
26.4.1. 26.4.2.	Usage Notes on POCCRn.EN Bit	
26.4.2. 26.4.3.	Operational Timing at Control Delay Addition	
26.4.3. 26.4.4.	Operational Restrictions on Using Clear-wait Function	
	•	
	tor Lookup Table (CMPLUT)	
27.1. Over	view	27-1
27.2. Regi	ster Descriptions	27-2
	LUTnCR (LUTn Control Register) (n = 0 to 1)	

27.2.2.	LUTnGPCR (LUTn GPIO Event Control Register) (n = 0 to 1)	27-4
27.2.3.	LUTnOUTm (LUTn Output Register m) (n = 0 to 1, m = 0 to 7)	27-5
27.3. O	peration	27-6
28. Serial (Communication Interface with Debugger (SCID)	28-1
	verview	
28.2. Ba	sic Operation	
28.2.1.	Operation Mode Setting	
28.2.2.	UART Mode	
28.2.3.	OCD Mode	
28.2.4.	Notes for UART Operation	
28.2.5.		28-4
	ART Functional Descriptions in SCID	
28.4. R	gister Descriptions	28-7
28.4.1.		28-8
28.4.2.	UART_RXD (UART RX Data Register)	28-8
28.4.3.	UART_CR (UART Control Register)	28-9
28.4.4.	UART_BRK (UART Break Control Register)	28-9
28.4.5.	UART_SR (UART Status Register)	28-10
28.4.6.	UART_IE (UART Interrupt Enable Register)	28-11
28.4.7.	UART_TXFIFO_SR (UART TXFIFO Status Register)	28-12
28.4.8.	UART_TXFIFO_CR (UART TXFIFO Control Register)	28-12
28.4.9.	UART_RXFIFO_SR (UART RXFIFO Status Register)	28-13
28.4.10	. UART_RXFIFO_CR (UART RXFIFO Control Register)	28-13
28.4.1	. UART_RXFIFO_TO_L/H (UART RXFIFO Timeout Register Low/High)	28-14
28.4.12	. UART_BAUD_L/H (UART Baud Rate Register Low/High)	28-15
28.4.13	SCID_SYSR_CR (SCID System Control Register)	28-16
	SCID_STATE (SCID Internal State Register)	
	CID Operation in UART Mode	
28.5.1.	UART Character Format	
28.5.2.	Reception Method	
28.5.3.	Reception Filter	
28.5.4.	Reception Masking	
28.5.5.	Baud Rate	
28.5.6.	Baud Rate Setting and Operation Mode	
28.5.7.	Transmission Data (TXD) and Transmission FIFO (TXFIFO)	20-20 28-20
28.5.8.	Reception Data (RXD) and Reception FIFO (RXFIFO)	20-20 28-20
28.5.9.	Detection of Reception (RX) Parity Error	20-20 20-20
	Detection of Reception (RX) Framing Error	20-21 28 21
20.5.10	. Detection of Reception (RX) Overrun Error	20-21
20.5.1	Detection of Data Transmission Completion (TX Done)	20-22
20.5.12	Detection of Pata Transmission Completion (TX Done)	20-22
20.5.1.	. Interrupt Request	20-22
28.5.14	. Interrupt Request	28-22
20.5.13	ecautions for Using SCID	28-23
28.6. Pi	ecautions for Using SCID	28-23
29 Snecifi	eations	29-1
	osolute Maximum Ratings	
29.2. R	ecommended Operating Range	29-1 29-1
	ectrical Characteristics	
29.3.1.	Package Thermal Characteristics	
29.3.1.	Consumption Current	
29.3.3.	Low Voltage Detection (LVD)	
29.3.3. 29.3.4.	Reset Operation	20_2
29.3.4. 29.3.5.	Clock Operation	
29.3.5. 29.3.6.	12-bit SAR ADC	
	8-bit DAC	
29.3.7.	8-Dit DAC	
29.3.8.	Up Amp (UrANIP)	29-4 20. 7
29.3.9.	Comparator	29-5
	Reference Voltage (VREF)	
	. Temperature Sensor (TEMP)	
	DC Specifications of Digital Input/Output	
29.3.1.	AC Specifications of Digital Input/Output	29-7
30 Parkar	e	30.1
i uchaz	÷	20-1

Important Notes	N-1
Revision History	Н.1

1. Product Overview

• Clock Control

- Internal reference clock
- Built-in PLL
- Sleep mode/standby mode function

• Reset Control

- Pin reset
- Built-in power on reset circuit (POR)
- Watchdog timer reset

• Reference Voltage (VREF)

- 1.2 V

• Low Voltage Detection (LVD)

- LVD interrupt generation

• 8-bit CPU

- Compatible with 8052 instruction
- 3-stage to 5-stage pipeline
- 60 MHz, 1 cycle per byte instruction execution
- 256-byte dedicated RAM

• GPIO

- Digital/analog function
- Pull-up/pull-down control
- Selectable interrupt sources

• Event Processing Unit (EPU)

- Multi-task 16-bit processor (switching zero-time task)
- 1 unit
- 6 threads
- 16 input/output events per thread
- 2-stage or 3-stage pipeline
- Program memory: 16 bits × 256 words

• Interrupt Controller (INTC)

- 32 interrupt sources
- Selectable priorities (2 levels)

• Direct SFR Access Controller (DSAC)

- Automatic data transfer between SFRs (SFR: Special Function Register)
- 16 channels
- 32 transfer request events
- Selectable transfer addressing
- 8-bit/16-bit data transfer
- Priority: DSAC > EPU > CPU

• Built-in Flash Memory

- 32 KB
- 8 bits per cycle access
- Protect functions
- Data flash memory support function

• Built-in RAM

- 1.75 KB

• TinyDSP

- 2 units
- 16-bit fixed point calculation
- Program memory: 48 steps
- Sixteen 16-bit data registers
- Eight 16-bit constant registers
- One 36-bit accumulator
- Instructions: Multiplication, division, multiplyaccumulate calculation, shift calculation, move, jump, and minimum/maximum saturation
- Built-in divider (each unit)
- Sequence control synchronized with events
- An event is generated with arbitrary instruction
- 3-pole, 2-zero (3P2Z) IIR filter calculation: 10 cycles

• High-resolution PWM

- 4 channels (8 PWM outputs)
- 16-bit up/down counter control (each channel)
- Minimum resolution: 1.04 ns
- Duty setting range: 0% to 100%
- Selectable dead time
- Re-trigger operation by internal/external event

• Watchdog Timer (WDT)

- 8-bit counter
- Reset output or interrupt generation

• 16-bit Timer (TMR)

- 4 channels
- 16-bit counter
- An event is generated by compare match
- Synchronized with the PWM
- A counter is cleared by an external pin event
- 4 phase count modes
- Buffer mode
- Input capture/compare match output

• Serial Peripheral Interface (SPI)

- 1 unit
- Master mode/subordinate mode communication
- Dedicated baud rate generator

• I2C/SMBUS

- 1 unit
- Master mode/subordinate mode communication
- Dedicated baud rate generator
- GCA is supported (GCA: General Call Address)

• UART

- 1 unit
- Dedicated baud rate generator

• 12-bit SAR ADC

- 2 units
- 12 analog inputs
- Conversion speed: 4 MSPS (max.)
- Sequence conversion
- Conversion start trigger is selectable
- Offset is set to the conversion result

• Op amp (OPAMP)

- 2 units
- Standalone mode/unity mode (×1 or ×4)

• Comparator

- 6 units
- Digital noise filter
- Event generation
- 8-bit DAC for reference voltage generation (each unit)

• Temperature Sensor (TEMP)

- 1 unit

• PWM Output Controller (POC)

- PWM output is controlled by the selected event such as comparator
- An output is controlled by the CPU
- Coupled operation with the PWM cycle

• Comparator Lookup Table (CMPLUT)

- 2 units
- Input signal: Comparator output (6 units)
- 6 inputs 1 output
- POC event input
- Pin output (LUT0/1)

• Serial Communication Interface with Debugger

- UART mode
 - · Half-duplex asynchronous communication
- OCD mode
 - Debug function support
 - · Flash memory program/erasing

• Power Supply Voltage

- DVCC and AVCC: 3.3 V
- Built-in regulator for core power supply

• Package Dimension

- QFN40

 $(6 \text{ mm} \times 6 \text{ mm}, \text{ pitch } 0.5 \text{ mm})$

2. Block Diagram

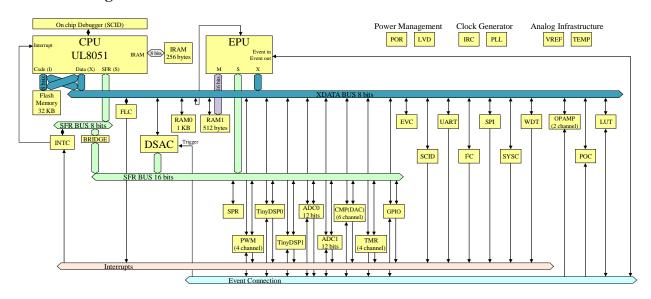


Figure 2-1. Block Diagram

3. Pin Configuration Definitions

3.1. Pin Configuration

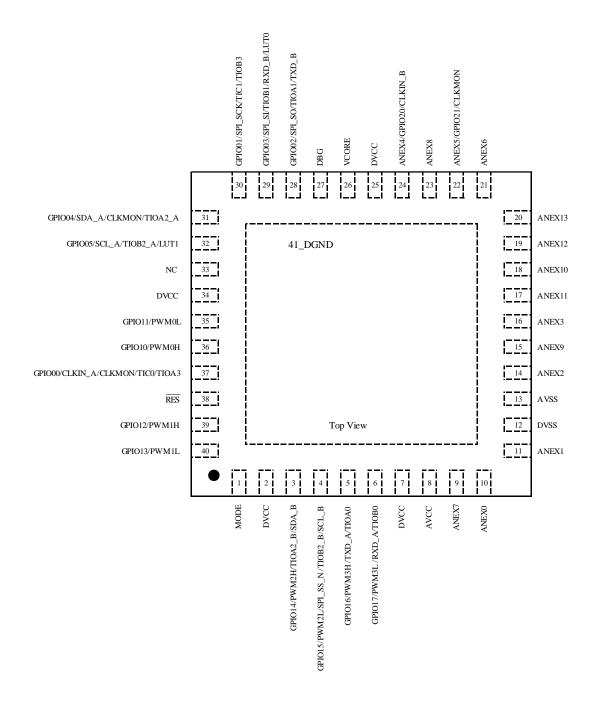


Figure 3-1. Pin Configuration of QFN40 (QFN41)

3.2. Pin Definitions (QFN40)

Classification	Pin No.	Pin Name	Input/ Output	Pull-up/ Pull-down	Description	Interrupt	5 V Tolerant	Schmitt	Logic Level	3.3 V Iout
Digital Power Supply	2 7 25 34	DVCC	_	_	Digital 3.3 V	_	_	_	_	_
	12 41	DVSS	_	_	Digital 0 V			_	_	
Analog Power	8	AVCC	_	_	Analog 3.3 V			_	_	
Supply	13	AVSS	_		Analog 0 V			_	_	_
System	1	MODE	Input	_	Chip mode (Fixed to 0)			Yes	LVTTL	_
	26	VCORE	_	_	Internal Power Supply (Stable capacitor connection)		—	—	_	_
	33	NC	_	_	_			_	_	
	38	RES	Input	Pull-up	Reset input			Yes	LVTTL	
Debug	27	DBG	Input/ Output	Pull-up	1-wire OCD pin (Open drain)	_	Yes	_	LVTTL	4 mA
Serial/ TMR	37	GPIO00/ CLKIN_A/ CLKMON/ TIC0/ TIOA3	Input/ Output	Pull-up	GPIO, CLKIN, CLKMON, TIC0, TIOA3	Yes	Yes	—	LVTTL	4 mA
	30	GPIO01/ SPI_SCK/ TIC1/ TIOB3	Input/ Output	Pull-up	GPIO, SPI_SCK, TIC1, TIOB3	Yes	Yes	_	LVTTL	4 mA
	28	GPIO02/ SPI_SO/ TIOA1/ TXD_B	Input/ Output	Pull-up	GPIO, SPI_SO, TIOA1, TXD	Yes	Yes		LVTTL	4 mA
	29	GPIO03/ SPI_SI/ TIOB1/ RXD_B/ LUT0	Input/ Output	Pull-up	GPIO, SPI_SI, TIOB1, RXD, LUT0	Yes	Yes	—	LVTTL	4 mA
	31	GPIO04/ SDA_A/ CLKMON/ TIOA2_A	Input/ Output	Pull-up	GPIO, I ² C_SDA, CLKMON, TIOA2	Yes	Yes	_	LVTTL	4 mA
	32	GPIO05/ SCL_A/ TIOB2_A/ LUT1	Input/ Output	Pull-up	GPIO, I ² C_SCL, TIOB2, LUT1	Yes	Yes	_	LVTTL	4 mA
PWM/ Serial/ TMR	36	GPIO10/ PWM0H	Input/ Output	Pull-down	GPIO, PWM0H	Yes	Yes	_	LVTTL	16 mA
TWIK	35	GPIO11/ PWM0L	Input/ Output	Pull-down	GPIO, PWM0L	Yes	Yes		LVTTL	16 mA
	39	GPIO12/ PWM1H	Input/ Output	Pull-down	GPIO, PWM1H	Yes	Yes	—	LVTTL	16 mA
	40	GPIO13/ PWM1L	Input/ Output	Pull-down	GPIO, PWM1L	Yes	Yes		LVTTL	16 mA
	3	GPIO14/ PWM2H/ TIOA2_B/ SDA_B	Input/ Output	Pull-down	GPIO, PWM2H, TIOA2, I ² C_SDA	Yes	Yes		LVTTL	16 mA
	4	GPIO15/ PWM2L/ SPI_SS_N/ TIOB2_B/ SCL_B	Input/ Output	Pull-down	GPIO, PWM2L, SPI_SS_N, TIOB2, I ² C_SCL	Yes	Yes	_	LVTTL	16 mA
	5	GPIO16/ PWM3H/ TXD_A/ TIOA0	Input/ Output	Pull-down	GPIO, PWM3H, UART_TXD, TIOA0	Yes	Yes		LVTTL	16 mA
	6	GPIO17/ PWM3L/ RXD_A/ TIOB0	Input/ Output	Pull-down	GPIO, PWM3L, UART_RXD, TIOB0	Yes	Yes		LVTTL	16 mA
Analog/ TMR	24	ANEX4/ GPIO20/ CLKIN_B	Input/ Output	Pull-up	Analog pin 4, GPIO, CLKIN	Yes			LVTTL	4 mA
	22	ANEX5/ GPIO21/ CLKMON	Input/ Output	Pull-up	Analog pin 5, GPIO, CLKMON	Yes		_	LVTTL	4 mA

Classification	Pin No.	Pin Name	Input/ Output	Pull-up/ Pull-down	Description	Interrupt	5 V Tolerant	Schmitt	Logic Level	3.3 V Iout
Analog	10	ANEX0	Input/ Output	_	Analog pin 0	_				_
	11	ANEX1	Input/ Output	_	Analog pin 1	_				_
	14	ANEX2	Input/ Output	_	Analog pin 2					_
	16	ANEX3	Input/ Output	_	Analog pin 3	_	_		_	
	21	ANEX6	Input/ Output	_	Analog pin 6					_
	9	ANEX7	Input/ Output	_	Analog pin 7	_	_		_	
	23	ANEX8	Input/ Output	_	Analog pin 8					
	15	ANEX9	Input/ Output	_	Analog pin 9	_	_		_	
	18	ANEX10	Input/ Output		Analog pin 10	—	_			
	17	ANEX11	Input/ Output		Analog pin 11	_	_	_		
	19	ANEX12	Input/ Output		Analog pin 12	_	_		_	
	20	ANEX13	Input/ Output	_	Analog pin 13	_	_	_	_	

4. System Controller (SYSC)

4.1. Overview

The system controller (SYSC) controls all operation states of the chip. Clocks, reset operations, internal regulators, and the power consumption mode are integrally controlled.

Table 4-1. SYSC Functional Descriptions

	Item	Description		
Clock	Clock Source	 Internal reference clock (IRC): 12 MHz (max.) CLKIN: 12 MHz (max.) CLKSRC: 12 MHz (max.), IRC or CLKIN PLL: Multiply reference clock by 80 Maximum frequency: 960 MHz Reference clock: CLKSRC Reference clock frequency divided by 1 or 2 is selectable. 		
CIOCA	Distribution Clock	 CLKFAST: 60 MHz (max.) Clock source: CLKSRC or PLL clock divided by 16; with 1, 2, 4, and 8 clock divider. CLKPWM: 120 MHz (max.) Clock source: CLKSRC or PLL clock divided by 8, 1 to 32 (2ⁿ) clock divider for PLL clock. 		
Reset		 Power-on reset (POR) RES pin reset Watchdog timer (WDT) reset On chip debugger (OCD) reset 		
Regulator		 Internal regulator Reference voltage (VREF) Reference voltage for low voltage detection (LVD) 		
Power Consumption	Mode	 Sleep mode (returned by interrupt) Standby mode (with wakeup counter; returned by GPIO interrupt, CMP level interrupt, or LVD) 		
Control	Clock Enable/Disable	Enable/Disable control of clock signal to each module		
Analog Module Control		 IBIAS control for OPAMP (normal mode or low power consumption mode) VREF output control for low voltage detection (enabled or disabled) VREF output control for mesurement by ADC (enabled or disabled) GPIO20/GPIO21 extended pull-up resistor control 		
CPU BUS Buffer	r Control	 Buffer state clear for 16-bit XBUS register Buffer state clear for 16-bit SFR BUS register Access counter clear for 16-bit SFR BUS register 		

4.2. Clock System

Figure 4-1 shows the clock system of the LSI.

After a reset is released, the CLKIRC is used for the CLKSRC. The programmable CLKSRC can be changed to the clock that is input to the CLKIN pin.

The LSI has 2 types of clock (CLKFAST and CLKPWM). The CLKFAST is used for the peripheral modules other than the PWM. The CLKPWM is used for the high-resolution PWM. The maximum operation frequencies of the CLKFAST and the CLKPWM are 60 MHz and 120 MHz, respectively.

The IRC is also used for the baud rate generation of the one-wire OCD. The CLKSRC is used for the count clock of the standby mode wakeup counter.

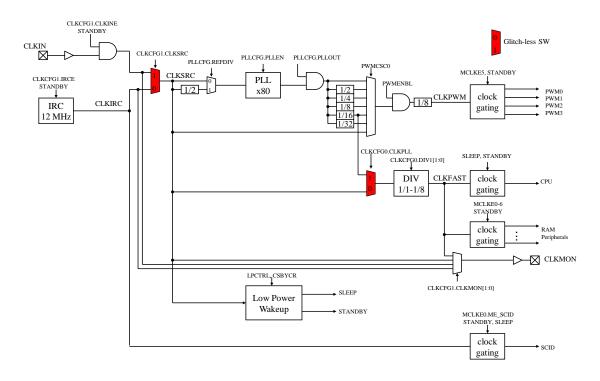


Figure 4-1. Clock System

4.2.1. Clock Sources

• CLKIN

This clock is supplied from the CLKIN pin, and is used for a system clock. The maximum input frequency to the CLKIN is 12 MHz. To supply the CLKIN from the CLKIN pin, set CLKCFG1.CLKINE = 1. To stop it, set CLKCFG1.CLKINE = 0.

• CLKIRC

This clock is supplied from the IRC, and is used for the system clock and the baud rate generation clock of the OCD. The maximum frequency of the CLKIRC is 12 MHz.

• CLKSRC

This clock is defined the CLKIN or the CLKIRC by the CLKCFG1.CLKSRC bit. After a reset is released, the CLKIRC is set for the CLKSRC. The CLKSRC is used for an internal clock source, the reference of the PLL clock, and the count clock of the standby mode wakeup counter. The selection of the CLKSRC can be dynamically changed by a glitchless swhich.

4.2.2. PLL Clock

The PLL clock generates the clock that is multiply reference clock source by 80. The reference clock source is the CLKSRC or the CLKSRC divided by 2. The maximum frequency of the PLL clock is 960 MHz. Enabling/disabling the PLL is determined by the PLLCFG.PLLEN bit. The divide rate of the reference clock is defined by the PLLCFG.REFDIV bit. The reference clock must be changed during PLLCFG.PLLEN = 0 (i.e., the PLL is disabled).

4.2.3. Distribution Clocks

• CLKFAST

This is used for the CPU and the peripheral modules other than the PWM. The clock source of the CLKFAST is determined by the CLKCFG0.CLKPLL bit, which defines the CLKSRC or the PLL clock divided by 16. In addition, the clock determined by the CLKCFG0.CLKPLL is divided by the selectable divide rate, and is supplied to the CLKFAST. The divide rate is determined by CLKCFG0.DIV1 bits, which defines 1, 2, 4, or 8. The maximum frequency of the CLKFAST is 60 MHz. The settings of the CLKCFG0.CLKPLL and CLKCFG0.DIV1 bits can be changed by a glitchless switch in operation.

• CLKPWM

This is used for the PWM. The CLKPWM is determined by the PWMCSC0.PWMCCA bits, which defines the CLKSRC or the PLL clock divided by 1, 2, 4, 8, 16, or 32. The maximum frequency of the CLKPWM is 120 MHz. A PWM resolution is defined as the reciprocal of CLKPWM \times 8; e.g., if CLKPWM = 120 MHz, the PWM resolution is 1.04 ns. To change the frequency of the CLKPWM while the clock is supplied to the PWM, the PWMENBL.PWMAE bit must be disabled (i.e., PWMENBL.PWMAE = 0).

4.2.4. Module Clocks

Table 4-2. List of Module Clocks

Clock Type	Initial State	Enable Control	Sleep Mode	Remarks
CPU	Enabled	No	Disabled	
BUS	Enabled	No	Disabled	
RAM0	Disabled	Yes	Enabled/Disabled	
RAM1	Disabled	Yes	Enabled/Disabled	
DSAC	Disabled	Yes	Enabled/Disabled	
EPU	Disabled	Yes	Enabled/Disabled	
GPIO	Disabled	Yes	Enabled/Disabled	
UART	Disabled	Yes	Enabled/Disabled	
I ² C	Disabled	Yes	Enabled/Disabled	
SPI	Disabled	Yes	Enabled/Disabled	
TMR0/1	Disabled	Yes	Enabled/Disabled	
TMR2/3	Disabled	Yes	Enabled/Disabled	
SCID	Enabled	Yes	Enabled/Disabled	Forcibly enabled by debugger connection. Without standby control*
TinyDSP0	Disabled	Yes	Enabled/Disabled	
TinyDSP1	Disabled	Yes	Enabled/Disabled	
ADC0	Disabled	Yes	Enabled/Disabled	
ADC1	Disabled	Yes	Enabled/Disabled	
SPR	Disabled	Yes	Enabled/Disabled	
CMP0	Disabled	Yes	Enabled/Disabled	
CMP1	Disabled	Yes	Enabled/Disabled	
CMP2	Disabled	Yes	Enabled/Disabled	
CMP3	Disabled	Yes	Enabled/Disabled	
CMP4	Disabled	Yes	Enabled/Disabled	
CMP5	Disabled	Yes	Enabled/Disabled	
AMP0	Disabled	Yes	Enabled/Disabled	
AMP1	Disabled	Yes	Enabled/Disabled	
CMPLUT	Disabled	Yes	Enabled/Disabled	
PWM0	Disabled	Yes	Enabled/Disabled	Without standby control*
PWM1	Disabled	Yes	Enabled/Disabled	Without standby control*
PWM2	Disabled	Yes	Enabled/Disabled	Without standby control*
PWM3	Disabled	Yes	Enabled/Disabled	Without standby control*
POC0	Disabled	Yes	Enabled/Disabled	Without standby control*
POC1	Disabled	Yes	Enabled/Disabled	Without standby control*
POC2	Disabled	Yes	Enabled/Disabled	Without standby control*
POC3	Disabled	Yes	Enabled/Disabled	Without standby control*
EVC	Disabled	Yes	Enabled/Disabled	The module shade must be set to

^{*} The module clock is not automatically disabled at the transit to standby mode. The module clock must be set to disable by the MCLKEn register before the transit to the standby mode. To return from the standby mode, the module clock should be set to enable by the MCLKEn register.

4.2.5. Clock Setting Procedure

The following are the states in which the clocks of the LSI go into immediately after releasing the reset:

- IRC: Enabled, CLKIN pin input: Disabled, CLKSRC: The IRC is selected
- PLL: Disabled
- PLL reference input: CLKSRC/1
- CLKFAST: The CLKSRC divided by 8
- CLKPWM: Disabled

The clock setting procedure is as follows:

- (1) To enable the CLKIN input, set CLKCFG1.CLKINE = 1.
- (2) Set the CLKSRC to the IRC or the CLKIN by the PLLCFG.REFDIV bit.
- (3) Set the devided rate of the reference clock for the PLL by PLLCFG.REFDIV bit.
- (4) To enable the PLL, set PLLCFG.PLLEN = 1.
- (5) Wait for the PLL Oscillation Stable Period. Then, to enable the PLL clock, set PLLCFG.PLLOUT = 1.
- (6) Set the clock source of the CLKFAST to the CLKSRC or the PLL by the CLKCFG0.CLKPLL bit.
- (7) Set the devided rate of the CLKFAST by the CLKCFG0.DIV1 bits.
- (8) Set the clock type and the devided rate of the CLKPWM by the PWMCSC0 register.
- (9) To enable the CLKPWM, set PWMENBL.PWMAE = 1.
- (10) To supply the clock for peripheral functions, set the MCLKEn register.

When the CLKIN is not used, the settings of (1) and (2) are unnecessary. When the PLL is not used, the settings of (3), (4), and (5) are unnecessary. When the PWM is not used, the settings of (8) and (9) are unnecessary.

4.3. Low Power Consumption Modes

The LSI has 2 low power consumption modes: the sleep and standby modes.

4.3.1. Sleep Mode

The CPU clock stops during the sleep mode. To transit to the sleep mode, set LPCTRL.LPSE = 0, and then LPCTRL.GOTOLPM = 1. After the CPU completes accessing the flash memory, the LSI stops the CPU clock, and transits to the sleep mode. In the sleep mode, the clocks of peripheral functions operate according to the MCLKEn register setting. The following sources cause returning from the sleep mode: an interrupt and a reset. The sleep mode can be returned by all interrupts that is set INTENAn = 1 (i.e., enabled). Thus, the INTENAn register must be set before transition to the sleep mode.

The LSI does not transit to the sleep mode after the OCD communication access. The clock continues its operation and the processing.

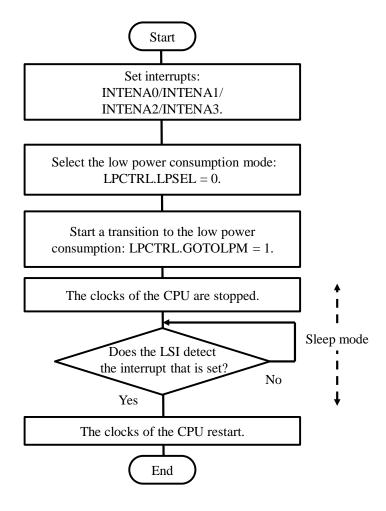


Figure 4-2. Sleep Mode Sequence

4.3.2. Standby Mode

All clocks (IRC, CLKIN, and PLL) in the LSI stop during the standby mode. To transit to the standby mode, set LPCTRL.LPSE = 1, and then LPCTRL.GOTOLPM = 1. After the CPU completes accessing the flash memory, the LSI stops all clocks in the LSI, and transits to the standby mode. The following sources cause returning from the standby mode: GPIO interrupt, CMP level interrupt, and low voltage detection (LVD). Thus, the INTENAn register must be set before transition to the standby mode. The sources by the CMP level interrupt and the LVD are defined by the CSBYCR register. When the sources to return the standby mode are detected, the IRC, CLKIN, and PLL are returned to the setting state before standby mode operation. Then, the wakeup counter that is counted by the CLKSRC operates. When the wakeup counter finishes counting, the clocks supply to the CPU and the peripheral functions again. The wakeup counter is defined by the LPCTRL.WUPTM bits.

The LSI does not transit to the standby mode after the OCD communication access. The clock continues its operation and the processing.

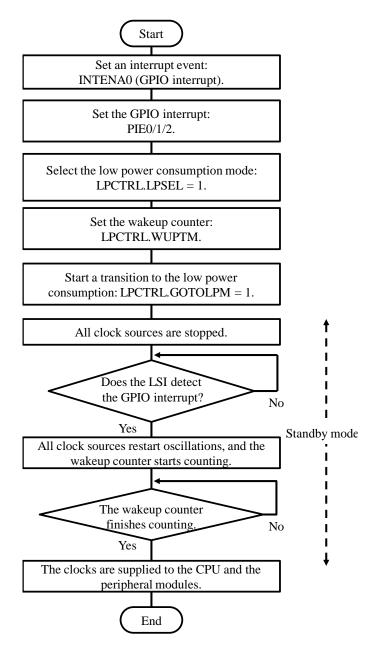


Figure 4-3. Standby Mode Sequence (Returned by GPIO Interrupt)

4.3.3. Inserting NOP Instruction at Transition to Sleep and Standby Modes

Insert 16 NOP instructions immediately after setting LPCTRL.GOTOLPM = 1 as follows:

```
LPCTRL \mid= 0x01; // Go to STBY/SLEEP mode
__asm
                  nop
                  nop
  endasm;
```

4.4. Reset Circuit

Figure 4-4 shows the reset system.

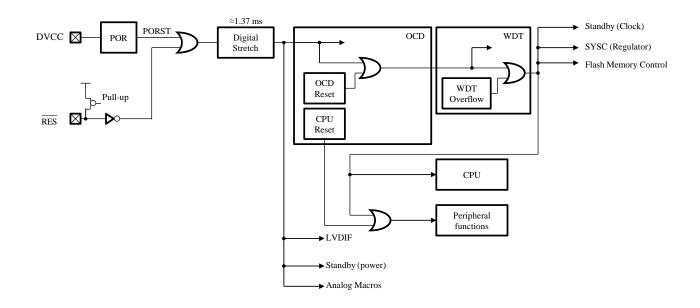


Figure 4-4. Reset System.

The LSI has the following reset types:

• RES Pin

To reset all of the LSI setting, set the \overline{RES} pin to a low state.

• POR

The power-on reset, POR, is generated according to the voltage level of the DVCC pin. When a DVCC pin voltage decreases to the POR Detection Voltage, V_{PORL} , or less, the POR is generated. For release the POR, the DVCC pin voltage should increase to the POR Detection Voltage, V_{PORH} , or more.

• OCD Reset

All the modules other than the OCD are reset by a command from the OCD.

WDT Reset

This reset is the generated at overflowing the watchdog timer, WDT. The period of the WDT reset is 64 cycles defined by the system clock.

• CPU Reset

All the modules including the CPU other than the OCD and the WDT are reset by a command from the OCD.

The internal reset period is extended by a digital stretch for about 1.37 ms (IRC = 12 MHz) after releasing both of the $\overline{\text{RES}}$ pin reset and POR. The DVCC pin voltage and the IRC frequency must be stability in this extended period.

When the reset of the \overline{RES} pin is not used, Open the \overline{RES} pin, or fix the \overline{RES} pin to the level of the DVCC pin voltage.

Table 4-3 shows the reset type and the reset area.

Reset Type	OCD	WDT ⁽¹⁾	LVD Flag ⁽²⁾	SYSC	The Others
RES Pin	Reset	Reset	Reset	Reset	Reset
POR	Reset	Reset	Reset	Reset	Reset
OCD Reset (All LSI Setting)	Not reset	Reset	Reset	Reset	Reset
WDT Reset	Not reset	Not reset	Not reset	Reset	Reset
CPU Reset	Not reset	Not reset	Not reset	Not reset	Reset

Table 4-3. Reset Type and Reset Area

4.5. Low Voltage Detection (LVD)

The low voltage detection, LVD, generates an interrupt request to the CPU when a DVCC pin voltage drop is detected. To use the LVD, set REFCTRL.VREF120AEN= 1 (i.e., the VREF voltage for the LVD is enabled), and then set LVDCTRL.LVDE = 1. When the DVCC pin voltage decreases below the LVD voltage, the LVDCTRL.LVDIF bit becomes 1. In addition, to generate the interrupt request to the CPU, set LVDCTRL.LVDIE = 1. To clear the LVDCTRL.LVDIF bit, set the LVDCTRL.LVDIF = 1 while the DVCC pin voltage exceeds the LVD voltage. If the LVDCTRL.LVDIF bit is set to 1 while the DVCC pin voltage is below the LVD voltage, the LVDCTRL.LVDIF bit is not cleared.

The LSI can be returned from the standby mode by the LVD. To generate the interrupt request to the CPU at return from the standby mode, set LVDCTRL.LVDIE = 1.

It is required to wait at least 3 cycles before reading the LVDCTRL.LVDIF bit immediately after the LVDCTRL.LVDIF bit is cleared.

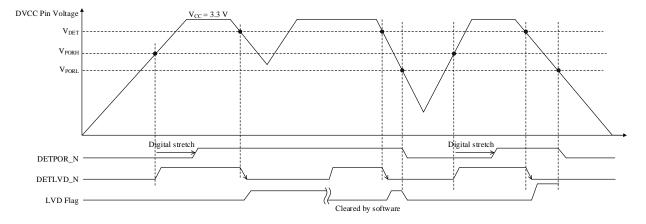


Figure 4-5. POR and LVD

⁽¹⁾ The WTCNT register and the WTCSR.WOVF bit are reset. The other registers for WDT are reset by the WDT reset.

⁽²⁾ The LVDCTRL.LVDIF bit is reset. The other bits in the LVDCTRL register is reset same as the SYSC.

4.6. Analog Infrastructure Control

Reference regulators and extended pull-up resistors of the pins are controlled by the SYSC.

• IBIAS for OPAMP

This controls the operation mode of the IBIAS for the OPAMP. To operate the OPAMP with the low power consumption mode, set REFCTRL.IBIAS_AMP_LPW = 1.

• VREF Output for Low Voltage Detection (LVD)

This controls the VREF output for the LVD. To use the LVD, set REFCTRL.VREF120AEN = 1 before the LVD is enabled. When the LVD is not used, turn off the VREF output by setting REFCTRL.VREF120AEN = 0. This results in the power consumption reduction.

• VREF Output for Measurement by ADC

This controls the VREF output for a measurement by the ADC. To measure the VREF voltage using the ADC, set REFCTRL.VREF120BEN = 1 before the AD conversion. When the VREF output measurement by the ADC is not used, turn off this VREF output by setting REFCTRL.VREF120BEN = 0. This results in the power consumption reduction.

• Extended Pull-up Resistor for GPIO20

To connect extended pull-up resistor to the GPIO20 (ANEX4), set RESCTRL.GPIO20E = 1. For reducing the pull-up resistance of the GPIO20, use the GPIO20 extended pull-up resistor in combination with the I/O buffer pull-up resistor.

• Extended Pull-up Resistor for GPIO21

To connect extended pull-up resistor to the GPIO21 (ANEX5), set RESCTRL.GPIO21E = 1. For reducing the pull-up resistance of the GPIO21, use the GPIO21 extended pull-up resistor in combination with the I/O buffer pull-up resistor.

4.7. Register Descriptions

Table 4-4. List of Registers

Symbol	Name	Address	Initial Value
CLKCFG0	Clock Configuration0 Register	0xFF80	0x00
CLKCFG1	Clock Configuration1 Register	0xFF81	0x01
PLLCFG	PLL Configuration Register	0xFF82	0x00
MCLKE0	Module Clock Enable0 Register	0xFF84	0x80
MCLKE1	Module Clock Enable1 Register	0xFF85	0x00
MCLKE2	Module Clock Enable2 Register	0xFF86	0x00
MCLKE3	Module Clock Enable3 Register	0xFF87	0x00
MCLKE4	Module Clock Enable4 Register	0xFF88	0x00
MCLKE5	Module Clock Enable5 Register	0xFF89	0x00
MCLKE6	Module Clock Enable6 Register	0xFF8A	0x00
LVDCTRL	LVD Control Register	0xFF90	0x00
REFCTRL	Reference Voltage Control Register	0xFF91	0x00
RESCTRL	Resistor Control Register	0xFF92	0x00
PWMENBL	PWM Clock Enable Control Register	0xFF98	0x00
PWMCSC0	PWM Clock Source Control0 Register	0xFF99	0x08
LPCTRL	Low Power Control Register	0xFFA0	0x00
CSBYCR	CMP Standby Control Register	0xFFA1	0x00
DEVER	Device Version and Revision Register	0xFFB0	0x30
REMAP	Remap Control Register	0xFFC0	0x00
TEMP*	Temperature Sensor Control Register	0xFFC1	0x00
BUSBUFCR	BUS Buffer Control Register	0xFFC2	0x80
LINECTRL	DBG Line Control Register	0xFFE0	0x00
TMR2INCR	TMR2 Input Control Register	0xFFE1	0x00

^{*} For more details on the TEMP register, see Section 25.

4.7.1. CLKCFG0 (Clock Configuration0 Register)

Regi	ister Cl	LKCFG0	Clock (Configuration0 Register	Address	0xFF8	30
Bit	Bit Name	e R/W	Initial	Descripti	ion		Remarks
7	Reserved	R	0	The read value is 0. The write value must always be 0.			
6	Reserved	R	0	The read value is 0. The write value	must always be	.0	
5	CLKPLI	. R/W	0	PLL clock 0: CLKSRC is the clock source of CLKFAST 1: PLL clock divided by 16 is the clock source of CLKFAST Writing 0 to the bit is invalid when the PLLCFG.PLLEN bit is 0, or the PLLCFG.PLLOUT bit is 0. Switching the clocks requires up to 6 cycles of the CLKSRC.			
4	Reserved	R	0	The read value is 0. The write value	must always be	0.	
3		R/W	0	Main clock divider			
2	DIV1			00: Divide-by-8 divider is selected 01: Divide-by-4 divider is selected 10: Divide-by-2 divider is selected 11: Divide-by-1 divider is selected Switching the clocks requires up to 0			
1	Reserved	R	0	The read value is 0. The write value must always be 0.			
0	Reserved	R	0	The read value is 0. The write value	must always be	0.	

4.7.2. CLKCFG1 (Clock Configuration1 Register)

The following settings are prohibited: disabling both the CLKIN and IRC; switching to a clock that has been stopped. In the standby mode, the CLKIN and IRC will be stopped regardless of the settings of the CLKINE and IRCE bits. For switching between the CLKIN and IRC (i.e., from the IRC to the CLKIN, or vice versa) the CLKINE and IRCE bits must be set to 1 beforehand.

Regi	ster	CLK	CFG1	Clock C	Configuration1 Register	Address	0xFF8	31			
Bit	Bit N	ame	R/W	Initial	Descripti	on		Remarks			
7	Rese	rved	R	0	The read value is 0. The write value	must always be	0.				
6	Rese	rved	R	0	The read value is 0. The write value	must always be	0.				
5	Rese	rved	R	0	The read value is 0. The write value	0.					
4	4		R/W	0	Clock monitor	Clock monitor 00: CLKSRC is selected for CLKMON					
3			R/W	0	00: CLKSRC is selected for CLR 01: CLKFAST is selected for CLR 10: CLKIRC is selected for CLKI 11: CLKIN is selected for CLKM						
2	CLKS	SRC	R/W	0	1: CLKIN pin input is selected for Changing the value of the bit is valid IRCE bits are 1.	Clock source 0: CLKIRC is selected for CLKSRC 1: CLKIN pin input is selected for CLKSRC Changing the value of the bit is valid only when the CLKINE and IRCE bits are 1. Switching the clocks requires up to 6 cycles of the clock					
1	CLK	INE	R/W	0	Clock input enable 0: CLKIN input is disabled 1: CLKIN input is enabled						
0	IRO	CE	R/W	1	IRC enable 0: IRC is disabled 1: IRC is enabled The bit is forcibly set to 1 when the OCD is connected. Setting the bit to 0 is prohibited. The bit is set to 0 when DTSTCR.IRCKILL = 1.						

4.7.3. PLLCFG (PLL Configuration Register)

Regi	ster	PLL	CFG	PLL Co	onfiguration Register	Address	0xFF	82	
Bit	Bit N	ame	R/W	Initial	Descripti	on		Remarks	
7	Reser	rved	R	0	The read value is 0. The write value	must always be	0.		
6	Reserved R			0	The read value is 0. The write value	The read value is 0. The write value must always be 0.			
5	Reser	rved	R	0	The read value is 0. The write value	The read value is 0. The write value must always be 0.			
4	Reser	rved	R	0	The read value is 0. The write value				
3	Reser	rved	R	0	The read value is 0. The write value				
2	PLLOUT R/W 0 0: PLL clock 1: PLL clock				PLL clock output 0: PLL clock output is disabled 1: PLL clock output is enabled Writing 0 to the bit is invalid when 0	CLKCFG0.CLK	XPLL = 1.		
1	PLL	EN	PLL enable 0: PLL is disabled						
0	REFI	DIV	R/W	0	PLL reference clock divider 0: CLKSRC/1 1: CLKSRC/2				

4.7.4. MCLKE0 (Module Clock Enable0 Register)

Reg	ister	MCL	KE0	Module	Module Clock Enable0 Register Address 0xFl			34
Bit	Bit N	ame	R/W	Initial	Descripti	on		Remarks
7	7 ME_SCID R/W			1	SCID clock enable 0: SCID clock is disabled 1: SCID clock is enabled Once the debugger communication will be supplied regardless of the set			
6	Reser	ved	R	0	The read value is 0. The write value			
5	ME_T	TMR2/3 clock enable 0: TMR2/3 clock is disabled 1: TMR2/3 clock is enabled						
4	ME_T	IM01	R/W	0	TMR0/1 clock enable 0: TMR0/1 clock is disabled 1: TMR0/1 clock is enabled			
3	ME_	SPI	R/W	0	SPI clock enable 0: SPI clock is disabled 1: SPI clock is enabled			
2	ME_	I2C	R/W	0	I ² C clock enable 0: I ² C clock is disabled 1: I ² C clock is enabled			
1	ME_U	ART	R/W	0	UART clock enable 0: UART clock is disabled 1: UART clock is enabled			
0	ME_C	SPIO	R/W	0	GPIO clock enable 0: GPIO clock is disabled 1: GPIO clock is enabled			

4.7.5. MCLKE1 (Module Clock Enable1 Register)

Reg	gister	MCLKE1		Module Clock Enable1 Register		Address	0x	FF85
Bit	В	it Name	R/W	Initial	Descr	iption		Remarks
7	7 ME_EVC R/W			0	EVC clock enable 0: EVC clock is disabled 1: EVC clock is enabled	0: EVC clock is disabled		
6	R	Reserved	R	0	The read value is 0. The wr	ite value must a	lways be 0.	
5	5 ME_DSP1 R/W			0	TinyDSP1 clock enable 0: TinyDSP1 clock is disabled 1: TinyDSP1 clock is enabled			
4	М	E_DSP0	R/W	0	TinyDSP1 clock enable 0: TinyDSP1 clock is disabled 1: TinyDSP1 clock is enabled			
3	M	1E_EPU	R/W	0	EPU clock enable 0: EPU clock is disabled 1: EPU clock is enabled			
2	М	E_DSAC	R/W	0	DSAC clock enable 0: DSAC clock is disabled 1: DSAC clock is enabled			
1	R	Reserved	R	0	The read value is 0. The write value must always be 0.			
0	R	Reserved	R	0	The read value is 0. The wr	ite value must a	lways be 0.	

4.7.6. MCLKE2 (Module Clock Enable2 Register)

Reg	Register MCLKE2			Module	Clock Enable2 Register Address 0x		FF86	
Bit	Bit Name R/W		R/W	Initial	Descr	Description		
7	R	Reserved	R	0	The read value is 0. The wr	The read value is 0. The write value must always be 0.		
6	R	Reserved	R	0	The read value is 0. The wr	The read value is 0. The write value must always be 0.		
5	ME_ADC1		R/W	0	ADC1 clock enable 0: ADC1 clock is disabled 1: ADC1 clock is enabled			
4	ME_ADC0		R/W	0	ADC0 clock enable 0: ADC0 clock is disabled 1: ADC0 clock is enabled			
3	R	Reserved	R	0	The read value is 0. The wr	The read value is 0. The write value must always be 0.		
2	Reserved R		R	0	The read value is 0. The write value must always be 0.			
1	Reserved R		R	0	The read value is 0. The write value must always be 0.			
0	R	Reserved	R	0	The read value is 0. The write value must always be 0.			

4.7.7. MCLKE3 (Module Clock Enable3 Register)

Reg	gister	MCLKE3		Module Clock Enable3 Register		Address	0xI	FF87
Bit	В	Bit Name	R/W	Initial	Descr	iption		Remarks
7	N	ΛE_SPR	R/W	0	SPR clock enable 0: SPR clock is disabled 1: SPR clock is enabled			
6	F	Reserved	R	0	The read value is 0. The wr	ite value must a	lways be 0.	
5	М	E_AMP1	R/W	0	AMP1 clock enable 0: AMP1 clock is disable 1: AMP1 clock is enable			
4	М	E_AMP0	R/W	0	AMP0 clock enable 0: AMP0 clock is disable 1: AMP0 clock is enable			
3	М	E_CMP3	R/W	0	CMP3 clock enable 0: CMP3 clock is disable 1: CMP3 clock is enable			
2	М	E_CMP2	R/W	0	CMP2 clock enable 0: CMP2 clock is disable 1: CMP2 clock is enable			
1	М	E_CMP1	R/W	0	CMP1 clock enable 0: CMP1 clock is disabled 1: CMP1 clock is enabled			
0	М	E_CMP0	R/W	0	CMP0 clock enable 0: CMP0 clock is disable 1: CMP0 clock is enable			

4.7.8. MCLKE4 (Module Clock Enable4 Register)

Register MCLKE4			Module	Clock Enable4 Register	Address 0x		FF88	
Bit	Bit Name		R/W	Initial	Description		Remarks	
7	ME_CMPLUT		R/W	0	LUT clock enable 0: LUT clock is disabled 1: LUT clock is enabled			
6	Reserved		R	0	The read value is 0. The write value must always be 0.			
5	Reserved		R	0	The read value is 0. The write value must always be 0.			
4	Reserved		R	0	The read value is 0. The write value must always be 0.			
3	Reserved		R	0	The read value is 0. The write value must always be 0.			
2	Reserved		R	0	The read value is 0. The write value must always be 0.			
1	ME_CMP5		R/W	0	CMP5 clock enable 0: CMP5 clock is disabled 1: CMP5 clock is enabled			
0	ME_CMP4 R/W		0	CMP4 clock enable 0: CMP4 clock is disabled 1: CMP4 clock is enabled				

4.7.9. MCLKE5 (Module Clock Enable5 Register)

Register		MCLKE5		Module Clock Enable5 Register		Address	0xFF89	
Bit	В	it Name	R/W	Initial	Description		Remarks	
7	ME_POC3 R/W		R/W	0	POC3 clock enable 0: POC3 clock is disabled 1: POC3 clock is enabled			
6	ME_POC2		R/W	0	POC2 clock enable 0: POC2 clock is disabled 1: POC2 clock is enabled			
5	ME_POC1 R/W		0	POC1 clock enable 0: POC1 clock is disabled 1: POC1 clock is enabled				
4	М	E_POC0	R/W	0	POC0 clock enable 0: POC0 clock is disabled 1: POC0 clock is enabled			
3	MI	E_PWM3	R/W	0	PWM3 clock enable 0: PWM3 clock is disabled 1: PWM3 clock is enabled			
2	MI	E_PWM2	R/W	0	PWM2 clock enable 0: PWM2 clock is disabled 1: PWM2 clock is enabled			
1	MI	E_PWM1	R/W	0	PWM1 clock enable 0: PWM1 clock is disabled 1: PWM1 clock is enabled			
0	MI	E_PWM0	R/W	0	PWM0 clock enable 0: PWM0 clock is disabled 1: PWM0 clock is enabled			

4.7.10. MCLKE6 (Module Clock Enable6 Register)

Regi	Register MCLKE6			Module (Clock Enable6 Register	Address	0xFF8A	
Bit	Bit Name		R/W	Initial	Description		Remarks	
7	Reserved		R	0	The read value is 0. The write value must always be 0.			
6	Reserved		R	0	The read value is 0. The write value must always be 0.			
5	Reserved		R	0	The read value is 0. The write value must always be 0.			
4	Reserved		R	0	The read value is 0. The write value must always be 0.			
3	Reserved		R	0	The read value is 0. The write value must always be 0.			
2	Reserved		R	0	The read value is 0. The write value must always be 0.			
1	ME_RAM1 R		R/W	0	RAM1 (addresses 0x0400 to 0x05FF) clock enable 0: RAM1 clock is disabled 1: RAM1 clock is enabled			
0	ME_RAM0 R/W		0	RAM0 (addresses 0x0000 to 0x03FF) clock enable 0: RAM0 clock is disabled 1: RAM0 clock is enabled				

4.7.11. PWMENBL (PWM Clock Enable Control Register)

Reg	gister	PWMENBL		PWM C	lock Enable Control Register	Address	(0xFF98
Bit	В	it Name	R/W	Initial	Description			Remarks
7	Reserved R		R	0	The read value is 0. The write value must always be 0.			
6	Reserved R		R	0	The read value is 0. The write value	ie must alway	s be 0.	
5	Reserved R			0	The read value is 0. The write value must always be 0.			
4	Reserved R		R	0	The read value is 0. The write value	ie must alway	s be 0.	
3	R	Reserved	R	0	The read value is 0. The write value must always be 0.			
2	R	Reserved	R	0	The read value is 0. The write value must always be 0.			
1	R	Reserved R		0	The read value is 0. The write value must always be 0.			
0	P	WMAE	R/W	0	PWM clock source enable 0: PWM clock source is disable 1: PWM clock source is enabled			

4.7.12. PWMCSC0 (PWM Clock Source Control0 Register)

Reg	gister	PWMCSC0		PWM C	llock Source Control0 Register	Address	0	xFF99	
Bit	В	it Name	R/W	Initial	Description			Remarks	
7	R	Reserved	R	0	The read value is 0. The write value must always be 0.				
6	Reserved		R	0	The read value is 0. The write value must always be 0.				
5	Reserved		R	0	The read value is 0. The write value	The read value is 0. The write value must always be 0.			
4	R	Reserved R		0	The read value is 0. The write value must always be 0.				
3			R/W	1	Clock source				
2			R/W	0	0000: PLLOUT/1 0001: PLLOUT/2				
1		TD (CC)	R/W	0	0010: PLLOUT/4	0010: PLLOUT/4			
0	PWMCCA		R/W	0	0011: PLLOUT/8 0100: PLLOUT/16 0101: PLLOUT/32 1000: CLKSRC (default) Other than above: Setting prohi	-			

4.7.13. LVDCTRL (Low Voltage Detector Control Register)

Regi	ster	LVDCTRL		LVD Co	ontrol	Address	0x1	FF90
Bit	I	Bit Name	R/W	Initial	Descr	iption		Remarks
7		LVDE	R/W	0	Low voltage detection (LV) 0: LVD is disabled 1: LVD is enabled			
6	Reserved R		R	0	The read value is 0. The wr	ite value must a	lways be 0.	
5	Reserved R 0 The read value is 0. The write value must always be 0.							
4	LVDIE R/W		0	Low voltage detection (LVD) interrupt request enable 0: LVD interrupt request is disabled 1: LVD interrupt request is enabled				
3]	Reserved R		0	The read value is 0. The write value must always be 0 .			
2]	Reserved	R	0	The read value is 0. The write value must always be 0.			
1]	Reserved	R	0	The read value is 0. The wr	ite value must a	lways be 0.	
0	Reserved R 0 The read value is 0. The write value must always be 0. Low voltage detection (LVD) interrupt flag Read 0: LVD interrupt is not detected Read 1: LVD interrupt is detected Write 0: No change Write 1: The bit is cleared The bit is set by the LVD regardless of the setting of the LVDIE bit.							

4.7.14. REFCTRL (Reference Control Register)

Re	gister	REFCTRL		Referer	nce Control Register	Address	0xFF	91
Bit	Bi	t Name	R/W	Initial	Desc	ription		Remarks
7	IBIAS_	_AMP_LPW	R/W	0	IBIAS operation mode for C 0: Operation in normal m 1: Operation in low powe	ode	mode	
6	VRE	F120AEN	R/W	0	VREF output enable for LV 0: VREF output is disable 1: VREF output is enable Before using the LDV, ena LVD.	ed d	output for the	
5	VRE	F120BEN	R/W	0	VREF output enable for AD 0: VREF output is disable 1: VREF output is enable When measuring the VREF the VREF output for the AD	ed d voltage by the	ADC, enable	
4	Re	eserved	R	0	The read value is 0. The wri	te value must al	lways be 0.	
3	Re	eserved	R	0	The read value is 0. The wri	te value must al	lways be 0.	
2	Re	eserved	R	0	The read value is 0. The write value must always be 0.			
1	Re	eserved	R	0	The read value is 0. The write value must always be 0.			
0	Re	eserved	R	0	The read value is 0. The wri	te value must al	lways be 0.	_

4.7.15. RESCTRL (Resistor Control Register)

Regi	ster RESCTI	RL	Resistor	Control Register	Address	0xFF	92
Bit	Bit Name	R/W	Initial	Desc	cription		Remarks
7	Reserved	R	0	The read value is 0. The wr	ite value must a	lways be 0.	
6	Reserved	R	0	The read value is 0. The write value must always be 0.			
5	Reserved R		0	The read value is 0. The wr	The read value is 0. The write value must always be 0.		
4	Reserved	Reserved R 0 The read value is 0. The write value must always be 0.					
3	Reserved	R	0	The read value is 0. The wr	The read value is 0. The write value must always be 0.		
2	Reserved R 0 The read value is 0. The write value must alwa		lways be 0.				
1	GPIO21E	R/W	0	Connecting the extended (ANEX5) 0: Extended pull-up resis 1: Extended pull-up resis	stor is not conne	cted	
0	GPIO20E	R/W	0	Connecting the extended (ANEX4) 0: Extended pull-up resis 1: Extended pull-up resis	stor is not conne	cted	

4.7.16. LPCTRL (Low Power Control Register)

Reg	ister	LPCT	'RL	Low Pow	ver Control Register	Address	0xFl	FA0
Bit	Bit	t Name	R/W	Initial	Description			Remarks
7	W	WUPTM -		0	Setting the count number of 00: 512 counts (42.7 μs) 01: 768 counts (64.0 μs)	•	er	
6	**			0	10: 1024 counts (85.3 μs) 11: 4096 counts (341.3 μs) The counter clock is the CLKSRC (12 MHz).			
5	Re	eserved	R	0	The read value is 0. The wr	The read value is 0. The write value must always be 0.		
4	Re	eserved	R	0	The read value is 0. The wri	ite value must a	lways be 0.	
3	Re	eserved	R	0	The read value is 0. The wri	ite value must a	lways be 0.	
2	Re	eserved	R	0	The read value is 0. The wri	ite value must a	lways be 0.	
1	L	PSEL	R/W	0	Selection of low power consumption mode			
0	GOTOLPM W 0 0: Operation in low power consumption mode 0: Operation in low power consumption mode 1: Standby mode operation (the chip is stopp Transition to low power consumption mode 0: Operation in normal mode (no effect) 1: Operation in low power consumption mode 1: Operation in							

4.7.17. CSBYCR (CMP Standby Control Register)

Reg	gister	CSBYCR		CMP Sta	andby Control Register	Address	0xFI	FA1
Bit	Bit	Name	R/W	Initial	Description			Remarks
7	Re	served	R	0	The read value is 0. The wr	ite value must a	lways be 0.	
6	L	VDE	R/W	0	Return from standby mode (LVD) 0: The bit is not returned 1: The bit is returned	e by low volta	ge detection	
5	CI	MP5E	R/W	0	Return from standby mode 0: The bit is not returned 1: The bit is returned	by CMP5 level	interrupt	
4	Cl	MP4E	R/W	0	Return from standby mode 0: The bit is not returned 1: The bit is returned	by CMP4 level	interrupt	
3	Cl	МР3Е	R/W	0	Return from standby mode 0: The bit is not returned 1: The bit is returned	by CMP3 level	interrupt	
2	Cl	MP2E	R/W	0	Return from standby mode 0: The bit is not returned 1: The bit is returned	by CMP2 level	interrupt	
1	CMP1E R/W		R/W	0	Return from standby mode 0: The bit is not returned 1: The bit is returned	by CMP1 level	interrupt	
0	Cl	MP0E	R/W	0	Return from standby mode 0: The bit is not returned 1: The bit is returned	by CMP0 level	interrupt	

4.7.18. DEVER (Device Version and Revision Register)

Even if the protection level is 2, the DEVER register can be read by the OCD.

Reg	gister	DEVER		Device Register	Version and Revision Address 0xF	FB0
Bit	В	it Name	R/W	Initial	Description	Remarks
7			R	0		
6		VED	R	0	Device version	
5		VER	R	1	These bits can read 3.	
4		-	R	1		
3			R	X		
2		REV	R	X	Device revision	
1			R	X	These bits can read values according to the device revision.	
0			R	X		

4.7.19. REMAP (Remap Control Register)

Re	gister	REMAP		Remap Co	ontrol Register	Address	0xFF	C0	
Bit	Bi	t Name	R/W	Initial	Des	Description			
7	Reserved R 0 The re		The read value is 0. The w	The read value is 0. The write value must always be 0.					
6	Re	eserved	R	0	The read value is 0. The w	The read value is 0. The write value must always be 0.			
5	Re	eserved	R	0	The read value is 0. The write value must always be 0.				
4	Re	eserved	R	0	The read value is 0. The write value must always be 0.				
3	Re	eserved	R	0	The read value is 0. The write value must always be 0.				
2	Re	eserved	R	0	The read value is 0. The write value must always be 0.				
1	Re	eserved	R	0	The read value is 0. The w	rite value must	always be 0.		
0	REMAP R/W			0	REMAP control 0: Operation in normal mode 1: Operation in REMAP mode For more details on the REMAP mode, see Section 5.2.				

4.7.20. BUSBUFCR (BUS Buffer Control Register)

Reg	gister	BUSBUFCR		BUS Buff	er Control Register	Address	0xFF0	C2
Bit	В	it Name	R/W	Initial	Des	scription		Remarks
7	SI	FRBUFE	R/W	1	SFR buffer enable 0: SFR buffer is disabled 1: SFR buffer is enabled			
6	Reserved		R	0	The read value is 0. The v	vrite value must	always be 0.	
5	CL	R_SCNT	W	0	Initialization of SFR buffe 0: SFR buffer state rem 1: SFR buffer state is in	ains unchanged	l	
4	CL	CLR_SSTM		0	Initialization of the internal state of SFR BUS buffer 0: Internal state of SFR BUS buffer remains unchanged 1: Internal state of SFR BUS buffer is initialized		mains	
3	R	teserved	R	0	The read value is 0. The v	vrite value must	always be 0.	
2	R	teserved	R	0	The read value is 0. The v	vrite value must	always be 0.	
1	R	eserved	R	0	The read value is 0. The v	vrite value must	always be 0.	
0	CL	R_XSTM	W	0	Initialization of the intern 0: Internal state of XBU 1: Internal state of XBU	JS buffer remain	ns unchanged	

4.7.21. LINECTRL (DBG Line Control Register)

Re	gister	LINECTRL		DBG Li	ne Control Register	Address	0xF	FE0
Bit	Bit	t Name	R/W	Initial	Description			Remarks
7	Re	eserved	R/W	0	The read value is 0. The write value must always be 0.			
6	Reserved R/W		R/W	0	The read value is 0. The write value must always be 0.			
5	Reserved R/W		R/W	0	The read value is 0. The wr	ite value must a	lways be 0.	
4	Reserved R/W			0	The read value is 0. The write value must always be 0.			
3	Reserved R/W		R/W	0	The read value is 0. The wr	The read value is 0. The write value must always be 0.		
2	Re	eserved	R/W	0	The read value is 0. The write value must always be 0.			
1	Re	eserved	R/W	0	The read value is 0. The write value must always be 0.			
0	LINECTRL R/W		R/W	0	DBG pin control 0: SCID controls DBG pi 1: UART controls DBG p Setting the bit to 1 allows DBG pin.	oin	control the	

4.7.22. TMR2INCR (TMR2 Input Control Register)

Re	gister	TMR2INCR	٠	TMR2 I	nput Control Register	Address	0xFl	FE1
Bit	Bi	t Name	R/W	Initial	Descr	ription		Remarks
7	Re	eserved	R/W	0	The read value is 0. The wr	ite value must a	lways be 0.	
6	Re	eserved	R/W	0	The read value is 0. The wr	The read value is 0. The write value must always be 0.		
5	Reserved R/W		R/W	0	The read value is 0. The wr	The read value is 0. The write value must always be 0.		
4	Reserved R/W		R/W	0	The read value is 0. The write value must always be 0.			
3	Reserved R/W		R/W	0	The read value is 0. The wr	ite value must a	lways be 0.	
2	Re	Reserved R/W		0	The read value is 0. The write value must always be 0.			
1	Re	eserved	R/W	0	The read value is 0. The write value must always be 0.			
0	Reserved R/W RXDSEL R/W		R/W	0	TMR2 input 0: TIOA2/TIOB2 pin inp 1: RXD pin put is selecte By setting the bit to 1, the defined by the PFS and TIOA and TIOB of TMR2.	d RXD input for		

4.8. Usage Notes and Restrictions

When the LSI falls into the operation states listed below, the CPU does not return from the sleep mode.

- (1) The condition in which the CPU receives a high-priority interrupt signal before or after writing an instruction enabling the sleep mode to a register.
- (2) The condition in which the CPU writes an instruction enabling the sleep mode to a register while a high-priority interrupt is being processed.

Under the operation states listed below, the CPU returns from the sleep mode only when it receives a high-priority interrupt. However, the CPU does not return from the sleep mode when it receives a low-priority interrupt.

- (1) The condition in which the CPU receives a high-priority interrupt signal before or after writing an instruction enabling the sleep mode to a register.
- (2) The condition in which the CPU writes an instruction enabling the sleep mode to a register while a low-priority interrupt is being processed.

In a normal operation state (i.e., no interrupt is being processed), when the CPU receives no interrupt signal before or after writing a sleep-mode-enabling instruction to a register, it returns from the sleep mode by an interrupt signal regardless of the signal's priority level.

A high-priority interrupt is an interrupt whose bit corresponding to the INTLVLn register of the INTC is set to 1. A low-priority interrupt is an interrupt whose bit corresponding to the INTLVLn register of the INTC is set to 0.

The following workarounds should be implemented when the sleep mode is used.

- (1) Workaround before CPU entering into sleep mode
 Before the CPU enters the sleep mode, disable interrupts whose generation timing is non-CPU-controllable, such as
 those generated by external signals input to the comparators and GPIO. When using interrupts whose generation
 timing is CPU-controllable, set them not to be generated during the execution of a sleep-mode-enabling instruction.
- (2) Workaround for sources used when CPU returning from sleep mode
 Use interrupts whose generation timing is CPU-controllable as sources for returning from the sleep mode. When
 using interrupts whose timing is uncontrollable as recovery sources, enable interrupts by the EPU after the CPU
 enters the sleep mode. The EPU cannot access the registers of the INTC; therefore, the interrupt functions of the
 peripheral modules which issue interrupts should be enabled or disabled individually. It is recommended to define
 an interrupt used for a recovery source from the sleep mode as a high-priority interrupt.

5. 8051 CPU

The LSI has an 8051 core (UL8051) with an instruction set architecture compatible with the Intel MCS-51 (8051 family). The UL8051 is compatible with the 8052 instruction set.

The UL8051 is extended from the original 8052. Most instructions have a pipeline structure that operates in one cycle per instruction. The instruction code has 2 functions: to prefetch from the flash memory by 4 bytes, and to improve the throughput of instruction execution. In addition, the LSI has the one-wire OCD which can minimize the pin counts used for a debug.

Overview 5.1.

Table 5-1 shows the UL8051 functional descriptions.

Table 5-1. UL8051 Functional Descriptions

Item	Description
Instruction Set	Compatible with MCS-51 (8052)
Execution Cycle	1 cycle per byte fetch (1T core)
Structure	Pipeline
Instruction bus	8-bit width IBUS (XPROG BUS)
Data bus	8-bit width XBUS (XDATA BUS)
SFR BUS	8-bit width with bit-write strobe
Interrupt Source	32 sources (max.)
OCD (On Chip Debugger)	Full debug function with 1-wire interface

5.2. CPU Peripheral System Configurations

Figure 5-1 shows the CPU peripheral system configuration.

• IBUS (XPROG BUS)

For instruction fetch from the built-in flash memory.

Access method: Instruction fetch or MOVC instruction (read only)

Data width: 8 bits Address space: 64 KB

XBUS

For read from/write to the built-in RAM and peripheral function register.

Access method: MOVX instruction

Data width: 8 bits Address space: 64 KB

• SFR BUS

For read from/write to the peripheral function SFR (Special Function Register).

Access method: MOV instruction of direct addressing mode

Data width: 8 bits

Address space: 128 bytes (0x80 to 0xFF)

• IRAM BUS

For read from/write to the built-in RAM

Data width: 8 bits

Address space: 256 bytes (0x00 to 0xFF)

In the REMAP mode, the data in the address area 0x0000 to 0x05FF of the RAM0 and the RAM1 can be read by reading the address area 0x0000 to 0x05FF in the flash memory (main block) by the instruction fetch or the MOVC instruction.

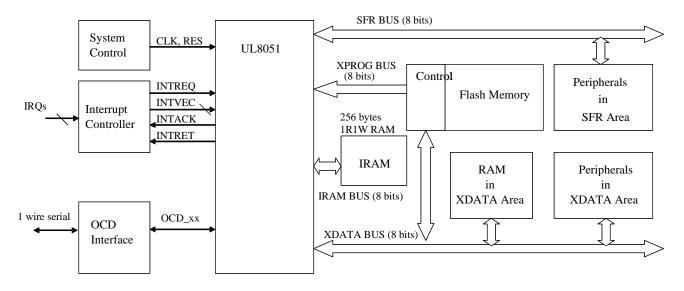


Figure 5-1. System Configuration

5.3. Memory Map

Figure 5-2 shows the system address map.

• Internal Data Memory of 8052 Architecture

The internal data memory is divided into 3 blocks.

- Internal Data Memory 1

Address space: 0x00 to 0x7F (128 bytes)

General-purpose register: 8 registers × 4 banks (32 bytes in total)

Bit addressable area: 16 bytes

General-purpose IRAM_1 area: 80 bytes

- Internal Data Memory 2

Address space: 0x80 to 0xFF (128 bytes) General-purpose IRAM_2 area: 128 bytes

The internal data memory 2 is accessed by the indirect addressing instruction.

- Internal Data Memory 3

Address space: 0x80 to 0xFF (128 bytes)

The internal data memory 3 is accessed by the direct addressing instruction in area where the CPU and the peripheral function SFR are assigned. Address 0xX0 or 0xX8 (X = 8 to F) is bit addressable access. For example, when the bit 3 of the address 0x80 is accessed, the bit address becomes 0x83.

• Program Memory Area

Address space: 0x0000 to 0xFFFF (64 KB)

The flash memory is assigned to the lower bits of the address (0x0000 to 0x7FFF) in program area. The data placed in the flash memory is read by the MOVC instruction.

• Data Memory Area

Address space: 0x0000 to 0xFFFF (64 KB)

The XDATA BUS area connected to the built-in RAM and the peripheral register is assigned. The data memory area is accessed by the MOVX instruction.

• Peripheral Function Registers

The peripheral function registers are assigned to the SFR and the data memory area.

Figure 5-2. System Address Map

 $^{^{(1)}}$ The RAM0 area (0x8000 to 0x83FF) is the shadow memory of 0x0000 to 0x3FF.

⁽²⁾ The RAM1 area (0x8400 to 0x85FF) is the shadow memory of 0x0400 to 0x5FF.

5.4. Instruction Code Map

Table 5-2. Instruction Code Map

Lower Highe r	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	Lower
0000	NOP	AJMP addr11	LJMP addr16	RR A	INC A	INC direct		NC Ri					NC n				0000
0001	JBC bit, rel	ACALL addr11	LCALL addr16	RRC A	DEC A	DEC direct		EC Ri					EC n				0001
0010	JB bit, rel	AJMP addr11	RET	RL A	ADD A, #data	ADD A, direct	AI A,	OD @Ri					DD Rn				0010
0011	JNB bit rel	ACALL addr11	RETI	RLC A	ADDC A, #data	ADDC A, direct	AD A,					AD A,	DC Rn				0011
0100	JC rel	AJMP addr11	ORL direct, A	ORL direct, #	ORL A, #data	ORL A, direct	OH A,	RL @Ri					RL Rn				0100
0101	JNC rel	ACALL addr11	ANL direct, A	ANL direct, #	ANL A, #data	ANL A, direct		ANL A, @Ri		ANL A, Rn				0101			
0110	JZ rel	AJMP addr11	XRL direct, A	XRL direct, #	XRL A, #data	XRL A, direct	A,						RL Rn				0110
0111	JNZ rel	ACALL addr11	ORL C, bit	JMP @A+DP	MOV A, #data	MOV d, #data	MO @Ri,					Rn,					0111
1000	SJMP rel	AJMP addr11	ANL C, bit	MOVC A, @A+P	DIV AB	MOV dD, dS	M(direct	OV E, @Ri					DV t, Rn				1000
1001	MOV DPTR, #	ACALL addr11	MOV bit, C	MOVC A, @A+D	SUB A, #data	SUB A, direct	SI A,	JB @Ri					JB Rn				1001
1010	ORL C, /bit	AJMP addr11	MOV C, bit	INC DPTR	MUL AB	(SBRK 0x0103)		OV direct					OV irect				1010
1011	ANL C, /bit	ACALL addr11	CPL bit	CPL C	CJNE A, #, rel	CJNE A, d, rel	CJ @Ri, =	#data,			R		NE ta, re	:1			1011
1100	PUSH direct	AJMP addr11	CLR bit	CLR C	SWAP A	XCH A, direct	X(A,	CH @Ri					CH Rn				1100
1101	POP direct	ACALL addr11	SETB bit	SETB C	DA A	DJNZ d, rel	XC A,					DJ Rn	NZ rel				1101
1110	MOVX A, @DP	AJMP addr11	MO A,	VX @Ri	CLR A	MOV A, direct	М(А,					М(А,	DV Rn				1110
1111	MOVX @DP,A	ACALL addr11	MO @Ri	VX , A	CPL A	MOV direct, A	M(@Ri	OV , A					OV , A				1111

5.4.1. Notes on CPU Instruction

• Operation of Undefined Instruction Code (0xA5)

The instruction code (0xA5) operates as "Software break: SBRK 0x0103". The operation is similar to "LCALL 0x103". Note that the return address (the address stored in the stack) is the address that the SBRK is placed.

• Division-by-zero in DIV AB Instruction

When B = O(A/O), the quotient A is 255 and the remainder B is the initial value of A. Then, the OV flag is set.

• Stack Pointer (SP)

The initial value of the stack pointer (SP) is 0x07. Therefore, care must be taken not to interfere with the stack area and the area used by the program. If the initial value of SP is 0x07, there is a possibility the following areas are used for the stack area: area of R0 to R7 (BANK1 to BANK3), bit addressable area, and other IRAM areas.

5.4.2. Execution Cycle Counts per Instruction

The CPU operates at 60 MHz, whereas the access frequency of the flash memory is 30 MHz (2 cycle access). The compensation system for this speed difference is as follows. The CPU instruction fetch width is 8 bits, whereas the flash memory data width stored the program is 32 bits. The flash memory is fetched the quadruple data at once. The instructions fetched from the flash memory are stored in a small capacity instruction buffer. While the instruction to be executed exists in the instruction buffer, the CPU can fetch the instruction in one cycle. When a branch is caused by a branch instruction, 2 cycles may be required because the necessary instruction should be fetched again from the flash memory.

In addition, 2 cycles are required for the access to the peripheral function registers connected to the XDATA BUS. (i.e., the execution cycle of the MOVX instruction and added one execution cycle). When the RAM is accessed by the MOVX instruction, the execution cycle is not added.

OPCODE nic Operand C aaa10001 aaaaaaaa ACALL addr11 00100100 iiiiiiii ADD A, #imm 00100101 dddddddd ADD A, direct 0010011m ADD A, @Rm 00101nnn ADD A, Rn 00110100 iiiiiiii ADDC A, #imm 00110101 dddddddd ADDC A, direct	2 3 2 1	Original Cycles 24 12
aaa10001 aaaaaaaa ACALL addr11 00100100 iiiiiiii ADD A, #imm 00100101 dddddddd ADD A, direct 0010011m ADD A, @Rm 00101nnn ADD A, Rn 00110100 iiiiiiii ADDC A, #imm 00110101 dddddddd ADDC A, direct	4 2 3 2	24 12
00100101 dddddddd ADD A, direct 0010011m ADD A, @Rm 00101nnn ADD A, Rn 00110100 iiiiiiii ADDC A, #imm 00110101 dddddddd ADDC A, direct	3	
0010011m ADD A, @Rm 00101nnn ADD A, Rn 00110100 iiiiiiii ADDC A, #imm 00110101 dddddddd ADDC A, direct	2	12
00101nnn ADD A, Rn 00110100 iiiiiiii ADDC A, #imm 00110101 dddddddd ADDC A, direct		
00110100 iiiiiiii ADDC A, #imm 00110101 dddddddd ADDC A, direct	1	12
00110101 dddddddd ADDC A, direct		12
	2	12
0044044	3	12
0011011m ADDC A, @Rm	2	12
00111nnn ADDC A, Rn	1	12
aaa00001 aaaaaaaa AJMP addr11	3	24
01010010 dddddddd ANL direct, A	3	12
01010011 dddddddd iiiiiiii ANL direct, #imm	3	24
01010100 iiiiiiii ANL A, #imm	2	12
01010101 dddddddd ANL A, direct	3	12
0101011m ANL A, @Rm	2	12
01011nnn ANL A, Rn	1	12
10000010 bbbbbbbb ANL C, bit	3	24
10110000 bbbbbbbb ANL C,/bit	3	24
10110100 iiiiiiii rrrrrrr CJNE A, #imm, rel	4/4	24/24
10110101 dddddddd rrrrrrrr CJNE A, direct, rel	5/5	24/24
1011011m iiiiiiii rrrrrrr CJNE @Rm, #imm, rel	4/4	24/24
10111nnn iiiiiiii rrrrrrrr CJNE Rn, #imm, rel	4/4	24/24
11000010 bbbbbbbb CLR bit	3	12
11000011 CLR C	1	12
11100100 CLR A	1	12
10110010 bbbbbbbb CPL bit	3	12
10110011 CPL C	1	12
11110100 CPL A	1	12
11010100 DA A	1	12
00010100 DEC A	1	12
00010101 dddddddd DEC direct	3	12
0001011m DEC @Rm	2	12
00011nnn DEC Rn	1	12
10000100 DIV AB	10	48
11010101 dddddddd rrrrrrrr DJNZ direct, rel	5/5	24/24
11011nnn rrrrrrr DJNZ Rn, rel	3/3	24/24
00000100 INC A	1	12
00000101 dddddddd INC direct	3	12
0000011m INC @Rm	2	12
00001nnn INC Rn	1	12
10100011 INC DPTR	1	24
00100000 bbbbbbbb rrrrrrr JB bit, rel	5/5	24/24
00010000 bbbbbbbb rrrrrrr JBC bit, rel	5/5	24/24
01000000 rrrrrrr JC rel	3/2	24/24
01110011 JMP @A+DPTR	3	24
	5/5	24/24
	3/2	24/24
	3/2	24/24
01100000 rrrrrrr JZ rel	3/2	24/24
00010010 aaaaaaaa aaaaaaaa LCALL addr16	4	24
00000010 aaaaaaaa aaaaaaaa LJMP addr16	4	24
01110100 iiiiiiiii MOV A, #imm	2	12
01110101 dddddddd iiiiiiii MOV direct, #imm	3	24
0111011m iiiiiiiii MOV @Rm, #imm	2	12
01111nnn iiiiiiii MOV Rn, #imm	2	12
10000101 ddd(src) ddd(dst) MOV dir(dst), dir(src)	3	24

Conditiona	l Jump: Taken/Not Take	242
Conditiona	LJUHID. TAKCH/INOLTAKI	SH .

	OPCODE		Mnemo- nic	Operand	UL8051 Cycles	Original Cycles
1000011m	ddddddd		MOV	direct, @Rm	2	24
10001nnn	dddddddd		MOV	direct, Rn	2	24
10010000	iiiiiiii	iiiiiiii	MOV	DPTR, #imm16	3	24
10010010	bbbbbbbb		MOV	bit, C	3	24
10100010	bbbbbbbb		MOV	C, bit	3	12
1010011m	ddddddd		MOV	@Rm, direct	3	24
10101nnn	ddddddd		MOV	Rn, direct	3	24
11100101	dddddddd		MOV	A, direct	3	12
1110011m			MOV	A, @Rm	2	12
11101nnn			MOV	A, Rn	1	12
11110101	ddddddd		MOV	direct, A	2	12
1111011m			MOV	@Rm, A	1	12
11111nnn			MOV	Rn, A	1	12
10000011			MOVC	A, @A+PC	4	24
10010011			MOVC	A, @A+DPTR	4	24
11100000			MOVX	A, @DPTR	3	24
1110001m			MOVX	A, @Rm	3	24
11110000			MOVX	@DPTR, A	1	24
1111001m			MOVX	@Rm, A	1	24
10100100			MUL	AB	1	48
00000000			NOP		1	12
01000010	dddddddd		ORL	direct, A	3	12
01000011	dddddddd	iiiiiiii	ORL	direct, #imm	3	24
01000100	iiiiiiii		ORL	A, #imm	2	12
01000100	ddddddd		ORL	A, direct	3	12
01000101	uuuuuuu		ORL	A, @Rm	2	12
0100011m			ORL	A, Rn	1	12
01110010	bbbbbbbb	+	ORL	C, bit	3	24
10100000	bbbbbbbb	+	ORL	C, /bit	3	24
11010000	dddddddd		POP	direct	2	24
11000000	dddddddd		PUSH	direct	3	24
00100010	uuuuuuu		RET	ancer	5	24
00110010		+	RETI		5	24
00100011			RL.	A	1	12
00110011			RLC	A	1	12
00000011			RR	A	1	12
00010011		+	RRC	A	1	12
10100101			SBRK	0x0103	4	Undefined
110100101	bbbbbbbb		SETB	bit	3	12
11010011	00000000		SETB	C	1	12
10000000	rrrrrrr		SJMP	rel	3	24
10010100	iiiiiiii		SUBB	A, #imm	2	12
10010101	ddddddd	+	SUBB	A, direct	3	12
1001011m	dudududu	+	SUBB	A, @Rm	2	12
100111nn			SUBB	A, Rn	1	12
11000100			SWAP	A	1	12
11000100	ddddddd		XCH	A, direct	3	12
11000101	dudududu	+	XCH	A, @Rm	2	12
11001nnn		+	XCH	A. Rn	1	12
1101011m		+	XCHD	A, @Rm	2	12
01100010	ddddddd	+	XRL	direct, A	3	12
01100010	dddddddd	iiiiiiiii	XRL	direct, #imm	3	24
01100011	iiiiiiii	11111111	XRL	A, #imm	2	12
01100100	dddddddd	+	XRL	A, direct	3	12
01100101 0110011m	auuuuuuu	+	XRL	A, @Rm	2	12
0110011III 01101nnn		1	XRL	A, @Kiii A, Rn	1	12
OLIOTHIII			AKL	A, KII	1	12

5.5. Bus Configurations

Table 5-3 shows the bus functional description. Figure 5-3 shows the system bus configuration.

Table 5-3. Bus Functional Descriptions

Item	Description
System bus	 XDATA BUS 8-bit width, 64-KB space Access cycle: 2 cycles (CLKFAST) SFR BUS 16-bit width, 256-byte space 8-bit/16-bit access mode Access cycle: 1 cycle (CLKFAST)
Bus Master	- CPU- EPU (Event Processing Unit)- DSAC (Direct SFR Access Controller)
CPU BUS	- IBUS (XPROG BUS) 8-bit width, 64-KB space - XBUS 8-bit width, 64-KB space - SBUS 8-bit width, 128-byte space - IRAM BUS 8-bit width, 256-byte space
EPU BUS	 MBUS 16-bit width, 512-byte space XBUS 8-bit width, 64-KB space SBUS 16-bit width, 256-byte space
DSAC BUS	- SFR BUS 16-bit width, 256-byte space
Arbitration Circuit	 Flash memory arbiter Peripheral function arbiter XDATA BUS arbiter SFR BUS arbiter RAM arbiter
16-bit Access Buffer	- XDATA BUS buffer - SFR BUS buffer

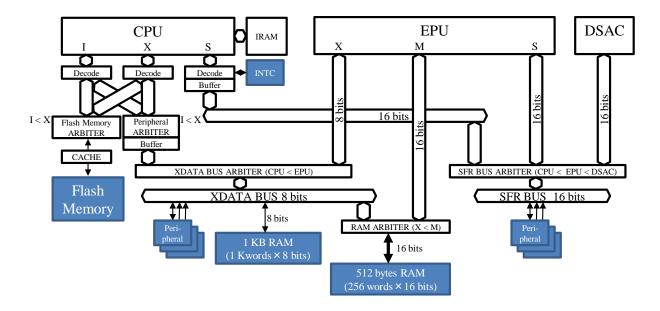


Figure 5-3. System Bus Configuration

5.6. Bus Operational Descriptions

5.6.1. System Bus

The XDATA and SFR BUSes are system buses. They are connected to the peripheral functions and the memories (RAM0 and RAM1). The XDATA and SFR BUSes operate independently.

• XDATA BUS

The XDATA BUS is connected to the peripheral function registers (low speed) and the memories (RAM0 and RAM1).

- Read/write access cycle: 2 cycles (CLKFAST)
- Data width: 8 bitsAddress space: 64 KB

• SFR BUS

The SFR BUS is connected to the peripheral function registers (high speed).

- Read/write access cycle: 1 cycle (CLKFAST)
- Data width: 16 bits
- Address space: 256 bytes
- Access mode: 8-bit/16-bit access

The 16-bit access mode operates to access the 16-bit register connected to the SFR BUS in one cycle using the 16-bit data bus. The 8-bit access mode operates to access the 8-bit register connected to the SFR BUS using the lower 8 bits in the 16-bit data bus. In addition, there are the peripheral functions that can access 16-bit registers by accessing twice in the 8-bit access mode.

5.6.2. Bus Master

• CPU

The CPU has the following bus interfaces: IBUS, XBUS, SBUS.

The flash memory and the XDATA BUS are accessed from the IBUS and the XBUS. The XDATA BUS is accessed from the CPU via a buffer. This buffer guarantees the atomicity of the 16-bit register access (sequential addresses: 2n and 2n + 1).

To access the 16-bit SFR from the CPU, access the same address twice. The SFR is accessed from the CPU via the buffer. This buffer combines 2 accesses from the CPU at once, and executes the 16-bit access at a time. Then, this buffer guarantees the atomicity of the 16-bit SFR access.

- IBUS: Used for the data reading by the instruction fetch or the MOVC instruction

Data bus width: 8 bits Address space: 64 KB

- XBUS: Used for data access by the MOVX instruction

Data bus width: 8 bits Address space: 64 KB

- SBUS: Used for the SFR access by the MOV instruction

Data bus width: 8 bits

Address space: 128 bytes (0x80 to 0xFF), 0x00 to 0x7F is an access prohibited area.

• DSAC (Direct SFR Access Controller)

The DSAC has the SFR BUS interface to access the SFR BUS.

Data bus width: 16 bits Address space: 256 bytes

• EPU (Event Processing Unit)

The EPU has the following bus interfaces: MBUS, XBUS, SBUS.

- MBUS: For the instruction fetch and MOVM instruction accesses

Data bus width: 16 bits Address space: 512 bytes

The MBUS is connected to RAM1, and is sharing with the XDATA BUS.

- XBUS: For the MOVX instruction data accesses, and accessible to the XDATA BUS

Data bus width: 8 bits Address space: 64 KB

- SFR BUS: For the SFR access of the MOVS instruction

Data bus width: 16 bits Address space: 256 bytes

5.6.3. Arbitration Circuit

• Flash Memory Arbiter

This is the arbiter for the accesses to the flash memory of the IBUS and the XBUS in the CPU. When the IBUS access conflicts with the XBUS access, the XBUS access is prioritized, then the IBUS access is waited. When there is no subsequent XBUS access after the XBUS access completes, the waiting IBUS access is executed. When the other bus accesses while one bus is accessing the flash memory, the subsequent access waits until the access to the flash memory completes. After the first access completes, the subsequent access is arbitrated according to the priority order.

• Peripheral System Arbiter

This is the arbiter for the accesses to the XDATA BUS of the IBUS and the XBUS in the CPU. When the IBUS access conflicts with the XBUS access, the XBUS access is prioritized, then the IBUS access is waited. When there is no subsequent XBUS access after the XBUS access completes, the waiting IBUS access is executed. When the other bus accesses while one bus is accessing the XDATA BUS, the subsequent access waits until the access to the XDATA BUS completes. After the first access completes, the subsequent access is arbitrated according to the priority order.

• XDATA BUS Arbiter

This is the arbiter for the accesses to the XDATA BUS of the CPU and the EPU. When the CPU access conflicts with the EPU access, the EPU access is prioritized, then the CPU access is waited. When there is no subsequent EPU access after the EPU access completes, the waiting CPU access is executed. When the other bus accesses while one bus is accessing the XDATA BUS, the subsequent access waits until the access to the XDATA BUS completes. After the first access completes, the subsequent access is arbitrated according to the priority order.

• SFR BUS Arbiter

This is the arbiter for the SFR BUS accesses of the CPU, the DSAC, and the EPU. When the two or more accesses conflict, the highest priority access is selected, and then the unselected accesses are waited. The priority order is DSAC > EPU > CPU. After the selected access completes, the subsequent access is selected again according to the priority order. When the other bus accesses while one bus is accessing the SFR BUS, the subsequent access waits until the access to the SFR BUS completes. After the first access completes, the subsequent access is arbitrated according to the priority order.

• RAM Arbiter

This is the arbiter for the access to the RAM1 of the XDATA BUS and the MBUS (EPU). When the XDATA BUS access conflicts with the MBUS access, the MBUS access is prioritized, then the XDATA BUS access is waited. When there is no subsequent MBUS access after the MBUS access completes, the waiting XDATA BUS access is executed.

5.6.4. 16-bit Access Buffer

The 16-bit register exists on the XDATA and SFR BUSes. 16-bit data must be read from or written to the 16-bit register. The read or write of data is completed by accessing with the 16-bit data. Since the CPU is accessed by 8-bit units, 2 accesses are required for the 16-bit register. In the CPU, note that the interrupt and the OCD access may be generated during the CPU access of 16-bit data. In addition, the access to register of the same module during an interrupted access processing may cause the following operation: The write access before being interrupted is invalidated. The unintended operation such as the first access during the interrupt processing is recognized as the second access.

For solution of this problem, the 16-bit access buffer is integrated. In the first access to the 16-bit register, buffering processing is performed. Then, the atomicity of 2 accesses is guaranteed. The buffer has 4 statuses (uninterrupted status, low-level interrupt, high-level interrupt, and OCD access). To solve the failure of 16-bit access by interrupt processing, use the proper buffer depending on the each status.

In the write access, the first write access is buffered, and is not transmitted to the XDATA BUS or the SFR BUS. At the second write access, the first and second writes are atomically generated.

In the read access, the first and second reads are generated on the XDATA BUS or the SFR BUS at the first read access to obtain the 16-bit data at once. Note that, only the first read value is obtained at the first access, and the second read value is buffered. The second read value is obtained from the buffer at the second read.

(1) XDATA BUS Buffer

The XDATA BUS buffer is to guarantee the atomicity when the CPU accesses the 16-bit register on the XDATA BUS. The peripheral function register is assigned to the address 0xE000 to 0xFFFF. To enable the XDATA BUS buffer, access the 16-bit register space that is the mirror area of the peripheral function register space (0xC000 to 0xDFFF).. Also, the peripheral function register space can be accessed from the 16-bit register space (for example, the 16-bit register address of 0xFF80 is 0xDF80). To access the 16-bit register, access 2 addresses, 2n and 2n + 1, in the sequential order. The accesses to address 2n and 2n + 1 are regarded as the first access (lower byte) and the second access (higher byte), respectively. To reset the control state of the 16-bit register access buffer, set BUSBUFCR.CLR_XSTM = 1.

(2) SFR BUS Buffer

The SFR BUS buffer is to guarantee the atomicity when the CPU accesses the 16-bit register on the SFR BUS. To enable the buffer processing at the access to the 16-bit register on the SFR BUS, set BUSBUFCR.SFRBUFE = 1. To access the 16-bit register on the SFR BUS, 2 accesses are required. The SFR BUS access after processing the buffer operates in the 16-bit access mode. This guarantees the atomicity. To stop the buffer processing, set BUSBUFCR.SFRBUFE = 0. To clear the counter that counts the register access is the first or second, set BUSBUFCR.CLR_SCNT = 1. To reset the control state of the 16-bit register access buffer, set BUSBUFCR.CLR_SSTM =1.

5.7. Usage Notes and Restrictions

5.7.1. Restrictions on XDATA BUS Buffer

While a program in a RAM on a bus is being executed, the functions of the XDATA BUS buffer cannot be used.

5.7.2. Conflict between 16-bit Register Write and Interrupt

Writing to the 16-bit registers must not conflict with any interrupt acceptance; therefore, before writing to the higher bytes of the 16-bit registers (SFR BUS, XDATA BUS), set the INTMST.INTME bit to 0 to disable any interrupt acceptance. Then, insert two NOP instructions and write to the higher bytes. After writing to the higher bytes, set the INTMST.INTME bit to 1 to re-enable interrupt acceptance.

5.7.3. Access to RAM1 Area

Do not access the 512-byte RAM1 area (0x0400 to 0x05FF) from the CPU during the EPU operation.

5.7.4. Access to XDATA Space

Do not access the XDATA space addresses (0xC000 to 0xDFF) from the CPU during the EPU operation.

5.7.5. MOVX Instructions to Peripheral Registers of XDATA Space

During the EPU operation, the MOVX instructions by the CPU must not be executed consecutively, as in the examples below.

```
Example 1: Write the same data consecutively to the same address of the XDATA peripheral register from the CPU.

movx @dptr, a (Write)

movx @dptr, a (Write)
```

```
Example 2: Write to/read from the same address of the XDATA peripheral register consecutively by the CPU.

movx @dptr, a (Write)

movx a, @dptr (Read)
```

Inserting two or more execution cycles of a different instruction other than MOVX (e.g., NOP) between the two MOVX instructions can avoid the malfunction mentioned above. When the program is written in C, implement the workaround as follows.

During the EPU operation, when the CPU attempts two consecutive accesses to a peripheral register of the XDATA space with the MOVX instruction, insert two NOP instructions, "__asm__ ("nop");", between the consecutive accesses by the CPU as in the examples 1 and 2.

5.7.6. EPU Operation While CPU Is Accessing UART Register

5.7.6.1. EPU Access Failure by XDATA BUS Conflict

If the EPU attempts to access the XDATA space while the CPU is accessing the UART register, the buses will have conflicts thus the EPU access fails. To avoid such conflicts, implement the following workarounds.

Workaround

(1) Access the UART by the EPU (alternative access for the CPU; see Table 5-4)

This workaround is to permit the EPU to access the UART registers instead of the CPU. Handshaking with the CPU can control one thread of the EPU, thus permitting an alternative access to the UART registers by the EPU. Flags for handshaking, data addresses to be accessed are then read/written by the CPU and EPU from/to the following: SPR on the SFR BUS; the RAM0 (0x0000 to 0x03FF).

(2) Access the UART by the CPU (see Table 5-4)

This workaround is to perform two consecutive accesses to the XDATA space by the EPU, thus avoiding access fails due to bus conflicts. The first access succeeds or fails, but the second access succeeds. In this description, "fail" means that no access by the EPU is issued to the XDATA space. If an access fails, no writing will be executed when a write access is attempted, whereas undefined values will be read when a read access is attempted. When writing the instructions which activate the hardware (e.g., ADC trigger, EPU activation, UART transmission and reception, DSAC trigger, PWM re-trigger, etc.) to the peripheral function registers, write an ineffective value at the first time or implement the workaround (1) above.

- (2)-1 In the case where thread switching occurs while an EPU thread is being processed:
 - Perform byte access to the XDATA space by the EPU
 Read/write bytes by using the word access instruction W_SA mode (i.e., two consecutive accesses to the
 same address). For the usage notes on the word access instruction, see Section 5.7.6.2 below.
 - Perform word access to the XDATA space by the EPU
 Accessing the 16-bit-width peripheral function registers (i.e. consecutive accessing to the lower and higher bytes of the registers) is prohibited. When accessing the 16-bit-width peripheral function registers, implement the workaround (1) above.
- (2)-2 In the case where no thread switching occurs while an EPU thread is being processed:
 When either of the following two conditions is met, perform two consecutive accesses to the XDATA space regardless of the byte or word access instruction: the condition in which only one thread is processed at once; or the condition in which no round-robin thread switching occurs while multiple threads are processed.

	W. d. a. a. d	Instructions to Be Used				
	Workaround	Byte Access Instruction by EPU	Word Access Instruction by EPU			
(1)	Access by EPU to UART (Alternative Access)	Available	Available			
(2)-1	Access by CPU to UART (Thread Switching Occurs)	Substitute the word access instruction (see Section 5.7.6.2)	Prohibited			
(2)-2	Access by CPU to UART (No Thread Switching Occurs)	Execute two consecutive byte instructions	Execute two consecutive word instructions			

Table 5-4. List of Workarounds

5.7.6.2. Usage Notes on Two Consecutive Accesses with Word Access Instruction

When you perform two consecutive accesses to the same address by using the word access instruction, each access will end up with two different results according to which of the accesses, read (LOADX) or write (STOREX), has been attempted.

Read Access: LOADX.W SA Rn, @AddrX

- The first and second accesses suceed
- The first access fails (a LOAD value is undefined); the second access succeeds

Write Access: STOREX.W SA @AddrX, Rn

- The first and second accesses suceed
- The first access fails (access is lost); the second access succeeds

If both the first and second accesses succeeded, the first write access may cause malfunctions. Therefore, the following workarounds must be implemented, for proper writing to the registers by the EPU.

- Writing to the setting register of the peripheral fuction:
 Write the same values at the first and second accesses.
- Clearing the flags of the peripheral fuction registers:
 Write 0 at the first time, then clear at the second time.
- Writing the instructions which activate the hardware (e.g., ADC trigger, EPU activation, UART transmission and reception, DSAC trigger, PWM re-trigger, etc.) to the peripheral function registers:
 Write an ineffective value, or implement the workaround (1) in Section 5.7.6.1.

5.7.7. CPU and EPU Simultaneous Access to XDATA Space

Details

Malfunctions may occur when the CPU and EPU attempt simultaneous access to the XDATA space, and then the EPU accesses the XDATA space after a single-cycle instruction. This is applicable to all of the the XDATA BUS access instructions by the EPU: STOREX (B_LO, B_HI, W, W_SA) and LOADX (B_SE, B_ZE, W, W_SA). In the descriptions hereafter, the term "STOREX/LOADX instruction" represents these XDATA BUS access instructions by the EPU. The term "MOVX instruction" represents all of the XDATA BUS access instructions by the CPU (MOVX @DPTR, A; MOVX @Rm, A; MOVX A, @DPTR; MOVX A, @Rm), which are also subject to the malfunction mentioned above.

The failure example below explains that the EPU may hang up, or the CPU or EPU may lose its access after a single-cycle instruction according to the EPU and CPU access destinations in the XDATA space (Table 5-5). Losing an access means that no writing will be executed when a write access is attempted, and undefined values will be read when a read access is attempted.

[Failure Example]

When the STOREX instruction (E-1) and the MOVX instruction (C-1) attempt simultaneous access to any of the peripheral registers of the XDATA space, the XDATA BUS access of the MOVX instruction (C-3) will be lost.

The EPU attempts the second access to a peripheral register of the XDATA space after a single-cycle instruction.

```
(E-1) STOREX.B_LO @addr, Rm
(E-2) MOV Rn, Rm
(E-3) STOREX.B LO @addr, Rm
```

At the same time, the CPU also attempts the second access to a peripheral register of the XDATA space after a single-cycle instruction.

```
(C-1) movx @dptr, a
(C-2) nop
(C-3) movx @dptr, a
```

Table 5-5. Access Destinations and Phenomena to Be Occurred

EPU Instruction (E-1)	EPU Instruction (E-3)		U Instruction (C- stinations of 1st I	,
Access Destination	Access Destination	Peripheral Register	UART	RAM0/1
Peripheral register	Peripheral register (incl. UART)	(C-3) Lost ⁽¹⁾	(E-3) Lost ⁽³⁾	Access succeeded
(incl. UART)	RAM0/1	EPU hanged up(2)	(E-3) Lost ⁽³⁾	Access succeeded
RAM0/1	XDATA space (Peripheral register, UART, RAM0/1)	Access succeeded	(E-3) Lost ⁽³⁾	Access succeeded

⁽¹⁾ Refers that the CPU's second XDATA BUS access (C-3) after a single-cycle instruction is lost.

⁽²⁾ Refers that the EPU remains hanged up until the CPU's next XDATA BUS access occurs from the EPU's second XDATA BUS access ((E-3); to the RAM0/1) after a single-cycle instruction.

⁽³⁾ Refers that the EPU's second XDATA BUS access (E-3) after a single-cycle instruction is lost (i.e., the

phenomenon described in Section 2.6).

When the CPU's first XDATA BUS access destination is the UART register, the workaround for the EPU's two consecutive accesses (see Section 5.7.6) does not prevent losing the CPU's second XDATA BUS access (C-3) after a single-cycle instruction, as shown in the following failure example. Therefore, implement the workarounds listed in this section in addition to the workarounds for the UART listed in Section 5.7.6.

[Failure Example]

When the STOREX instruction (E-1) and the MOVX instruction (C-1) attempt simultaneous access to the XDATA space, the XDATA BUS accesses of the STOREX instruction (E-3) and the MOVX instruction (C-3) will be lost.

The EPU attempts two consecutive accesses to the XDATA space after a single-cycle instruction.

- (E-1) STOREX.B LO @addr, Rm
- (E-2) MOV Rn, Rm
- (E-3) STOREX.B LO @addr, Rm
- (E-4) STOREX.B LO @addr, Rm

At the same time, the CPU attempts the second access to the XDATA space after a single-cycle instruction.

- (C-1) movx @dptr, a (Access destination is the UART register.)
- (C-2) nop
- (C-3) movx @dptr, a

To avoid the failure examples above, implement the following workarounds.

(1) Workaround by the EPU

As indicated in the instructions (1) to (3) in the failure examples 1 to 4, the following execution order may cause the malfunction mentioned above: (1) the STOREX/LOADX instruction, (2) a single-cycle instruction other than the STOREX/LOADX instruction, then (3) the STOREX/LOADX instruction. To avoid the malfunction, make the EPU execute the STOREX/LOADX instructions consecutively, or insert one or more instructions between the MOVX instructions so that there are at least two consecutive bus-idle-state cycles between the XDATA BUS accesses (i.e., insert two single-cycle instructions or one double-cycle instruction). For the execution cycle counts defined for each instruction, see the section describing the EPU operations.

[Failure Examples]

Example 1:

- (1) STOREX.B LO @addr, Rm
- (2) MOV Rn, Rm
- (3) STOREX.B LO @addr, Rm

Example 2:

- (1) STOREX.B LO @addr, Rm
- (2) ADD Rn, Rm
- (3) LOADX.B SE Rn, @addr

Example 3:

- (1) LOADX.B SE Rn, @addr
- (2) OR Rn, Rm
- (3) STOREX.W @addr, Rm

Example 4:

- (1) LOADX.W SA Rn, @addr
- (2) INC Rn, Rm
- (3) LOADX.B SE Rn, @addr

(1)-1 Workround for the fixed priority setting

Do not put the following in the same thread: the STOREX/LOADX instruction, a single-cycle instruction other than the STOREX/LOADX instruction, and a sequence of the STOREX/LOADX instructions.

As the workaround example 1 shows, put the STOREX/LOADX instructions consecutively, or insert two single-cycle instructions or one double-cycle instruction. The workaround example 2 is for inserting two single-cycle instructions: insert an instruction that has no operational influence, or change the instruction order if no operational problem is found.

[Workaround Examples]

Example 1:

- (1) STOREX.B LO @addr, RO
- (2) LOADX.B SE R1, @addr

Example 2:

- (1) STOREX.B LO @addr, R1
- (2) MOV RO, RO
- (3) MOV R1, R1
- (4) STOREX.B LO @addr, RO

When thread switching occurs, be sure to pay attention to the following condition: a certain thread contains any of the instruction sequences listed in the following failure examples and a thread with lower priority than the certain thread contains the STOREX/LOADX instruction. If the upper-priority thread is executed immediately after the STOREX/LOADX instruction in the lower-priority thread is executed, an instruction sequence leading to malfunctions may occur depending on a release timing of the WAIT instruction. To avoid such failure, check operation timings and insert either of the following between the EVTWAIT/TIMWAIT instruction and the STOREX/LOADX instruction as needed: two or more single-cycle instructions; one or more double-cycle instructions.

[Failure Examples]

Example 1:

- (1) EVTWAIT #evt
- (2) STOREX.B LO @addr, Rm

Example 2:

- (1) EVTWAIT #evt
- (2) MOV Rn, Rm
- (3) STOREX.B LO @addr, Rm

Example 3:

- (1) TIMWAIT #time (Failure occurs even when #time = 0.)
- (2) STOREX.B LO @addr, Rm

Example 4:

- (1) TIMWAIT #time (Failure occurs even when #time = 0.)
- (2) MOV Rn, Rm
- (3) STOREX.B LO @addr, Rm

[Workaround Examples]

Example 1:

- (1) EVTWAIT #evt
- (2) MOV RO, RO
- (3) MOV RO, RO
- (4) STOREX.B LO @addr, R1

Example 2:

- (1) TIMWAIT #time
- (2) MOV R1, R1
- (3) MOV R1, R1
- (4) STOREX.B LO @addr, RO

(1)-2 Workaround for the round-robin setting

Do not use the round-robin method when the STOREX/LOADX instruction is used in multiple threads.

(2) Workaround by the CPU

Insert one or more instructions between the MOVX instructions so that there are at least two consecutive bus-idle-state cycles between the XDATA BUS accesses when the following execution order exists in the CPU: (1) the MOVX instruction, (2) a single-cycle instruction, then (3) the MOVX instruction. Note that when the workaround by the EPU is already implemented, no workaround by the CPU is required. For the execution cycle counts defined for each instruction, see Section 5.4.2 that provides the 8051 CPU instruction code map. However, note that the workaround by the EPU must be implemented when the EPU may hang up (as described in the footnote (2), Table 5-5) due to the following execution order existing in the EPU: (1) the STOREX/LOADX instruction, (2) a single-cycle instruction other than the STOREX/LOADX instruction, then (3) the STOREX/LOADX instruction (with the access destination to the RAM0/1).

[Workaround Example]

movx @dptr,a
nop
(Insert two single-cycle instructions b/w the MOVX instructions, e.g., two NOP instructions.)
nop
movx @dptr,a

6. Register Mapping

6.1. Peripheral Address on XDATA BUS

For more details of register, see the corresponding section.

Table 6-1. Peripheral Address on XDATA BUS

26.11	Addre	ss (8 bits)	Address	(16 bits)
Module	Start	End	Start	End
EPU	E000	E07F	C000	C07F
_	E080	E0FF	C080	C0FF
_	E100	E17F	C100	C17F
_	E180	E1FF	C180	C1FF
SCID	E200	E27F	C200	C27F
_	E280	E2FF	C280	C2FF
EVC	E300	E37F	C300	C37F
_	E380	E3FF	C380	C3FF
_	E400	E47F	C400	C47F
_	E480	E4FF	C480	C4FF
_	E500	E57F	C500	C57F
_	E580	E5FF	C580	C5FF
_	E600	E67F	C600	C67F
_	E680	E6FF	C680	C6FF
_	E700	E77F	C700	C77F
_	E780	E7FF	C780	C7FF
_	E800	E87F	C800	C87F
_	E880	E8FF	C880	C8FF
_	E900	E97F	C900	C97F
	E980	F9FF	C980	D9FF
	EA00	EA7F	CA00	CA7F
_	EA80	EAFF	CA80	CAFF
_	EB00	EB7F	CB00	CB7F
_			+	
_	EB80	EBFF	CB80	CBFF CC7F
CMDLUT	EC00	EC7F	CC00 CC80	
CMPLUT	EC80	ECFF		CCFF
CMD4	ED00	ED7F	CD00 CD80	CD7F
CMP4	ED80	EDFF		CDFF
CMP5	EE00	EE7F	CE00	CE7F
_	EE80	EEFF	CE80	CEFF
_	EF00	EF7F	CF00	CF7F
— ADC0	EF80	EFFF	CF80	CFFF
ADC0	F000	F07F	D000	D07F
ADC1	F080	F0FF	D080	D0FF
_	F100	F17F	D100	D17F
_	F180	F1FF	D180	D1FF
_	F200	F27F	D200	D27F
_	F280	F2FF	D280	D2FF
— CMP0	F300	F37F	D300	D37F
CMP0	F380	F3FF	D380	D3FF
CMP1	F400	F47F	D400	D47F
CMP2	F480	F4FF	D480	D4FF
CMP3	F500	F57F	D500	D57F
_	F580	F5FF	D580	D5FF

N. 1.1	Addres	s (8 bits)	Address	(16 bits)
Module	Start	End	End Start F67F D600 F6FF D680 F77F D700 F7FF D780 F87F D800 F8FF D880 F97F D900 F9FF D980 FA7F DA00 FAFF DA80 FB7F DB00 FBFF DC00 FCFF DC80 FD7F DD00 FDFF DB80 FE7F DE00 FEFF DE80 FF7F DE00 FEFF DE80 FF7F DF00	End
OPAMP0	F600	F67F	D600	D67F
OPAMP1	F680	F6FF	D680	D6FF
_	F700	F77F	D700	D77F
TinyDSP0	F780	F7FF	D780	D7FF
TinyDSP1	F800	F87F	D800	D87F
DSAC	F880	F8FF	D880	D8FF
PWM0/ 1	F900	F97F	D900	D97F
PWM2/3	F980	F9FF	D980	D9FF
TIMER	FA00	FA7F	DA00	DA7F
_	FA80	FAFF	DA80	DAFF
_	FB00	FB7F	DB00	DB7F
SPI	FB80	FBFF	DB80	DBFF
I2C	FC00	FC7F	DC00	DC7F
UART	FC80	FCFF	DC80	DCFF
TRIM	FD00	FD7F	DD00	DD7F
POC	FD80	FDFF	DD80	DDFF
GPIO	FE00	FE7F	DE00	DE7F
WDT	FE80	FEFF	DE80	DEFF
FLC	FF00	FF7F	DF00	DF7F
SYSC	FF80	FFFF	DF80	DFFF

6.2. Peripheral Address on SFR BUS

The CPU system and frequently accessed peripheral registers are assigned to the SFR area. The CPU can read from/write to the SFR in 1 cycle. The PSW, ACC, and B registers are bit-addressable registers. Do not access the unassigned addresses, which are the gray area as shown in Table 6-2 and Table 6-3.

Table 6-2. Peripheral Register on SFR BUS

80		SP	DPL	DPH					87
88		ADIF0	ADIF1			MIXDA4 L/H	MIXDA5 L/H	SPR4	8F
90	PDR0	SPR0	MIXDA2 L/H	MIXDA3 L/H	SPR5	MIXDA1 L/H	MIXDA0 L/H		97
98	PDR1	AD00L/H	AD01L/H		INTMST	CMI1	SPR6	SPR7	9F
A0		AD10L/H	AD11L/H		INTENA0	INTENA1	INTENA2	INTENA3	A7
A8		AD20L/H	AD21L/H		INTLVL0	INTLVL1	INTLVL2	INTLVL3	AF
В0	PDR2	AD30L/H	AD31L/H		INTCFG0	INTCFG1	INTCFG2	INTCFG3	В7
В8		AD40L/H	AD41L/H		INTFLG0	INTFLG1	INTFLG2	INTFLG3	BF
C0		AD50L/H	AD51L/H		DSP0 _R0_L/H	DSP0 _R1_L/H	DSP0 _R2_L/H	DSP0 _R3_L/H	C7
C8	PIF0	AD60L/H	AD61L/H		DSP0 _R4_L/H	DSP0 _R5_L/H	DSP0 _R6_L/H	DSP0 _R7_L/H	CF
D0	PSW	AD70L/H	AD71L/H		DSP1 _R0_L/H	DSP1 _R1_L/H	DSP1 _R2_L/H	DSP1 _R3_L/H	D7
D8	PIF1	AD80L/H	AD81L/H		DSP1 _R4_L/H	DSP1 _R5_L/H	DSP1 _R6_L/H	DSP1 _R7_L/H	DF
E0	ACC	AD90L/H	AD91L/H		BUF_A0 _L/H	BUF_B0 _L/H	BUF_C0 _L/H	BUF_D0 _L/H	E7
E8	PIF2	ADA0L/H	ADA1L/H		BUF_A1 _L/H	BUF_B1 _L/H	BUF_C1 _L/H	BUF_D1 _L/H	EF
F0	В	ADB0L/H	ADB1L/H	CMI0	BUF_A2 _L/H	BUF_B2 _L/H	BUF_C2 _L/H	BUF_D2 _L/H	F7
F8		SPR1	SPR2	SPR3	BUF_A3 _L/H	BUF_B3 _L/H	BUF_C3 _L/H	BUF_D3 _L/H	FF

Table 6-3. Peripheral Register on SFR BUS Accessed from DSAC and EPU

00	ADO00 L/H	ADO01 L/H			TCMPA0 L/H	TCMPB0 L/H	TBUFA0 L/H	TBUFB0 L/H	07
08	ADO10 L/H	ADO11 L/H			TCMPA1 L/H	TCMPB1 L/H	TBUFA1 L/H	TBUFB1 L/H	0F
10	ADO20 L/H	ADO21 L/H			TCMPA2 L/H	TCMPB2 L/H	TBUFA2 L/H	TBUFB2 L/H	17
18	ADO30 L/H	ADO31 L/H			TCMPA3 L/H	TCMPB3 L/H	TBUFA3 L/H	TBUFB3 L/H	1F
20	ADO40 L/H	ADO41 L/H			DSP0 MIN0L/H	DSP0 MAX0L/H	DSP1 MIN0L/H	DSP1 MAX0L/H	27
28	ADO50 L/H	ADO51 L/H			DSP0 MIN1L/H	DSP0 MAX1L/H	DSP1 MIN1L/H	DSP1 MAX1L/H	2F
30	ADO60 L/H	ADO61 L/H			DSP0 MIN2L/H	DSP0 MAX2L/H	DSP1 MIN2L/H	DSP1 MAX2L/H	37
38	ADO70 L/H	ADO71 L/H							3F
40	ADO80 L/H	ADO81 L/H							47
48	ADO90 L/H	ADO91 L/H							4F
50	ADOA0 L/H	ADOA1 L/H			SPR0	SPR1	SPR2	SPR3	57
58	ADOB0 L/H	ADOB1 L/H			SPR4	SPR5	SPR6	SPR7	5F
60	BUF_MIN0 L/H	BUF_MAX 0 L/H	CMP_MIN 0 L/H	CMP_MA X0 L/H	CMP_A0 L/H	CMP_B0 L/H	CMP_C0 L/H	CMP_D0 L/H	67
68	BUF_MIN1 L/H	BUF_MAX 1 L/H	CMP_MIN 1 L/H	CMP_MA X1 L/H	CMP_A1 L/H	CMP_B1 L/H	CMP_C1 L/H	CMP_D1 L/H	6F
70	BUF_MIN2 L/H	BUF_MAX 2 L/H	CMP_MIN 2 L/H	CMP_MA X2 L/H	CMP_A2 L/H	CMP_B2 L/H	CMP_C2 L/H	CMP_D2 L/H	77
78	BUF_MIN3 L/H	BUF_MAX 3 L/H	CMP_MIN 3 L/H	CMP_MA X3 L/H	CMP_A3 L/H	CMP_B3 L/H	CMP_C3 L/H	CMP_D3 L/H	7F

The addresses on the SFR, x00 to 0x7F, (see Table 6-3) cannot be accessed from the CPU, but can be accessed from the DSAC and the EPU. For detail of the DSAC and the EPU, see Section 12 and Section 10, respectively.

16-bit SFR registers of the following modules are composed of the lower and higher bytes:

- TinyDSP
- 12-bit ADC
- DAC
- PWM

The lower and higher bytes are assigned to the same address. The 16-bit SFR register is accessed to the lower and higher bytes, in that order. It is required to access continuously to the lower and higher bytes.

If one or more of following statuses occur at the continuously access of CPU to the 16-bit SFR register, the access to the 16-bit SFR register may fail.

- (1) When main and interrupt (low or high level) routines access to the same module, SFR, at once.
- (2) When low and high level interrupt routines access to the same module, SFR, at once.
- (3) When the OCD accesses to the 16-bit SFR during the CPU operation.

To avoid (1) and (2) listed in above, it is required to program as follows:

- Before the 16-bit SFR register is accessed, the INTC must be disabled (INTMST.INTME = 0).
- After the access to the 16-bit SFR register completes, the INTC must be enabled again (INTMST.INTME = 1).

The LSI cannot avoid (3) listed in above. Therefore, the CPU must be stopped in before and after when the 16-bit SFR is accessed by the OCD. It is recommended to stop the CPU using the brake function.

6.3. SPRn (Scratch Pad Register n) (n = 0 to 7)

The scratch pad register (SPR) is for the temporary storage of preliminary data. The SPR has 8 registers (SPR0 to SPR7) that are assigned to the SFR area. The DSAC can access the SPR. Table 6-4 lists the detail of the scratch pad registers.

SPR0 Address Register Scratch Pad Register0 0x54 0x91 Register SPR1 Scratch Pad Register1 Address 0x55 0xF9 Register SPR2 Scratch Pad Register2 Address 0x56 0xFA SPR3 Address 0xFB Register Scratch Pad Register3 0x57 Address Register SPR4 Scratch Pad Register4 0x5C 0x8F Register SPR5 Scratch Pad Register5 Address 0x5D 0x94 Register SPR₆ Scratch Pad Register6 Address 0x5E 0x9E Register SPR7 Scratch Pad Register7 Address 0x5F 0x9F Bit Bit Name R/W Initial Description Remarks 7 0 R/W R/W 0 6 5 R/W 0 R/W 0 4 **SPR** For the temporary storage of preliminary data. 3 0 R/W 2 R/W 0 1 R/W 0

Table 6-4. Scratch Pad Register

0

R/W

0

7. GPIO

The LSI has a general-purpose input/output (GPIO) function. The function of each pin can be defined independently. The signal direction also can be defined independently on the GPIO function setting. Each pin has the pull-up (PUP) or pull-down (PDN) functions that can be set on/off by software. The signal pin settings (function and input/output direction) and the pull-up and pull-down settings are completely independent.

7.1. GPIO Structure

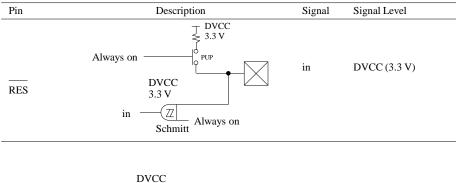


Figure 7-1. GPIO/PIN Structure (Input Pin)

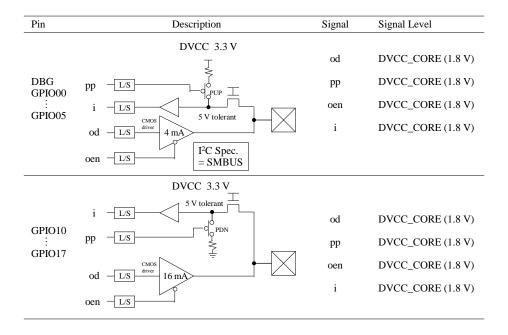


Figure 7-2. GPIO/PIN Structure (5 V Tolerant Input/Output Pin)

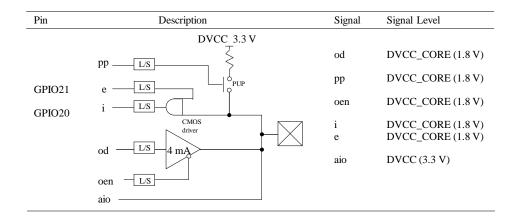


Figure 7-3. GPIO/PIN Structure (Input/Output Pin)

Pin		Description		Signal	Signal Level
ANEX13 : ANEX6 ANEX3 :: ANEX0	aio —		DVCC 3.3 V	aio	DVCC (3.3 V)

Figure 7-4. GPIO/PIN Structure (Analog Input Pin)

Note that there may be periods of weak driving at the level of about 2 V from the LSI at the falling edge of the input signal as shown in Figure 7-5. This occurs when the signal of the driver that has poor driving capability (i.e., the output impedance of the driver is high) is input to the 5 V tolerant structure pins (DBG, GPIO00 to GPIO05, GPIO10 to GPIO17) set in the input direction of Figure 7-2. The LSI recognizes the period that the 5 V tolerant pin voltage is about 2 V as high level input. This phenomenon does not occur when VIH is less than DVCC + 0.3 V. When VIH is DVCC + 0.3 V or more, check the waveform of the corresponding input pin. If this phenomenon occurs, input the signal of the driver that has high driving capability.

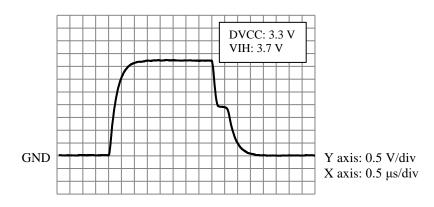


Figure 7-5. Waveform Example of 5 V Tolerant Pin

7.2. Register Descriptions

When a bit is unassigned to the corresponding pin physically, the bit is preliminary (reserved) bit. The read value of the reserved bit is 0. In addition, the write value to the reserved bit must always be 0.

Table 7-1. List of Registers

Symbol	Name	Address	Initial Value
PFS0	Pin Function Select for GPIO0	0xFE00	0x00
PFS1	Pin Function Select for GPIO1	0xFE01	0x00
PFS2	Pin Function Select for GPIO2	0xFE02	0x00
PDD0	Pin Data Direction for GPIO0	0xFE04	0x00
PDD1	Pin Data Direction for GPIO1	0xFE05	0x00
PDD2	Pin Data Direction for GPIO1	0xFE06	0x00
PPU0	Pin Pull Up Control for GPIO0	0xFE08	0x3F
PPU2	Pin Pull Up Control for GPIO2	0xFE0A	0x03
PPD1	Pin Pull Down Control for GPIO1	0xFE0D	0xFF
PIE0	Pin Interrupt Enable for GPIO0	0xFE10	0x00
PIE1	Pin Interrupt Enable for GPIO1	0xFE11	0x00
PIE2	Pin Interrupt Enable for GPIO2	0xFE12	0x00
PIS0	Pin Interrupt Sense for GPIO0	0xFE14	0x00
PIS1	Pin Interrupt Sense for GPIO1	0xFE15	0x00
PIS2	Pin Interrupt Sense for GPIO2	0xFE16	0x00
PIL0	Pin Interrupt Level for GPIO0	0xFE18	0x00
PIL1	Pin Interrupt Level for GPIO1	0xFE19	0x00
PIL2	Pin Interrupt Level for GPIO2	0xFE1A	0x00
PIB0	Pin Interrupt Both Edge for GPIO0	0xFE1C	0x00
PIB1	Pin Interrupt Both Edge for GPIO1	0xFE1D	0x00
PIB2	Pin Interrupt Both Edge for GPIO2	0xFE1E	0x00
PEADC0	ADC Event Select from GPIO0	0xFE20	0x00
PEADC1	ADC Event Select from GPIO1	0xFE21	0x00
PEADC2	ADC Event Select from GPIO2	0xFE22	0x00
PEPWM0	PWM Event Select from GPIO0	0xFE24	0x00
PEPWM1	PWM Event Select from GPIO1	0xFE25	0x00
PEPWM2	PWM Event Select from GPIO2	0xFE26	0x00
PEMETHOD	PWM and ADC Event Gathering Method	0xFE28	0x00
PFSH0	Pin Function Select High for GPIO0	0xFE29	0x00
PFSE1	Pin Function Extend Select for GPIO1	0xFE2A	0x00
PFSE2	Pin Function Extend Select for GPIO2	0xFE2D	0x00
PELUT0	CMPLUT Event Select from GPIO0	0xFE30	0x00
PELUT1	CMPLUT Event Select from GPIO1	0xFE31	0x00
PELUT2	CMPLUT Event Select from GPIO2	0xFE32	0x00
LEMETHOD	CMPLUT Event Gathering Method	0xFE38	0x00
SIS	Serial Input Select	0xFE70	0x00
I2CIS	I ² C Input Select	0xFE71	0x00
TMRIS	TMR Input/Output Select	0xFE72	0x00
CLKIS	Clock Input Select	0xFE73	0x00

Table 7-2. List of SFR Registers

Symbol	Name	Address	Initial Value
PDR0	Pin Data for GPIO0	0x90	0x00
PDR1	Pin Data for GPIO1	0x98	0x00
PDR2	Pin Data for GPIO2	0xB0	0x00
PIF0	Pin Interrupt Flag for GPIO0	0xC8	0x00
PIF1	Pin Interrupt Flag for GPIO1	0xD8	0x00
PIF2	Pin Interrupt Flag for GPIO2	0xE8	0x00

7.2.1. PFS0 (Pin Function Select for GPIO0)

The direction of a pin signal changes according to the function selected.

Regi	Register PFS0		Pin Function Select for GPIO0		Address	0xFE00	
Bit	Bit	Name	R/W	Initial	Description	Remarks	
7	PF3		R/W	0	GPIO03 function selection 00: GPIO03, SPI_SI, TIOB1 input, RI 01: Reserved	XD_B	
6			R/W	0	10: CMPLUT0 output 11: TIOB1 output		
5				R/W 0 GPIO02 function selection 00: GPIO02, TIOA1 input			
4]	PF2	R/W	0	01: TXD_B 10: SPI_SO 11: TIOA1 output		
3				0	GPIO01 function selection 00: GPIO01, TIOB3 input, TIC1		
2	PF1		R/W	0	01: Reserved 10: SPI_SCK 11: TIOB3 output		
1			R/W	0	GPIO00 function selection 00: GPIO00, CLKIN_A, TIOA3 inpu	t, TIC0	
0	PF0		R/W	0	01: Reserved 10: CLKMON 11: TIOA3 output		

7.2.2. PFSH0 (Pin Function Select High for GPIO0)

The direction of a pin signal changes according to the function selected.

	Register PFSH0		Pin Function Select High for GPIO0 Address			0xFE29	
Bit	Bit 1	Name	R/W	Initial	Description	Remarks	
7	7 Reserved R		0	The read value is 0. The write value must always be 0.			
6	Reserved R		R	0	The read value is 0. The write value must		
5	Reserved R		R	0	The read value is 0. The write value must		
4	Res	Reserved R 0 The read value is 0. The write value must always be 0.					
3	PF5		R/W	0	GPIO05 function selection 00: GPIO05, TIOB2_A input		
2			R/W	0	01: SCL_A (open drain) 10: CMPLUT1 output 11: TIOB2_A output		
1	1 PF4		R/W	0	GPIO04 function selection 00: GPIO04, TIOA2_A input		
0			R/W	0	01: SDA_A (open drain) 10: CLKMON 11: TIOA2_A output		

7.2.3. PFS1 (Pin Function Select for GPIO1)

The direction of a pin signal changes according to the function selected.

Register PFS1		Pin Function Select for GPIO1 Address Address		0xFE01		
Bit	Bit Name	R/W	Initial	Description		Remarks
7	PF7	R/W	0	GPIO17 function selection 0: GPIO17, RXD_A, TIOB0 input 1: Other functions When the bit is 1, the function and sign the pin change according to the Placetting.		
6	PF6	R/W	0	GPIO16 function selection 0: GPIO16, TIOA0 input 1: Other functions When the bit is 1, the function and sign the pin change according to the Placetting.		
5	PF5	R/W	0	GPIO15 function selection 0: GPIO15, SPI_SS_N, TIOB2_B inp 1: Other functions When the bit is 1, the function and sign the pin change according to the Pl setting.		
4	PF4	R/W	0	GPIO14 function selection 0: GPIO14, TIOA2_B input 1: Other functions When the bit is 1, the function and sign the pin change according to the Placetting.		
3	PF3	R/W	0	GPIO13 function selection 0: GPIO13 1: PWM1L		
2	PF2	R/W	0	GPIO12 function selection 0: GPIO12 1: PWM1H		
1	PF1	R/W	0	GPIO11 function selection 0: GPIO11 1: PWM0L		
0	PF0	R/W	0	GPIO10 function selection 0: GPIO10 1: PWM0H		

7.2.4. PFSE1 (Pin Function Extend Select for GPIO1)

The direction of a pin signal changes according to the function selected.

Regi		PFSE1	8	ĭ '	on Extend Select for GPIO1	Address	0xFE2A
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	,	PF7		0	GPIO17 function selection 00: PWM3L		
6		rr/	R/W	0	01: TIOB0 output 10: Reserved 11: Reserved		
5			R/W	0	GPIO16 function selection 00: PWM3H		
4		PF6	R/W	0	01: TXD_A 10: Reserved 11: TIOA0 output		
3		PF5	R/W	0	GPIO15 function selection 00: PWM2L		
2]	rry	R/W	0	01: TIOB2_B output 10: SCL_B 11: Reserved		
1		PF4	R/W	0	GPIO14 function selection 00: PWM2H 01: Reserved		
0		[1 ' 4	R/W	0	10: SDA_B 11: TIOA2_B output		

7.2.5. PFS2 (Pin Function Select for GPIO2)

The direction of a pin signal changes according to the function selected.

Regi		PFS2		•	on Select for GPIO2	Address	0xFE02
Bit	Bit N	Vame	R/W	Initial	Description		Remarks
7	Reserved R		R	0	The read value is 0. The write value mu	st always be 0.	
6	Rese	rved	R	0	The read value is 0. The write value mu	st always be 0.	
5	Rese	rved	R	0	The read value is 0. The write value mu	st always be 0.	
4	Reserved R		R	0	The read value is 0. The write value must always be 0.		
3	Reserved R		R	0	The read value is 0. The write value must always be 0.		
2	Rese	rved	R	0	The read value is 0. The write value mu	st always be 0.	
1	PF1 R/W 0 GPIO21 function selection 0: GPIO21 1: Other functions When the bit is 1, the function and signal direction of the pin change according to the PFSE2 register setting.						
0	PI	F0	R/W	0	GPIO20 function selection 0: GPIO20, CLKIN_B 1: Analog input	<u> </u>	

7.2.6. PFSE2 (Pin Function Extend Select for GPIO2)

The direction of a pin signal changes according to the function selected.

Regi	ster	PFSE2		Pin Function	on Extend Select for GPIO2	Address	0xFE2D
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
5	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
4	Reserved R		R	0	The read value is 0. The write value must always be 0.		
3	PF1 R/W		R/W	0	GPIO21 function selection 00: Analog input		
2			R/W	0	01: CLKMON 10: Reserved 11: Reserved		
1	Reserved R 0 The read value is 0. The write value must always be 0.						
0	Res	served	R	0	The read value is 0. The write value must	st always be 0.	

7.2.7. PDD0 (Pin Data Direction for GPIO0)

Regi	Register PDD0			Pin Data Di	irection for GPIO0	Address	0xFE04
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	Reserved R/W 0 The read value is 0. The write value must always be 0.					
6	Res	served	R/W	0	The read value is 0. The write value must	st always be 0.	
5	Γ	DD5	R/W	0			
4	Γ	DD4	R/W	0	Selection of the direction of a pin signal		
3	Γ	DD3	R/W	0	0: Input 1: Output		
2	Γ	DD2	R/W	0	Only when the pin is set to have the	CDIO function	
1	Γ	DD1	R/W	0	Only when the pin is set to have the GPIO function, each bit setting is valid.		
0	Γ	DD0	R/W	0			

7.2.8. PDD1 (Pin Data Direction for GPIO1)

Regi	ster	PDD1		Pin Data D	Pin Data Direction for GPIO1 Address			
Bit	Bit	Name	R/W	Initial	Description		Remarks	
7	Γ	DD7	R/W	0				
6	Г	DD6	R/W	0				
5	Γ	DD5	R/W	0	Selection of the direction of a pin signal			
4	Γ	DD4	R/W	0	0: Input 1: Output			
3	Γ	DD3	R/W	0	Only when the pin is get to have the	CDIO function		
2	Γ	DD2	R/W	0	Only when the pin is set to have the each bit setting is valid.	GPIO Tunction,		
1	Γ	DD1	R/W	0				
0	Ι	DD0	R/W	0				

7.2.9. PDD2 (Pin Data Direction for GPIO2)

Regi	ster	PDD2		Pin Data Di	irection for GPIO2	Address	0xFE06
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must always be 0.		
6	Res	served	R	0	The read value is 0. The write value mus	st always be 0.	
5	Res	served	R	0	The read value is 0. The write value mus	st always be 0.	
4	Res	served	R	0	The read value is 0. The write value mus		
3	Res	served	R	0	The read value is 0. The write value mus	The read value is 0. The write value must always be 0.	
2	Res	served	R	0	The read value is 0. The write value mus	st always be 0.	
1	Ε	DD1	R/W	0	Selection of the direction of a pin signal 0: Input 1: Output		
0	Γ	DD0	R/W	0	Only when the pin is set to have the each bit setting is valid.	GPIO function,	

7.2.10. PDR0 (Pin Data for GPIO0)

Regi	ster PDR0		Pin Data fo	or GPIO0	Address	0x90
Bit	Bit Name	R/W	Initial	Description		Remarks
7	Reserved	R	0	The read value is 0. The write value mu	st always be 0.	
6	Reserved	R	0	The read value is 0. The write value must always be 0.		
5	PD5 R/W		0	States of pin signals		
4	PD4	R/W	0	Read 0: The pin signal is at a low level Read 1: The pin signal is at a high level Read 1: The pin signal is at a high level Read 1: The pin signal is at a high level Read 1: The pin signal is at a low		
3	PD3	PD3 R/W		Write 0: The pin signal is set to low v		
2	PD2 R/W		0	as a GPIO output Write 1: The pin signal is set to high		
1	PD1	R/W	0	set as a GPIO output		
0	PD0	R/W	0	When the pin is set as a GPIO input or a digital function other than the GPIO, the read value indicates the level of an external pin, and writing to these bits has no effect. When the pin is set as a GIPIO output, the write value is an output level of the pin, and the read value indicates the level of an external pin. For example, if an external signal conflicts with the output level of the pin, the level of the read value may not become that of the write value. When the pin is set as an analog function, the read value is always 0, and writing to these bits has no effect. Further, the write value is stored into an internal register. Thus, any changes to the function and the signal direction of the pin may cause an internal register value to affect		

7.2.11. PDR1 (Pin Data for GPIO1)

Regi	ster PDR1		Pin Data fo	or GPIO1	Address	0x98
Bit	Bit Name	R/W	Initial	Description		Remarks
7	PD7	R/W	0	States of pin signals	1	
6	PD6	R/W	0	Read 0: The pin signal is at a low level Read 1: The pin signal is at a high level		
5	PD5	R/W	0	Write 0: The pin signal is set to low		
4	PD4	R/W	0	set as a GPIO output Write 1: The pin signal is set to high	when the pin is	
3	PD3	R/W	0	set as a GPIO output		
2	PD2	PD2 R/W		When the pin is set as a GPIO inp	ut or a digital	
1	PD1	R/W	0	function other than the GPIO, the read the level of an external pin, and writing		
0	PD0	R/W	0	no effect. When the pin is set as a GIPIO output, is an output level of the pin, and indicates the level of an external pin. For external signal conflicts with the output the level of the read value may not becwrite value. When the pin is set as an analog fur value is always 0, and writing to the effect. Further, the write value is stored in register. Thus, any changes to the fur signal direction of the pin may cau register value to affect an output pin level.	the write value the read value or example, if an level of the pin, come that of the action, the read ese bits has no an internal anction and the use an internal	

7.2.12. PDR2 (Pin Data for GPIO2)

Regi	ster	PDR2		Pin Data fo	or GPIO2	Address	0xB0
Bit	Bit N	Vame	R/W	Initial	Description		Remarks
7	Rese	erved	R	0	The read value is 0. The write value must	st always be 0.	
6	Rese	erved	R	0	The read value is 0. The write value must	st always be 0.	
5	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
4	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
3	Rese	erved	R	0	The read value is 0. The write value must	st always be 0.	
2	Rese	erved	R	0	The read value is 0. The write value must	st always be 0.	
1	PI	D1	R/W	0	States of pin signals Read 0: The pin signal is at a low leve	. 1	
0	PI	D 0	R/W	0	Read 1: The pin signal is at a high lev Write 0: The pin signal is set to low set as a GPIO output Write 1: The pin signal is set to high set as a GPIO output When the pin is set as a GPIO inp function other than the GPIO, the read the level of an external pin, and writing no effect. When the pin is set as a GIPIO output, is an output level of the pin, and indicates the level of an external pin. Fo external signal conflicts with the output the level of the read value may not becwrite value. When the pin is set as an analog fur value is always 0, and writing to the effect. Further, the write value is stored in register. Thus, any changes to the fu signal direction of the pin may cau register value to affect an output pin lever	when the pin is when the pin is when the pin is ut or a digital value indicates to these bits has the write value the read value or example, if an level of the pin, come that of the action, the read ese bits has no not an internal unction and the use an internal	

7.2.13. PPU0 (Pin Pull Up Control for GPIO0)

Regi	ster	ster PPU0		Pin Pull Up	Control for GPIO0	Address	0xFE08
Bit	Bit Name R/W Initial Description		Remarks				
7	Reserved R 0 The read value is 0. The write value must always be 0.		st always be 0.				
6	Res	served	R	0	The read value is 0. The write value must	The read value is 0. The write value must always be 0.	
5	P	PU5	R/W	1			
4	P	PU4	R/W	1			
3	P	PU3	R/W	1	Pin pull-up enable		
2	P	PU2	R/W	1	0: Pull-up MOSFET is disabled 1: Pull-up MOSFET is enabled		
1	P	PU1	R/W	1			
0	P	PU0	R/W	1			

7.2.14. PPU2 (Pin Pull Up Control for GPIO2)

Regi	ster	PPU2		Pin Pull Up	Control for GPIO2	Address	0xFE0A
Bit	Bit Name R/W		Initial	Description		Remarks	
7	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
5	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
4	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
3	Res	served	R	0	The read value is 0. The write value must		
2	Reserved R 0 The read value is 0. The write value must always be 0.		st always be 0.				
1	PPU1 R/W 1		1	Pin pull-up enable			
0	P	PU0	R/W	1	0: Pull-up MOSFET is disabled 1: Pull-up MOSFET is enabled		

7.2.15. PPD1 (Pin Pull Down Control for GPIO1)

Regi	ster	PPD1		Pin Pull Do	own Control for GPIO1	Address	0xFE0D		
Bit	Bit Name R/W			Initial	Description	Remarks			
7	P	PD7	R/W	1					
6	PPD6 R/W PPD5 R/W			1					
5				1					
4	P	PD4	R/W	1	Pin pull-down enable				
3	P	PD3	R/W	1	0: Pull-down MOSFET is disabled 1: Pull-down MOSFET is enabled				
2	P	PD2	R/W	1					
1	P	PD1	R/W	1					
0	P	PD0	R/W	1					

7.2.16. PIE0 (Pin Interrupt Enable for GPIO0)

Regi	ster	PIE0		Pin Interrupt Enable for GPIO0 Address			0xFE10
Bit	Bit	Bit Name R/W		Initial	Description		Remarks
7	Reserved R		R	0	The read value is 0. The write value mus	st always be 0.	
6	Reserved R		0	The read value is 0. The write value mus	st always be 0.		
5	PIE5 R/W		0	Pin interrupt enable			
4	P	PIE4 R/W		0	0: Pin interrupt is disabled1: Pin interrupt is enabled		
3	P	PIE3	R/W	0	Wilson Alson in its and an amount of Counti	4h - DIEO 4	
2	PIE2 R/W		R/W	0	When the pin is set as an analog function, the PIE0 to PIE5 bits are ignored.		
1	PIE1 R/W		R/W	0	When the pin is set as a digital function, the PIE0 to		
0	P	PIE0	R/W	0	PIE5 bits are enabled regardless the function and signal direction of the pin.		

7.2.17. PIE1 (Pin Interrupt Enable for GPIO1)

Regi	ster	PIE1		Pin Interrupt Enable for GPIO1 Address			0xFE11
Bit	Bit Name R/W		R/W	Initial	Description		Remarks
7	PIE7 R/W		0	Pin interrupt enable			
6	PIE6 R/W		0	0: Pin interrupt is disabled			
5	PIE5 R/W		0	1: Pin interrupt is enabled			
4	F	PIE4 R/W		0	When the pin is set as an analog functio	n, the PIE0 to	
3	P	PIE3	R/W	0	PIE7 bits are ignored. When the pin is set as a digital function		
2	P	PIE2 R/W		0	PIE7 bits are enabled regardless the		
1	P	PIE1 R/W		0	signal direction of the pin. This means that pin interrupts can be generated by PWM toggle		
0	F	PIE0	R/W	0	operation.		

7.2.18. PIE2 (Pin Interrupt Enable for GPIO2)

Regi	ster	PIE2		Pin Interrup	pt Enable for GPIO2	Address	0xFE12
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
5	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
4	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
3	Reserved R		R	0	The read value is 0. The write value must always be 0.		
2	Res	served	R	0	The read value is 0. The write value must always be 0.		
1	F	PIE1	R/W	0	Pin interrupt enable		
0	O: Pin interrupt is disabled 1: Pin interrupt is enabled When the pin is set as an analog function, the PIE0 to PIE1 bits are ignored. When the pin is set as a digital function, the PIE0 to PIE1 bits are enabled regardless the function and signal direction of the pin.						

7.2.19. PIF0 (Pin Interrupt Flag for GPIO0)

Regi	ster	PIF0		Pin Interrupt Flag for GPIO0 Address			0xC8
Bit	Bit Name R/W		R/W	Initial	Description		Remarks
7	Reserved R		0	The read value is 0. The write value mus	st always be 0.		
6	Reserved R		0	The read value is 0. The write value mus	st always be 0.		
5	PIF5 R/C		0	Pin interrupt flag setting			
4	F	PIF4 R/C		0	Read 0: No interrupt request		
3	F	PIF3	R/C	0	Read 1: An interrupt event is generated Write 0: No change		
2	F	PIF2 R/C		0	Write 1: The corresponding bit is cleared		
1	PIF1 R/C		0	The PIFx bit is asserted regardless of the value of the			
0	F	PIF0	R/C	0	PIEx bit.		

7.2.20. PIF1 (Pin Interrupt Flag for GPIO1)

Regi	ster	PIF1		Pin Interrup	pt Flag for GPIO1	Address	0xD8
Bit	Bit	Bit Name R/W			Description		Remarks
7	F	PIF7	R/C	0			
6	PIF6 R/C PIF5 R/C PIF4 R/C		0	Pin interrupt flag setting			
5			0	Read 0: No interrupt request Read 1: An interrupt event is generated Write 0: No change			
4			0		ea		
3	F	PIF3	R/C	0	Write 1: The corresponding bit is cleared		
2	F	PIF2 R/C		0	The PIFx bit is asserted regardless of the value of the		
1	PIF1 R/C		0	PIEx bit.			
0	F	PIF0	R/C	0			

7.2.21. PIF2 (Pin Interrupt Flag for GPIO2)

Regi	ster	PIF2		Pin Interrup	ot Flag for GPIO2	Address	0xE8
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
5	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
4	Reserved R		R	0	The read value is 0. The write value must always be 0.		
3	Reserved R 0 The read value is 0. The write value must		st always be 0.				
2	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
1	F	PIF1	R/C	0	Pin interrupt flag setting Read 0: No interrupt request		
0	F	PIF0	R/C	0	Read 1: An interrupt request Read 1: An interrupt event is generated Write 0: No change Write 1: The corresponding bit is cleared The PIFx bit is asserted regardless of the value of the PIEx bit.		

7.2.22. PIS0 (Pin Interrupt Sense for GPIO0)

Regi	ster	PIS0		Pin Interrupt Sense for GPIO0 Addre			0xFE14
Bit	Bit	Bit Name R/W		Initial	Description		Remarks
7	Reserved R		0	The read value is 0. The write value must	st always be 0.		
6	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
5	PIS5 R/W 0 PIS4 R/W 0 Selection of pin interrupt detection 0: Level detection						
4							
3	F	PIS3	R/W	0	1: Edge detection		
2	F	PIS2 R/W 0 For ensuring the proper operation of the wakeup		of the wakeup			
1	PIS1 R/W		0	function, an analog delay circuit with an appropriate			
0	F	PISO R/W		0	noise filter is implemented for the edge detection.		

7.2.23. PIS1 (Pin Interrupt Sense for GPIO1)

Regi	ster			Pin Interrup	Pin Interrupt Sense for GPIO1 Address		
Bit	Bit	Bit Name R/W		Initial	Description		Remarks
7	PIS7 R/W		0				
6	PIS6 R/W		R/W	0			
5	PIS5 R/W		R/W	0	Selection of pin interrupt detection 0: Level detection		
4	PIS4 R/W		0	1: Edge detection			
3	P	PIS3	R/W	0	For the proper operation of the wakeup function, an	up function, an	
2	P	PIS2 R/W		0	analog delay circuit with an appropriate noise filter is		
1	PIS1 R/W		0	implemented for the edge detection.			
0	P	PISO R/W		0			

7.2.24. PIS2 (Pin Interrupt Sense for GPIO2)

Regi	ster	PIS2		Pin Interruj	pt Sense for GPIO2	Address	0xFE16
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
5	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
4	Reserved R		R	0	The read value is 0. The write value must always be 0.		
3	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
2	Res	served	R	0	The read value is 0. The write value must always be 0.		
1	F	PIS1	R/W	0	Selection of pin interrupt detection		
0	PISO R/W 0 For the proper operation of the wakeup function, an analog delay circuit with an appropriate noise filter is implemented for the edge detection.						

7.2.25. PIL0 (Pin Interrupt Level for GPIO0)

Regi	ster	PIL0		Pin Interrupt Level for GPIO0 Address			0xFE18
Bit	Bit Name R/W		R/W	Initial	Description		Remarks
7	Reserved R		0	The read value is 0. The write value must	st always be 0.		
6	Reserved R		0	The read value is 0. The write value must	st always be 0.		
5	PIL5 R/W		R/W	0			
4	P	PIL4 R/W		0	Selection of pin interrupt levels		
3	P	PIL3	R/W	0	0: Low level, falling edge 1: High level, rising edge		
2	P	PIL2 R/W		0			
1	PIL1 R/W		0	While the edge detection is selected, the PIBx bit has a higher priority.			
0	P	PIL0	R/W	0			

7.2.26. PIL1 (Pin Interrupt Level for GPIO1)

Regi	ster	PIL1		Pin Interruj	Pin Interrupt Level for GPIO1 Address		
Bit	Bit	Bit Name R/W			Description		Remarks
7	F	PIL7	R/W	0			
6	PIL6 R/W PIL5 R/W		0				
5			0	Selection of pin interrupt levels			
4	PIL4 R/W			0	0: Low level, falling edge 1: High level, rising edge		
3	F	PIL3	R/W	0	William decide describe la describe de DID 12 de co	DIDy bit bos o	
2	F	PIL2 R/W		0	While the edge detection is selected, the PIBx bit has a higher priority.	e PIDX oit has a	
1	PIL1 R/W		0				
0	F	PIL0 R/W					

7.2.27. PIL2 (Pin Interrupt Level for GPIO2)

Regi	Register PIL2			Pin Interrupt Level for GPIO2		Address	0xFE1A
Bit	Bit Name R/W		R/W	Initial	Description		Remarks
7	Reserved R		0	The read value is 0. The write value must	st always be 0.		
6	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
5	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
4	Reserved R		R	0	The read value is 0. The write value must always be 0.		
3	Res	served	R	0	The read value is 0. The write value must always be 0.		
2	Res	served	R	0	The read value is 0. The write value must always be 0.		
1	P	IL1	R/W	0	Selection of pin interrupt levels		
0	PIL0 R/W		0	0: Low level, falling edge 1: High level, rising edge While the edge detection is selected, the PIBx bit has a higher priority.			

7.2.28. PIB0 (Pin Interrupt Both Edge for GPIO0)

Regi	ster	PIB0		Pin Interrup	Pin Interrupt Both Edge for GPIO0 Address		
Bit	Bit Name R/W		R/W	Initial	Description		Remarks
7	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
6	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
5	P	PIB5		0			
4	P	PIB4 R/W 0 Selection of both edges for pin interrupt					
3	P	PIB3	R/W	0	0: Falling or rising edge set by the PILx bit 1: Both edges that ignore the setting of the PILx bit		
2	P	PIB2 R/W		0			
1	PIB1 R/W 0 Only while the edge detection is selected, the sett of these bits are valid.		eu, me settings				
0	P	PIB0	R/W	0			

7.2.29. PIB1 (Pin Interrupt Both Edge for GPIO1)

Regi	ster	PIB1		Pin Interrupt Both Edge for GPIO1			0xFE1D
Bit	Bit Name R/W Initia				Description		Remarks
7	PIB7 R/W 0						
6	P	PIB6 R/W 0					
5	P	PIB5 R/W 0 Selection of both edges for pin interrupt 0: Falling or rising edge set by the PILx bit 1: Both edges that ignore the setting of the PILx bit					
4	P						
3	P	PIB3	R/W	0			
2	P	PIB2 R/W		0	Only while the edge detection is selected, the settings of these bits are valid.		
1	PIB1 R/W 0		0				
0	P	PIBO R/W 0					

7.2.30. PIB2 (Pin Interrupt Both Edge for GPIO2)

Regi	ster	PIB2		Pin Interruj	pt Both Edge for GPIO2	Address	0xFE1E
Bit	Bit Name R/W		R/W	Initial	Description		Remarks
7	Reserved R/W		R/W	0	The read value is 0. The write value must	st always be 0.	
6	Res	served	R/W	0	The read value is 0. The write value must	st always be 0.	
5	Reserved R/W		R/W	0	The read value is 0. The write value must always be 0.		
4	Reserved R/W		0	The read value is 0. The write value must always be 0.			
3	Res	served	R/W	0	The read value is 0. The write value must	st always be 0.	
2	Res	served	R/W	0	The read value is 0. The write value must	st always be 0.	
1	P	IB1	R/W	0	Selection of both edges for pin interrupt		
0	PIB0 R/W		0	0: Falling or rising edge set by the PILx bit 1: Both edges that ignore the setting of the PILx bit Only while the edge detection is selected, the settings of these bits are valid.			

7.2.31. PEADC0 (ADC Event Select from GPIO0)

Regi	ster	PEADC()	ADC Even	t Select from GPIO0	Address	0xFE20
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Reserved R		0	The read value is 0. The write value must	st always be 0.		
6	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
5	EVTADC5 R/W		R/W	0	ADC event selection	ADC	
4	EVTADC4 R/W		R/W	0	 An input signal is not used for ADC event selection 		
3	EVI	EVTADC3 R/W		0	1: An input signal is used for ADC event selection		
2	EVI	TADC2	R/W	0	A GPIO input signal is selected by the EVTADC0 to		
1	EVI	TADC1	R/W	0	EVTADC5 bits.		
0	The LSI computes the selected input signal and then generates an event signal. The generated event signal is used as a trigger for all of ADC events. Computing methods include the logical OR and the logical AND; the PEMETHOD.MPEADC0 bit defines which method to be employed.						

7.2.32. PEADC1 (ADC Event Select from GPIO1)

Regi	ster	PEADC1		ADC Event Select from GPIO1 Address			0xFE21
Bit	Bit Name R/W In		Initial	Description		Remarks	
7	EVTADC7 R/W		R/W	0	ADC event selection	an ADC asset	
6	EVTADC6 R/W		0	0: An input signal is not used f selection	or ADC event		
5	EVTADC5 R/W		R/W	0	1: An input signal is used for ADC event selection		
4	EVTADC4 R/W		0	A GPIO input signal is selected by the	e EVTADC0 to		
3	EVI	TADC3	R/W	0	EVTADC7 bits. The LSI computes the selected input signal and then		
2	EVI	TADC2	R/W	0	generates an event signal. The generated		
1	EVTADC1 R/W		R/W	0	used as a trigger for all of ADC events. Computing		
0	EVTADC0 R/W		R/W	0	methods include the logical OR and the logical AND; the PEMETHOD.MPEADC1 bit defines which method to be employed.		

7.2.33. PEADC2 (ADC Event Select from GPIO2)

Regi	ster	PEADC2	2	ADC Even	t Select from GPIO2	Address	0xFE22
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must always be 0.		
6	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
5	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
4	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
3	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
2	Reserved R		0	The read value is 0. The write value must always be 0.			
1	EVTADC1 R/W		0	ADC event selection	1.00		
0	EVTADC1 R/W EVTADC0 R/W		0	O: An input signal is not used f selection 1: An input signal is used for ADC ev A GPIO input signal is selected by the EVTADC1 bits. The LSI computes the selected input generates an event signal. The generated used as a trigger for all of ADC eve methods include the logical OR and the PEMETHOD.MPEADC2 bit define to be employed.	e EVTADC0 to signal and then devent signal is nts. Computing e logical AND;		

7.2.34. PEPWM0 (PWM Event Select from GPIO0)

Regi	ster	PEPWM	0	PWM Ever	nt Select from GPIO0	Address	0xFE24
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Reserved R/W		R/W	0	The read value is 0. The write value must always be 0.		
6	Res	served	R/W	0	The read value is 0. The write value must always be 0.		
5	EVT	PWM5	R/W	0	PWM event selection	DWM arout	
4	EVTPWM4 R/W		0	0: An input signal is not used for PWM event selection			
3	EVTPWM3 R/W		R/W	0	1: An input signal is used for PWM event selection		
2	EVT	TPWM2	R/W	0	A GPIO input signal is selected by the EVTPWM0 to EVTPWM5 bits. The LSI computes the selected input signal and then		
1	EVT	PWM1	R/W	0			
0	EVTPWM0 R/W 0 generates an signals are all methods inclu the PEMETI		generates an event signal. The LSI-g signals are all used for PWM event sign methods include the logical OR and the PEMETHOD.MPEPWM0 bit method to be employed.	generated event hals. Computing e logical AND;			

7.2.35. PEPWM1 (PWM Event Select from GPIO1)

Regi	ster	PEPWM	1	PWM Event Select from GPIO1 Address			0xFE25
Bit	Bit Name R/W		R/W	Initial	Description		Remarks
7	EVTPWM7 R/W		0	PWM event selection	DIVA		
6	EVTPWM6 R/W		0	0: An input signal is not used for selection	or PWM event		
5	EVTPWM5 R/W		0	1: An input signal is used for PWM event selection			
4	EVTPWM4 R/W		R/W	0	A GPIO input signal is selected by the	EVTPWM0 to	
3	EVT	PWM3	R/W	0	EVTPWM7 bits.		
2	EVT	PWM2	R/W	0	The LSI computes the selected input a generates an event signal. The LSI-g		
1	EVTPWM1 R/W		0	signals are all used for PWM event signals. Computing			
0	EVTPWM0 R/W		0	methods include the logical OR and the logical AND; the PEMETHOD.MPEPWM1 bit defines which method to be employed.			

7.2.36. EPWM2 (PWM Event Select from GPIO2)

Regi	ster	PEPWM	2	PWM Ever	nt Select from GPIO2	Address	0xFE26	
Bit	Bit	Name	R/W	Initial	Description		Remarks	
7	Re	served	R	0	The read value is 0. The write value must	st always be 0.		
6	Reserved R		R	0	The read value is 0. The write value must	st always be 0.		
5	Reserved R		R	0	The read value is 0. The write value must	st always be 0.		
4	Re	served	R	0	The read value is 0. The write value must	st always be 0.		
3	Reserved R 0 The read value is 0. The write value must always be 0.							
2	Re	Reserved R 0 The read value is 0. The write value must always be 0.						
1	EVI	TPWM1	R/W	0	PWM event selection			
0	EVI	ГРWМ0	R/W	0	selection 1: An input signal is used for PWM e A GPIO input signal is selected by the EVTPWM1 bits. The LSI computes the selected input generates an event signal. The LSI-s signals are all used for PWM event sign methods include the logical OR and th	1: An input signal is used for PWM event selection A GPIO input signal is selected by the EVTPWM0 to EVTPWM1 bits. The LSI computes the selected input signal and then generates an event signal. The LSI-generated event signals are all used for PWM event signals. Computing methods include the logical OR and the logical AND;		

7.2.37. PELUT0 (LUT Event Select from GPIO0)

Regi	ster	PELUT0		LUT Event	Select from GPIO0	Address	0xFE30
Bit	Bit Name R/W		R/W	Initial	Description		Remarks
7	Reserved R/W		0	The read value is 0. The write value must	st always be 0.		
6	Reserved R/W		R/W	0	The read value is 0. The write value must	st always be 0.	
5	EVTLUT5 R/W		R/W	0	LUT event selection		
4	EVTLUT4 R/W		0	0: An input signal is not used for LUT event selection			
3	EV.	EVTLUT3 R/W		0	1: An input signal is used for LUT event selection		
2	EV.	ΓLUT2	R/W	0	A GPIO input signal is selected by the EVTLUT0 to		
1	EV.	ΓLUT1	R/W	0	EVTLUT5 bits.	cianal and than	
0	EVTLUT0 R/W		0	The LSI computes the selected input signal and then generates an event signal. The LSI-generated event signals are all used for LUT event signals. Computing methods include the logical OR and the logical AND; the LEMETHOD.MPELUT0 bit defines which method to be employed.			

7.2.38. PELUT1 (LUT Event Select from GPIO1)

Regi	ster	PELUT1		LUT Event Select from GPIO1 Address			0xFE31	
Bit	Bit Name R/W Initial Description		Description		Remarks			
7	EVTLUT7 R/W		R/W	0	LUT event selection			
6	EVTLUT6 R/W		0	0: An input signal is not used f selection	or LU1 event			
5	EVTLUT5 R/W		R/W	0	1: An input signal is used for LUT event selection			
4	EVTLUT4 R/W		0	A GPIO input signal is selected by the	e EVTLUT0 to			
3	EV	TLUT3	R/W	0	EVTLUT7 bits. The LSI computes the selected input signal and then generates an event signal. The LSI-generated event			
2	EV.	ΓLUT2	R/W	0				
1	EVTLUT1 R/W		R/W	0	signals are all used for LUT event signals. Computing			
0	EVTLUT0 R/W		R/W	0	methods include the logical OR and the logical AND; the LEMETHOD.MPELUT1 bit defines which method to be employed.			

7.2.39. PELUT2 (LUT Event Select from GPIO2)

Regi	ster	PELUT2		LUT Event	Select from GPIO2	Address	0xFE32
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
6	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
5	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
4	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
3	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
2	Reserved R 0 The read value is 0. The write value must always be 0.						
1	EV	TLUT1	R/W	0	LUT event selection		
0	EV	TLUT0	R/W	0	O: An input signal is not used for LUT event selection 1: An input signal is used for LUT event selection A GPIO input signal is selected by the EVTLUT0 to EVTLUT1 bits. The LSI computes the selected input signal and then generates an event signal. The LSI-generated event signals are all used for LUT event signals. Computing methods include the logical OR and the logical AND; the LEMETHOD.MPELUT2 bit defines which method		

7.2.40. PEMETHOD (PWM and ADC Event Gathering Method)

Regi	ster	PEMETI	HOD	PWM Ever	t Gathering Method Address		0xFE28
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
6	MPE	EPWM2	R/W	0	Computing method for PWM event gene	eration	
5	MPE	EPWM1	R/W	0	1: Logical AND	0: Logical OR 1: Logical AND	
4	MPE	EPWM0	R/W	0	Each bit corresponds to the PEPWM0 to PEPWM2 registers.		
3	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
2	MPI	EADC2	R/W	0	Computing method for ADC event gene	ration	
1	MPI	EADC1	R/W	0	0: Logical OR 1: Logical AND		
0	MPI	EADC0	R/W	0	Each bit corresponds to the PEADC0 to PEADC2 registers.		

7.2.41. LEMETHOD (CMPLUT Event Gathering Method)

Regi	ster	LEMETI	HOD	CMPLUT Event Gathering Method Address		0xFE38	
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
5	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
4	Res	served	R	0	The read value is 0. The write value must always be 0.		
3	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
2	MP	ELUT2	R/W	0	Computing method for LUT event gener	ation	
1	MP	ELUT1	R/W	0	0: Logical OR 1: Logical AND		
0	MP	ELUT0	R/W	0	Each bit corresponds to the PELUT0 to PELUT2 registers.		

7.2.42. SIS (Serial Input Select)

Regi	ster	SIS		Serial Inpu	1 Input Select Register Address		0xFE70
Bit	Bit	Name	R/W	Initial	Description		Remarks
7			R/W	0	Selection of RXD		
6	R	XDS	R/W	0	00: RXD_A 01: RXD_B 10: Reserved 11: Reserved		
5	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
4	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
3	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
2	Res	served	R	0	The read value is 0. The write value must always be 0.		
1	Res	served	R	0	The read value is 0. The write value must always be 0.		
0	Res	served	R	0	The read value is 0. The write value must always be 0.		

7.2.43. I2CIS (I²C Input Select)

Regi	ster	I2CIS		I ² C Input S	elect Register Address		0xFE71
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
5	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
4	Res	served	R	0	The read value is 0. The write value must always be 0.		
3			R/W	0	Selection of SDA		
2	S	DAS	R/W	0	00: SDA_A 01: SDA_B 10: Reserved 11: Reserved		
1			R/W	0	Selection of SCL		
0	S	CLS	R/W	0	00: SCL_A 01: SCL_B 10: Reserved 11: Reserved		

7.2.44. TMRIS (TMR Input/Output Select)

Regi	ster	TMRIS		TMR Input	Output Select Register	Address	0xFE72
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
5	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
4	Res	served	R	0	The read value is 0. The write value must always be 0.		
3			R	0	Selection of TIOB2 I/O		
2	TM	R2S_B	R/W	0	00: TIOB2_A 01: TIOB2_B 10: Reserved 11: Reserved		
1			R	0	Selection of TIOA2 I/O		
0	ТМ	R2S_A	R/W	0	00: TIOA2_A 01: TIOA2_B 10: Reserved 11: Reserved		

7.2.45. CLKIS (Clock Input Select)

Regi	ster	CLKIS		CLKIN Inp	ut Select Register Address		0xFE73
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Re	served	R	0	The read value is 0. The write value must	st always be 0.	
6	Re	served	R	0	The read value is 0. The write value must	st always be 0.	
5	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
4	Res	served	R	0	The read value is 0. The write value must always be 0.		
3	Re	served	R	0	The read value is 0. The write value must	st always be 0.	
2	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
1			R/W	0	Selection of CLKIN		
0	C	ELKS	R/W	0	00: CLKIN_A 01: CLKIN_B 10: Reserved 11: Reserved		

7.3. Usage Notes and Restrictions

7.3.1. Reading from PDRx Register after Writing to PDRx Register

When reading out the PDRx register after writing to the PDRx register, two or more wait cycles must be inserted between the read and write instructions. The following is the sample code of this operation.

```
mov PDR1, #0xaa ; Writing to PDR1
nop ; Wait cycle
nop ; Wait cycle
mov a, PDR1 ; Reading from PDR1
```

7.3.2. Setting the Pin Functions: GPIO14, GPIO15, GPIO16, GPIO17, and GPIO21

To define the functions for the GPIO14, GPIO15, GPIO16, and GPIO17 pins, follow the steps below to set the PFSE1 and PFS1 registers.

- (1) The PWM, communication interface (SPI or UART), and TMR functions are allocated to the above-mentioned pins. To use these functions, set the PFSE1 register. When the GPIO function is selected, the PFSE1 register setting is not needed.
- (2) The GPIO function or the function configured by the PFSE1 register is selected by the PFS1 register.

To define the functions for the GPIO21, follow the steps below to set the PFSE2 and PFS2 registers.

- (1) Either an analog input or the CLKMON register function is allocated to the GPIO21 pin. To use the function, set the PFSE2 register. When the GPIO function is selected, the PFSE2 register setting is not needed.
- (2) The GPIO function or the function configured by the PFSE2 register is selected by the PFS2 register.

8. Event Connection

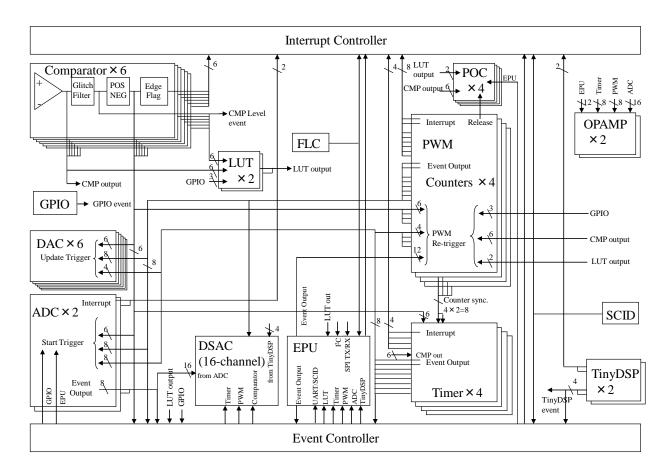


Figure 8-1. LSI Internal Event Connection

9. Event Controller (EVC)

9.1. Overview

The event controller (EVC) has the following functions.

- Sets the event connection between functional modules.
- Generates the interrupt to the CPU from the output event of EPU.
- Generates the GPIO0/1/2 edge event for the ADC0/1.

Table 9-1 EVC Functional Descriptions

Item	Description
Interrupt Generation	- EPU output event 14 per thread
Event Selection	Selects the input event to functional modules. - EPU - ADC - DSAC
Event Integration	Selects multiple events and integrates them into one signal (OR) POC

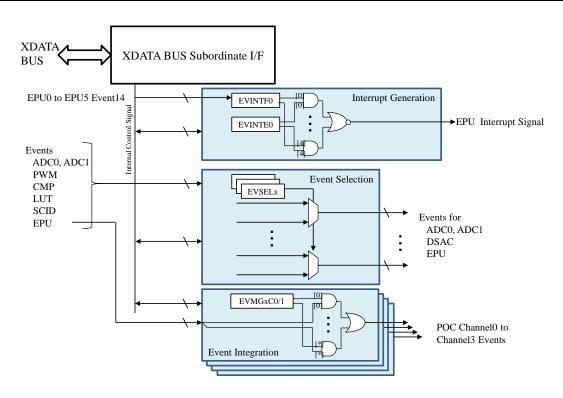


Figure 9-1. EVC Block Diagram

9.2. Operation

9.2.1. Interrupt Generation

The interrupts to the CPU are generated using the output event 14 of each EPU thread. When the event is detected, the corresponding bit in the EVINTF0 register is set. When the corresponding bit in the EVINTE0 register is 1 (i.e., enabled) during EVINTF0 = 1, the interrupt to the CPU is generated.

9.2.2. Event Selection

The event input to the EPU, ADC, and DSAC is selected by the EVSELn register. Table 9-2, Table 9-3, Table 9-4 show the input selection tables of the EPU, ADC, and DSAC, respectively. In these tables, an event type name with a slash represents an event which has 2 event types. An event type name before the slash is the event type when EVSELn.EPUmSEL = 0; an event type name after the slash is the event type when EVSELn.EPUmSEL = 1. Taking Table 9-2 as an example, if EVSEL0.EPU0SEL = 0, the event type is TinyDSP0_0; if EVSEL0.EPU0SEL = 1, the event type is TinyDSP0_1.

EPU Thread0 EPU Thread1 EPU Thread2 Event No. Event Type Setting Register Event Type Setting Register Event Type Setting Register TinyDSP0_0/ TinyDSP0_0/ TinyDSP0 0/ TinyDSP0_1 TinyDSP0_1 TinyDSP0_1 EVSEL0 EPU0SEL EVSEL0 EPU1SEL EVSEL0 EPU2SEL TinyDSP1 0/ TinyDSP1 0/ TinyDSP1 0/ 1 TinyDSP1_1 TinyDSP1_1 TinyDSP1_1 2 ADC0 0/ADC0 1 ADC0 0/ADC0 1 ADC0 0/ADC0 1 3 ADC0_2/ADC0_3 ADC0_2/ADC0_3 ADC0_2/ADC0_3 4 ADC0_4/ADC0_5 ADC0_4/ADC0_5 ADC0_4/ADC0_5 5 ADC0_6/ADC0_7 ADC0_6/ADC0_7 ADC0_6/ADC0_7 EVSEL1.EPU0SEL EVSEL1.EPU1SEL EVSEL1.EPU2SEL ADC1_0/ADC1_1 ADC1_0/ADC1_1 ADC1_0/ADC1_1 6 7 ADC1_2/ADC1_3 ADC1_2/ADC1_3 ADC1_2/ADC1_3 ADC1_4/ADC1_5 ADC1_4/ADC1_5 ADC1_4/ADC1_5 8 9 ADC1_6/ADC1_7 ADC1_6/ADC1_7 ADC1_6/ADC1_7 10 PWM0_0/PWM0_1 PWM0_0/PWM0_1 PWM0_0/PWM0_1 PWM1_0/PWM1_1 PWM1_0/PWM1_1 11 PWM1_0/PWM1_1 EVSEL2.EPU0SEL EVSEL2.EPU1SEL EVSEL2.EPU2SEL 12 PWM2_0/PWM2_1 PWM2_0/PWM2_1 PWM2_0/PWM2_1 PWM3_0/PWM3_1 PWM3_0/PWM3_1 PWM3_0/PWM3_1 13 LUT0 LUT0/LUT1 EVSEL3.EPU1SEL LUT0/LUT1 EVSEL3.EPU2SEL 14 15 LUT1 TMR0A/TMR0B EVSEL4.EPU1SEL TMR1A/TMR1B EVSEL4.EPU2SEL

Table 9-2. EPU Event Input

Event	EPU T	hread3	EPU T	hread4	EPU T	hread5	
No.	Event Type	Setting Register	Event Type	Setting Register	Event Type	Setting Register	
0	TinyDSP0_0/ TinyDSP0_1	EVGEY O EDIVACEY	TinyDSP0_0/ TinyDSP0_1	EVGEV O EDVAGEV	TinyDSP0_0/ TinyDSP0_1	EVGEV O EDVISGEV	
1	TinyDSP1_0/ TinyDSP1_1	EVSEL0.EPU3SEL	TinyDSP1_0/ TinyDSP1_1	EVSEL0.EPU4SEL	TinyDSP1_0/ TinyDSP1_1	EVSEL0.EPU5SEL	
2	ADC0_0/ADC0_1		ADC0_0/ADC0_1		ADC0_0/ADC0_1		
3	ADC0_2/ADC0_3		ADC0_2/ADC0_3		ADC0_2/ADC0_3		
4	ADC0_4/ADC0_5		ADC0_4/ADC0_5	EVSEL1.EPU4SEL	ADC0_4/ADC0_5	EVSEL1.EPU5SEL	
5	ADC0_6/ADC0_7	EVSEL1.EPU3SEL	ADC0_6/ADC0_7		ADC0_6/ADC0_7		
6	ADC1_0/ADC1_1	EVSELI.EPUSSEL	ADC1_0/ADC1_1		ADC1_0/ADC1_1		
7	ADC1_2/ADC1_3		ADC1_2/ADC1_3		ADC1_2/ADC1_3		
8	ADC1_4/ADC1_5		ADC1_4/ADC1_5		ADC1_4/ADC1_5		
9	ADC1_6/ADC1_7		ADC1_6/ADC1_7		ADC1_6/ADC1_7		
10	PWM0_0/PWM0_1		PWM0_0/PWM0_1		PWM0_0/PWM0_1		
11	PWM1_0/PWM1_1	EVSEL2.EPU3SEL	PWM1_0/PWM1_1	EVSEL2.EPU4SEL	PWM1_0/PWM1_1	EVSEL2.EPU5SEL	
12	PWM2_0/PWM2_1	EVSELZ.EFUSSEL	PWM2_0/PWM2_1	EVSELZ.EFU4SEL	PWM2_0/PWM2_1	EVSELZ.EFUSSEL	
13	PWM3_0/PWM3_1		PWM3_0/PWM3_1		PWM3_0/PWM3_1		
14	SPI_TX SPI_RX	_	I ² C		UART/SCID	EVSEL3.EPU5SEL	
15	TMR2A/TMR2B	EVSEL4.EPU3SEL	TMR3A/TMR3B	EVSEL4.EPU4SEL	FLASH	_	

Table 9-3. ADC Event Input

E N-	ADC	Unit0	ADC	Unit1
Event No.	Event Type	Setting Register	Event Type	Setting Register
1	GPIO0 rise		GPIO0 rise	_
2	GPIO0 fall		GPIO0 fall	_
3	GPIO0 both		GPIO0 both	_
4	GPIO1 rise	_	GPIO1 rise	_
5	GPIO1 fall	_	GPIO1 fall	_
6	GPIO1 both	_	GPIO1 both	_
7	GPIO2 rise	_	GPIO2 rise	_
8	GPIO2 fall	_	GPIO2 fall	_
9	GPIO2 both	_	GPIO2 both	_
10	CMP0		CMP0	_
11	CMP1		CMP1	_
12	CMP2	_	CMP2	_
13	CMP3	<u> </u>	CMP3	_
14	CMP4		CMP4	_
15	CMP5	_	CMP5	_
16	— CIVIF3		— CMF3	_
17				
18				
	TMR0_CMA		TMR0_CMA	
19	TMR0_CMB	_	TMR0_CMB	_
20	TMR1_CMA	_	TMR1_CMA	_
21	TMR1_CMB	_	TMR1_CMB	_
22	TMR2_CMA	_	TMR2_CMA	_
23	TMR2_CMB	_	TMR2_CMB	_
24	TMR3_CMA	_	TMR3_CMA	_
25	TMR3_CMB	_	TMR3_CMB	_
26	PWM0_0	_	PWM0_0	_
27	PWM0_1	_	PWM0_1	_
28	PWM1_0		PWM1_0	_
29	PWM1_1		PWM1_1	_
30	PWM2_0	_	PWM2_0	_
31	PWM2_1	_	PWM2_1	_
32	PWM3_0	_	PWM3_0	_
33	PWM3_1	_	PWM3_1	_
34	EPU0_2/EPU1_2	ENGEL 5 A DOOGEL	EPU0_2/EPU1_2	EVICEL 7 AD LOCK
35	EPU0_3/EPU1_3	EVSEL5.AD00SEL	EPU0_3/EPU1_3	EVSEL7.AD10SEL
36	EPU0_4/EPU1_4	EVSEL5.AD01SEL	EPU0_4/EPU1_4	EVSEL7.AD11SEL
37	EPU0_5/EPU1_5	E VSELS.AD013EL	EPU0_5/EPU1_5	E VSEL7.ADTISEL
38	EPU0_6/EPU1_6	EVSEL5.AD02SEL	EPU0_6/EPU1_6	EVSEL7.AD12SEL
39	EPU0_7/EPU1_7		EPU0_7/EPU1_7	
40	EPU0_8/EPU1_8	EVSEL5.AD03SEL	EPU0_8/EPU1_8	EVSEL7.AD13SEL
41 42	EPU0_9/EPU1_9 EPU2 2/EPU3 2		EPU0_9/EPU1_9 EPU2 2/EPU3 2	
43	EPU2_2/EPU3_2 EPU2_3/EPU3_3	EVSEL5.AD04SEL	EPU2_2/EPU3_2 EPU2_3/EPU3_3	EVSEL7.AD14SEL
44	EPU2_4/EPU3_4		EPU2_4/EPU3_4	
45	EPU2_5/EPU3_5	EVSEL5.AD05SEL	EPU2_5/EPU3_5	EVSEL7.AD15SEL
46	EPU2_6/EPU3_6	EVICEL 5 ADASSET	EPU2_6/EPU3_6	EVERTA ADAKER
47	EPU2_7/EPU3_7	EVSEL5.AD06SEL	EPU2_7/EPU3_7	EVSEL7.AD16SEL
48	EPU2_8/EPU3_8	EVSEL5.AD07SEL	EPU2_8/EPU3_8	EVSEL7.AD17SEL
49	EPU2_9/EPU3_9	EVSELS.ADU/SEL	EPU2_9/EPU3_9	EVSEL/.ADI/SEL
50	EPU4_2/EPU5_2	EVSEL6.AD08SEL	EPU4_2/EPU5_2	EVSEL8.AD18SEL
51	EPU4_3/EPU5_3	L DEEU.ADUODEL	EPU4_3/EPU5_3	LIBELO, ADIOSEL
52	EPU4_4/EPU5_4	EVSEL6.AD09SEL	EPU4_4/EPU5_4	EVSEL8.AD19SEL
53	EPU4_5/EPU5_5	2.0220.100,000	EPU4_5/EPU5_5	2.5225.11017522
54	EPU4_6/EPU5_6	EVSEL6.AD0ASEL	EPU4_6/EPU5_6	EVSEL8.AD1ASEL
55	EPU4_7/EPU5_7		EPU4_7/EPU5_7	
56 57	EPU4_8/EPU5_8	EVSEL6.AD0BSEL	EPU4_8/EPU5_8	EVSEL8.AD1BSEL
57	EPU4_9/EPU5_9		EPU4_9/EPU5_9	1

Table 9-4. DSAC Event Input

E (N	DSAC Chan	nel0 to Channel7	DSAC Chan	DSAC Channel8 to Channel15		
Event No.	Event Type	Setting Register	Event Type	Setting Register		
0	CMP0/CMP1		CMP0/CMP1			
1	CMP2/CMP3	EVSEL9.DSAC0SEL	CMP2/CMP3	EVSEL9.DSAC1SEL		
2	CMP4/CMP5		CMP4/CMP5			
3	ADC0_0	_	ADC0_0	_		
4	ADC0_1	_	ADC0_1	_		
5	ADC0_2	_	ADC0_2	_		
6	ADC0_3	_	ADC0_3	_		
7	ADC0_4	_	ADC0_4	_		
8	ADC0_5	_	ADC0_5	_		
9	ADC0_6	_	ADC0_6	_		
10	ADC0_7	_	ADC0_7	_		
11	ADC1_0	_	ADC1_0	_		
12	ADC1_1	_	ADC1_1	_		
13	ADC1_2	_	ADC1_2	_		
14	ADC1_3	_	ADC1_3	_		
15	ADC1_4	_	ADC1_4	_		
16	ADC1_5	_	ADC1_5	_		
17	ADC1_6	_	ADC1_6	_		
18	ADC1_7	_	ADC1_7	_		
19	PWM0_0/PWM0_1		PWM0_0/PWM0_1			
20	PWM1_0/PWM1_1	EVICENTO DO A COCEN	PWM1_0/PWM1_1	ENGEL 10 DO A CLOSE		
21	PWM2_0/PWM2_1	EVSEL10.DSAC0SEL	PWM2_0/PWM2_1	EVSEL10.DSAC1SEL		
22	PWM3_0/PWM3_1		PWM3_0/PWM3_1			
23	TinyDSP0_0	_	TinyDSP0_0	_		
24	TinyDSP0_1	_	TinyDSP0_1	_		
25	TinyDSP1_0	_	TinyDSP1_0	_		
26	TinyDSP1_1	_	TinyDSP1_1	_		
27	TMR0 CMA/CMB		TMR0 CMA/CMB			
28	TMR1 CMA/CMB	EVICEI 11 DO A COGEY	TMR1 CMA/CMB	EVICEI 11 DO A C1CEY		
29	TMR2 CMA/CMB	EVSEL11.DSAC0SEL	TMR2 CMA/CMB	EVSEL11.DSAC1SEL		
30	TMR3 CMA/CMB		TMR3 CMA/CMB			
31	(CPU)	_	(CPU)	_		

9.2.3. Event Integration

In this block, the events of EPU are selected and are integrated by an OR circuit. The integrated signal is output to each channel of the POC. There are 4 integrated groups, A, B, C, and D. An event for the Channel O, Channel O, Channel O, Channel O, Group D, Group D, respectively.

When the MGENx bit of the EVMGxC0/1 register (where, x is A, B, C, or D) is 1, the corresponding event is output to the POC. When the MGENx bit is 0, the corresponding bit is not output to the POC.

Table 9-5. POC Event Input

Event	P	OC Channel0	P	OC Channel1	P	OC Channel2	el2 POC Channel3	
No.	Event Type	Setting Register	Event Type	Setting Register	Event Type	Setting Register	Event Type	Setting Register
0	CMP0 (level)	_	CMP0 (level)	_	CMP0 (level)	_	CMP0 (level)	_
1	CMP1 (level)	_	CMP1 (level)	_	CMP1 (level)	_	CMP1 (level)	_
2	CMP2 (level)	_	CMP2 (level)	_	CMP2 (level)	_	CMP2 (level)	_
3	CMP3 (level)	_	CMP3 (level)	_	CMP3 (level)	_	CMP3 (level)	_
4	CMP4 (level)	_	CMP4 (level)	_	CMP4 (level)	_	CMP4 (level)	_
5	CMP5 (level)		CMP5 (level)	_	CMP5 (level)	_	CMP5 (level)	_
6	LUT0 (level)	_	LUT0 (level)	_	LUT0 (level)	_	LUT0 (level)	_
7	LUT1 (level)	_	LUT1 (level)	_	LUT1 (level)	_	LUT1 (level)	_
	EPU0_10	EVMGAC0.MGEN0	EPU0_10	EVMGBC0.MGEN0	EPU0_10	EVMGCC0.MGEN0	EPU0_10	EVMGDC0.MGEN0
	EPU0_11	EVMGAC0.MGEN1	EPU0_11	EVMGBC0.MGEN1	EPU0_11	EVMGCC0.MGEN1	EPU0_11	EVMGDC0.MGEN1
	EPU1_10	EVMGAC0.MGEN2	EPU1_10	EVMGBC0.MGEN2	EPU1_10	EVMGCC0.MGEN2	EPU1_10	EVMGDC0.MGEN2
	EPU1_11	EVMGAC0.MGEN3	EPU1_11	EVMGBC0.MGEN3	EPU1_11	EVMGCC0.MGEN3	EPU1_11	EVMGDC0.MGEN3
	EPU2_10	EVMGAC0.MGEN4	EPU2_10	EVMGBC0.MGEN4	EPU2_10	EVMGCC0.MGEN4	EPU2_10	EVMGDC0.MGEN4
EPU	EPU2_11	EVMGAC0.MGEN5	EPU2_11	EVMGBC0.MGEN5	EPU2_11	EVMGCC0.MGEN5	EPU2_11	EVMGDC0.MGEN5
EPU	EPU3_10	EVMGAC0.MGEN6	EPU3_10	EVMGBC0.MGEN6	EPU3_10	EVMGCC0.MGEN6	EPU3_10	EVMGDC0.MGEN6
	EPU3_11	EVMGAC0.MGEN7	EPU3_11	EVMGBC0.MGEN7	EPU3_11	EVMGCC0.MGEN7	EPU3_11	EVMGDC0.MGEN7
	EPU4_10	EVMGAC1.MGEN8	EPU4_10	EVMGBC1.MGEN8	EPU4_10	EVMGCC1.MGEN8	EPU4_10	EVMGDC1.MGEN8
	EPU4_11	EVMGAC1.MGEN9	EPU4_11	EVMGBC1.MGEN9	EPU4_11	EVMGCC1.MGEN9	EPU4_11	EVMGDC1.MGEN9
	EPU5_10	EVMGAC1.MGENA	EPU5_10	EVMGBC1.MGENA	EPU5_10	EVMGCC1.MGENA	EPU5_10	EVMGDC1.MGENA
	EPU5_11	EVMGAC1.MGENB	EPU5_11	EVMGBC1.MGENB	EPU5_11	EVMGCC1.MGENB	EPU5_11	EVMGDC1.MGENB

9.2.4. GPIO Event Edge Detection

The GPIO event edge for the ADC is detected. When the GPIO event is selected in the ADC, it is required to enable the clock of the EVC module.

9.3. Register Descriptions

Table 9-6. List of Registers

Symbol	Name	Address	Initial Value
EVINTE0	EVC Interrupt Enable0	0xE300	0x00
EVINTF0	EVC Interrupt Flag0	0xE308	0x00
EVMGAC0	EVC Event Merge A Configuration0	0xE310	0x00
EVMGAC1	EVC Event Merge A Configuration1	0xE311	0x00
EVMGBC0	EVC Event Merge B Configuration0	0xE312	0x00
EVMGBC1	EVC Event Merge B Configuration1	0xE313	0x00
EVMGCC0	EVC Event Merge C Configuration0	0xE314	0x00
EVMGCC1	EVC Event Merge C Configuration1	0xE315	0x00
EVMGDC0	EVC Event Merge D Configuration0	0xE316	0x00
EVMGDC1	EVC Event Merge D Configuration1	0xE317	0x00
EVSEL0	EVC Select0	0xE330	0x00
EVSEL1	EVC Select1	0xE331	0x00
EVSEL2	EVC Select2	0xE332	0x00
EVSEL3	EVC Select3	0xE333	0x00
EVSEL4	EVC Select4	0xE334	0x00
EVSEL5	EVC Select5	0xE335	0x00
EVSEL6	EVC Select6	0xE336	0x00
EVSEL7	EVC Select7	0xE337	0x00
EVSEL8	EVC Select8	0xE338	0x00
EVSEL9	EVC Select9	0xE339	0x00
EVSEL10	EVC Select10	0xE33A	0x00
EVSEL11	EVC Select11	0xE33B	0x00

9.3.1. EVINTE0 (EVC Interrupt Enable0)

Register EVINTE		INTE0	EVC In	iterrupt Enable0	Address	0xE300
Bit	Bit Nam	e R/W	Initial	Description		Remarks
7	Reserved R		0	The read value is 0. The write value must always be 0.		
6	Reserve	d R	0	The read value is 0. The write value must always be 0.		
5	EPU5II	E R/W	0	EPU Thread5 event interrupt enable 0: EPU Thread5 event interrupt is disabled 1: EPU Thread5 event interrupt is enabled If the bit is set to 1, an interrupt is notified to the CPU when EPU5IF = 1.		
4	EPU4II	E R/W	0	EPU Thread4 event interrupt enable 0: EPU Thread4 event interrupt is disat 1: EPU Thread4 event interrupt is enab If the bit is set to 1, an interrupt is no EPU4IF = 1.	led	
3	EPU3II	E R/W	0	EPU Thread3 event interrupt enable 0: EPU Thread3 event interrupt is disable 1: EPU Thread3 event interrupt is enable 1: EPU Thread3 event interrupt is enable 1: EPU3IF = 1.	led	
2	EPU2II	E R/W	0	EPU Thread2 event interrupt enable 0: EPU Thread2 event interrupt is disab 1: EPU Thread2 event interrupt is enab If the bit is set to 1, an interrupt is no EPU2IF = 1.	led	
1	EPU1II	E R/W	0	EPU Thread1 event interrupt enable 0: EPU Thread1 event interrupt is disable 1: EPU Thread1 event interrupt is enable If the bit is set to 1, an interrupt is no EPU1IF = 1.	led	
0	EPUOII	E R/W	0	EPU Thread0 event interrupt enable 0: EPU Thread0 event interrupt is disab 1: EPU Thread0 event interrupt is enab If the bit is set to 1, an interrupt is no EPU0IF = 1.	led	

9.3.2. EVINTF0 (EVC Interrupt Flag0)

Register EVINTF0		INTF0	EVC Interrupt Flag0 Address		Address	0xE308
Bit	Bit Nan	ne R/W	Initial	Description		Remarks
7	Reserve	ed R	0	The read value is 0. The write value must always be 0.		
6	Reserved R		0	The read value is 0. The write value must always be 0.		
				EPU Thread5 event interrupt flag Read 0: No interrupt source gen Read 1: An interrupt source gen Write 0: No change Write 1: The bit is cleared		
5	EPU5IF	F R/C	0	The bit is set when the EPU T detected. When EPU5IF = 1 and EPU5IE inotified to the CPU. When 1 is written to the bit, the bit the case where clearing the simultaneously with an EPU5 clearing operation has higher pricesetting operation is ignored.	= 1, an interrupt is t is cleared to 0. In oit to 0 occurred event setting, the	
4	EPU4I	F R/C	0	EPU Thread4 event interrupt flag Read 0: No interrupt source gen Read 1: An interrupt source gen Write 0: No change Write 1: The bit is cleared The bit is set when the EPU T detected. When EPU4IF = 1 and EPU4IE interest to the CPU. When 1 is written to the bit, the bit the case where clearing the tesimultaneously with an EPU4 clearing operation has higher pricesetting operation is ignored.	hread4 Event14 is = 1, an interrupt is t is cleared to 0. In oit to 0 occurred event setting, the	
3	EPU3I	F R/C	0	EPU Thread3 event interrupt flag Read 0: No interrupt source gen Read 1: An interrupt source gen Write 0: No change Write 1: The bit is cleared The bit is set when the EPU T detected. When EPU3IF = 1 and EPU3IE inotified to the CPU. When 1 is written to the bit, the bit the case where clearing the is simultaneously with an EPU3 clearing operation has higher pricesetting operation is ignored.	hread3 Event14 is = 1, an interrupt is t is cleared to 0. In bit to 0 occurred event setting, the	

Regi	ster EVINTF0		F0	EVC Interrupt Flag0 Address		Address	0xE308
Bit	Bit	Name	R/W	Initial	Description		Remarks
	EPU2IF	R/C	0	EPU Thread2 event interrupt flag Read 0: No interrupt source gen Read 1: An interrupt source gen Write 0: No change Write 1: The bit is cleared The bit is set when the EPU T	erated		
2				detected. When EPU2IF = 1 and EPU2IE = notified to the CPU. When 1 is written to the bit, the bit the case where clearing the bit simultaneously with an EPU2 clearing operation has higher pricesetting operation is ignored.	= 1, an interrupt is t is cleared to 0. In oit to 0 occurred event setting, the		
1	EF	PU1IF	R/C	0	EPU Thread1 event interrupt flag Read 0: No interrupt source gen Read 1: An interrupt source gen Write 0: No change Write 1: The bit is cleared The bit is set when the EPU T detected. When EPU1IF = 1 and EPU1IE = notified to the CPU. When 1 is written to the bit, the bit the case where clearing the besimultaneously with an EPU1 clearing operation has higher pricesetting operation is ignored.	hread1 Event14 is = 1, an interrupt is t is cleared to 0. In it to 0 occurred event setting, the	
0	EF	PU0IF	R/C	0	EPU Thread0 event interrupt flag Read 0: No interrupt source gen Read 1: An interrupt source gen Write 0: No change Write 1: The bit is cleared The bit is set when the EPU T detected. When EPU0IF = 1 and EPU0IE = notified to the CPU. When 1 is written to the bit, the bit the case where clearing the b simultaneously with an EPU0 clearing operation has higher pricesetting operation is ignored.	hread0 Event14 is = 1, an interrupt is t is cleared to 0. In it to 0 occurred event setting, the	

9.3.3. EVMGAC0 (EVC Event Merge A Configuration0)

Regi	ster	EVMGA	AC0	EVC Even	t Merge A Configuration0	Address	0xE310
Bit	Bit N	Name	R/W	Initial	Description		Remarks
7	MG	EN7	R/W	0	Integration of EPU Thread3 Event11 into POC0 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC0.		
6	MGEN6 R/W		R/W	0	Integration of EPU Thread3 Event10 into POC0 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC0.		
5	5 MGEN5		R/W	0	Integration of EPU Thread2 Event11 into POC0 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event		
4	MG	EN4	R/W	0	of POC0. Integration of EPU Thread2 Event10 into POC0 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC0.		
3	Integration of EPU Thread1 Event11 into PO 0: Event is not integrated (OR) 1: Event is integrated (OR)						
2	MGEN2 R/W		0	Integration of EPU Thread1 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is adof POC0.			
1	MGEN1 R/W Integration of EPU Thread0 Event11 into POC0 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC0.						
0	MGEN0 R/W 0 Integration of EPU Thread0 Event10 into POC0 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC0.						

9.3.4. EVMGAC1 (EVC Event Merge A Configuration1)

Register EVMG		AC1	EVC Event Merge A Configuration1 Address		0xE311		
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Reserved		R	0	The read value is 0. The write value must always be 0.		
6	Res	served	R	0	The read value is 0. The write value must always be 0		
5	Res	served	R	0	The read value is 0. The write value	The read value is 0. The write value must always be 0.	
4	Res	served	R	0	The read value is 0. The write value	must always be 0.	
3	MGENB		R/W	0	Integration of EPU Thread5 Event11 into POC0 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC0.		
2	MGENA		R/W	0	Integration of EPU Thread5 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is add of POC0.		
1	М	GEN9	R/W	0	Integration of EPU Thread4 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is add of POC0.		
0	М	GEN8	R/W	0	Integration of EPU Thread4 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is add of POC0.		

9.3.5. EVMGBC0 (EVC Event Merge B Configuration0)

Register EVMGBC0		BC0	EVC Event Merge B Configuration O Address		0xE312	
Bit	Bit Name	R/W	Initial	Description		Remarks
7	MGEN7	R/W	0	Integration of EPU Thread3 Event11 into POC1 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC1.		
6	MGEN6	R/W	0	Integration of EPU Thread3 Event10 into POC1 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC1.		
5	MGEN5	R/W	0	Integration of EPU Thread2 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR)	Integration of EPU Thread2 Event11 into POC1 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of	
4	MGEN4	R/W	0	Integration of EPU Thread2 Event10 into POC1 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC1.		
3	MGEN3	R/W	0	Integration of EPU Thread1 Event11 into POC1 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC1.		
2	MGEN2	R/W	0	Integration of EPU Thread1 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is add POC1.		
1	MGEN1	R/W	0	Integration of EPU Thread0 Event11 into POC1 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC1.		
0	MGEN0	R/W	0	Integration of EPU Thread0 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is add POC1.		

9.3.6. EVMGBC1 (EVC Event Merge B Configuration1)

Regi	ster	EVMGE	BC1	EVC Event	Merge B Configuration1	Address	0xE313
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value	must always be 0.	
6	Res	served	R	0	The read value is 0. The write value	must always be 0.	
5	Res	served	R	0	The read value is 0. The write value	must always be 0.	
4	Res	served	R	0	The read value is 0. The write value	must always be 0.	
3	MO	GENB	R/W	0	Integration of EPU Thread5 Event11 into POC1 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC1.		
2	MC	GENA	R/W	0	0: Event is not integrated (OR) 1: Event is integrated (OR)	Integration of EPU Thread5 Event10 into POC1 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU	
1	М	GEN9	R/W	0	Integration of EPU Thread4 Event11 into POC1 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC1.		
0	М	GEN8	R/W	0	Integration of EPU Thread4 Event10 into POC1 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC1.		

9.3.7. EVMGCC0 (EVC Event Merge C Configuration0)

Regi	ster EVMG0	CC0	EVC Event	: Merge C Configuration0	Address	0xE314
Bit	Bit Name	R/W	Initial	Description		Remarks
7	MGEN7	R/W	0	Integration of EPU Thread3 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is ad of POC2.		
6	MGEN6	R/W	0	Integration of EPU Thread3 Event10 into POC2 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC2.		
5	MGEN5	R/W	0	0: Event is not integrated (OR) 1: Event is integrated (OR)	Integration of EPU Thread2 Event11 into POC2 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event	
4	MGEN4	R/W	0	Integration of EPU Thread2 Event10 into POC2 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC2.		
3	MGEN3	R/W	0	Integration of EPU Thread1 Event11 into POC2 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event		
2	MGEN2	R/W	0	of POC2. Integration of EPU Thread1 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is ad of POC2.		
1	MGEN1	R/W	0	Integration of EPU Thread0 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is ad of POC2.	ded to the EPU event	
0	MGEN0	R/W	0	Integration of EPU Thread0 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is ad of POC2.		

9.3.8. EVMGCC1 (EVC Event Merge C Configuration1)

Regi	ster	EVMGO	CC1	EVC Event	Merge C Configuration1	Address	0xE315	
Bit	Bit	Name	R/W	Initial	Description		Remarks	
7	Res	served	R	0	The read value is 0. The write value	must always be 0.		
6	Res	served	R	0	The read value is 0. The write value	must always be 0.		
5	Res	served	R	0	The read value is 0. The write value	must always be 0.		
4	Res	served	R	0	The read value is 0. The write value	must always be 0.		
3	MO	GENB	R/W	0	Integration of EPU Thread5 Event11 into POC2 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC2.			
2	MC	GENA	R/W	0	0: Event is not integrated (OR) 1: Event is integrated (OR)	Integration of EPU Thread5 Event10 into POC2 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU		
1	М	GEN9	R/W	0	Integration of EPU Thread4 Event11 into POC2 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC2.			
0	М	GEN8	R/W	0	event of POC2. Integration of EPU Thread4 Event10 into POC2 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC2.			

9.3.9. EVMGDC0 (EVC Event Merge D Configuration0)

Regi	ster EVMGI	DC0	EVC Event	t Merge D Configuration0	Address	0xE316
Bit	Bit Name	R/W	Initial	Description		Remarks
7	MGEN7	R/W	0	Integration of EPU Thread3 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is add POC3.		
6	MGEN6	R/W	0	Integration of EPU Thread3 Event10 into POC3 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC3.		
5	MGEN5	R/W	0	Integration of EPU Thread2 Event11 into POC3 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC3.		
4	MGEN4	R/W	0	Integration of EPU Thread2 Event10 into POC3 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC3.		
3	MGEN3	R/W	0	Integration of EPU Thread1 Event11 into POC3 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of		
2	MGEN2	R/W	0	POC3. Integration of EPU Thread1 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is add POC3.		
1	MGEN1	R/W	0	Integration of EPU Thread0 Event11 into POC3 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC3.		
0	MGEN0	R/W	0	Integration of EPU Thread0 Event1 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is add POC3.		

9.3.10. EVMGDC1 (EVC Event Merge D Configuration1)

Regi	ster	EVMGI	DC1	EVC Event	Merge D Configuration1	Address	0xE317
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value	must always be 0.	
6	Res	served	R	0	The read value is 0. The write value	must always be 0.	
5	Res	served	R	0	The read value is 0. The write value	must always be 0.	
4	Res	served	R	0	The read value is 0. The write value	must always be 0.	
3	MC	GENB	R/W	0	Integration of EPU Thread5 Event11 into POC3 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC3.		
2	МС	GENA	R/W	0	Integration of EPU Thread5 Event10 into POC3 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event		
1	М	GEN9	R/W	0	of POC3. Integration of EPU Thread4 Event11 into POC3 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC3		
0	М	GEN8	R/W	0	of POC3. Integration of EPU Thread4 Event10 into POC3 event 0: Event is not integrated (OR) 1: Event is integrated (OR) If the bit is set to 1, the event is added to the EPU event of POC3.		

9.3.11. EVSEL0 (EVC Select0)

Regi	Register EVSEL0)	EVC Select0		Address	0xE330
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value	must always be 0.	
6	Res	served	R	0	The read value is 0. The write value	must always be 0.	
5	EPU	J5SEL	R/W	0	TinyDSP event selection to EPU Th 0: TinyDSP0/1, Event0 1: TinyDSP0/1, Event1	read5	
4	EPU	J 4SEL	TinyDSP event selection to EPU Thread4				
3	EPU	EPU3SEL R/W 0 TinyDSP event selection to EPU Thread3 EPU3SEL R/W 0 0: TinyDSP0/1, Event0 1: TinyDSP0/1, Event1		nread3			
2	EPU	J2SEL	R/W	0	TinyDSP event selection to EPU Th 0: TinyDSP0/1, Event0 1: TinyDSP0/1, Event1	read2	
1	EPU	J1SEL	R/W	0	TinyDSP event selection to EPU Thread1 0: TinyDSP0/1, Event0 1: TinyDSP0/1, Event1		
0	EPU0SEL R/W 0 TinyDSP event selection to EPU Thread0 0: TinyDSP0/1, Event0 1: TinyDSP0/1, Event1		read0				

9.3.12. EVSEL1 (EVC Select1)

Regi	ster	EVSEL	1	EVC Select	select1 Address		0xE331
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	erved	R	0	The read value is 0. The write value	must always be 0.	
6	Res	erved	R	0	The read value is 0. The write value	must always be 0.	
5	EPU	J5SEL	R/W	0	ADC0/1 event selection to EPU The 0: Even numbers of ADC0/1 grou 1: Odd numbers of ADC0/1 grou	ıp	
4	EPU	ADC0/1 event selection to EPU Thread4 EPU4SEL R/W 0 0: Even numbers of ADC0/1 group 1: Odd numbers of ADC0/1 group					
3	EPU	J3SEL	R/W	0	ADC0/1 event selection to EPU Th 0: Even numbers of ADC0/1 grou 1: Odd numbers of ADC0/1 grou		
2	EPU	J2SEL	ADC0/1 event selection to EPU Thread2				
1	1 EPU1SEL R/W		0	ADC0/1 event selection to EPU Thread1 0: Even numbers of ADC0/1 group 1: Odd numbers of ADC0/1 group			
0) EPU0SEL R/W		R/W	0	ADC0/1 event selection to EPU Thread0 0: Even numbers of ADC0/1 group 1: Odd numbers of ADC0/1 group		

9.3.13. EVSEL2 (EVC Select2)

Regi	ster	EVSEL	2	EVC Select2		Address	0xE332
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	erved	R	0	The read value is 0. The write value	must always be 0.	
6	Res	erved	R	0	The read value is 0. The write value	must always be 0.	
5	EPU	J5SEL	R/W	0	PWM event selection to EPU Threa 0: PWM0/1/2/3, Event0 1: PWM0/1/2/3, Event1	d5	
4	EPU	J4SEL	R/W	0	PWM event selection to EPU Thread4 0: PWM0/1/2/3, Event0 1: PWM0/1/2/3, Event1		
3	PWM event selection to EPU Thread3 EPU3SEL R/W 0 0: PWM0/1/2/3, Event0 1: PWM0/1/2/3, Event1		d3				
2	EPU	J2SEL	R/W	0	PWM event selection to EPU Threa 0: PWM0/1/2/3, Event0 1: PWM0/1/2/3, Event1	d2	
1	EPU	J1SEL	R/W	0	PWM event selection to EPU Thread1 0: PWM0/1/2/3, Event0 1: PWM0/1/2/3, Event1		
0	EPUOSEL R/W 0 PWM event selection to EPU Thread0 0: PWM0/1/2/3, Event0 1: PWM0/1/2/3, Event1		d0				

9.3.14. EVSEL3 (EVC Select3)

Regi	Register EVSEL3		EVC Select3		Address	0xE333	
Bit	Bit 1	Name	R/W	Initial	Description		Remarks
7	Res	erved	R	0	The read value is 0. The write value	must always be 0.	
6	Res	erved	R	0	The read value is 0. The write value	must always be 0.	
5	EPU5SEL R/W		R/W	0	Serial module event selection to EP 0: UART 1: SCID	U Thread5	
4	Res	erved	R	0	The read value is 0. The write value	must always be 0.	
3	Res	erved	R	0	The read value is 0. The write value	must always be 0.	
2	EPU	J2SEL	R/W	0	LUT event selection to EPU Thread2 0: LUT0 1: LUT1		
1	EPU	J1SEL	R/W	0	LUT event selection to EPU Thread1 0: LUT0 1: LUT1		
0	Res	erved	R	0	The read value is 0. The write value	must always be 0.	

9.3.15. EVSEL4 (EVC Select4)

Regi	Register EVSEL4		EVC Selec	t4	Address	0xE334
Bit	Bit Nam	e R/W	Initial	Description		Remarks
7	Reserve	d R	0	The read value is 0. The write value	must always be 0.	
6	Reserve	d R	0	The read value is 0. The write value	must always be 0.	
5	Reserve	d R	0	The read value is 0. The write value	must always be 0.	
4	EPU4SEL R/V		0	TMR3 event selection to EPU Threa 0: CMA of TMR3 1: CMB of TMR3		
3	EPU3SE	L R/W	0	TMR2 event selection to EPU Threa 0: CMA of TMR2 1: CMB of TMR2	TMR2 event selection to EPU Thread3 0: CMA of TMR2	
2	EPU2SE	L R/W	0	TMR1 event selection to EPU Threa 0: CMA of TMR1 1: CMB of TMR1	TMR1 event selection to EPU Thread2 0: CMA of TMR1	
1	EPU1SE	L R/W	0	TMR0 event selection to EPU Thread1 0: CMA of TMR0 1: CMB of TMR0		
0	Reserve	d R	0	The read value is 0. The write value	must always be 0.	

9.3.16. EVSEL5 (EVC Select5)

Regi	ster	EVSEL:	5	EVC Select5		Address	0xE335
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	AD(07SEL	R/W	0	EPU Event8/9 thread selection to A 0: EPU Thread2, Event8/9 1: EPU Thread3, Event8/9		
6	AD06SEL R/W		R/W	0	EPU Event6/7 thread selection to A 0: EPU Thread2, Event6/7 1: EPU Thread3, Event6/7	DC0	
5	AD05SEL R/W		0	EPU Event4/5 thread selection to A 0: EPU Thread2, Event4/5 1: EPU Thread3, Event4/5	DC0		
4	AD(04SEL	R/W	0	EPU Event2/3 thread selection to A 0: EPU Thread2, Event2/3 1: EPU Thread3, Event2/3	DC0	
3	AD(03SEL	R/W	0	EPU Event8/9 thread selection to A 0: EPU Thread0, Event8/9 1: EPU Thread1, Event8/9	DC0	
2	AD(02SEL	R/W	0	EPU Event6/7 thread selection to A 0: EPU Thread0, Event6/7 1: EPU Thread1, Event6/7	DC0	
1	AD(01SEL	R/W	0	EPU Event4/5 thread selection to A 0: EPU Thread0, Event4/5 1: EPU Thread1, Event4/5		
0	EPU Event2/3 thread selection to A		DC0				

9.3.17. EVSEL6 (EVC Select6)

Regi	Register EVSEL6		6	EVC Select6		Address	0xE336	
Bit	Bit	Name	R/W	Initial	Description		Remarks	
7	Res	erved	R	0	The read value is 0. The write value	must always be 0.		
6	Res	erved	R	0	The read value is 0. The write value	must always be 0.		
5	Res	erved	R	0	The read value is 0. The write value	must always be 0.		
4	Reserved R		0	The read value is 0. The write value	must always be 0.			
3	AD0)BSEL	R/W	0	EPU Event8/9 thread selection to A 0: EPU Thread4, Event8/9 1: EPU Thread5, Event8/9			
2	ADO	ASEL	R/W	0	EPU Event6/7 thread selection to A 0: EPU Thread4, Event6/7 1: EPU Thread5, Event6/7	DC0		
1	AD(9SEL	R/W	0	EPU Event4/5 thread selection to ADC0 0: EPU Thread4, Event4/5 1: EPU Thread5, Event4/5			
0	AD(08SEL	R/W	0	EPU Event2/3 thread selection to ADC0 0: EPU Thread4, Event2/3 1: EPU Thread5, Event2/3			

9.3.18. EVSEL7 (EVC Select7)

Regi	Register EVSEL7		7	EVC Select7		Address	0xE337		
Bit	Bit	Name	R/W	Initial	Description		Remarks		
7	AD17SEL R/W		R/W	0	EPU Event8/9 thread selection to A 0: EPU Thread2, Event8/9 1: EPU Thread3, Event8/9	PU Thread2, Event8/9			
6	AD	16SEL	R/W	0	EPU Event6/7 thread selection to A 0: EPU Thread2, Event6/7 1: EPU Thread3, Event6/7	EPU Thread2, Event6/7			
5	AD15SEL R/W			0	EPU Event4/5 thread selection to A 0: EPU Thread2, Event4/5 1: EPU Thread3, Event4/5				
4	AD	14SEL	R/W	0	EPU Event2/3 thread selection to A 0: EPU Thread2, Event2/3 1: EPU Thread3, Event2/3	DC1			
3	AD	13SEL	R/W	0	EPU Event8/9 thread selection to A 0: EPU Thread0, Event8/9 1: EPU Thread1, Event8/9	DC1			
2	AD	12SEL	R/W	0	EPU Event6/7 thread selection to A 0: EPU Thread0, Event6/7 1: EPU Thread1, Event6/7	DC1			
1	AD	11SEL	R/W	0	EPU Event4/5 thread selection to A 0: EPU Thread0, Event4/5 1: EPU Thread1, Event4/5	DC1			
0	AD	10SEL	R/W	0	EPU Event2/3 thread selection to A 0: EPU Thread0, Event2/3 1: EPU Thread1, Event2/3				

9.3.19. EVSEL8 (EVC Select8)

Regi	Register EVSEL8		EVC Select	8	Address	0xE338				
Bit	Bit 1	Name	R/W	Initial	Description	Description				
7	Res	erved	R	0	The read value is 0. The write value	must always be 0.				
6	Res	erved	R	0	The read value is 0. The write value	must always be 0.				
5	Res	erved	R	0	The read value is 0. The write value	must always be 0.				
4	4 Reserved		Reserved R		The read value is 0. The write value					
3	A10	BSEL	R/W	0	EPU Event8/9 thread selection to A 0: EPU Thread4, Event8/9 1: EPU Thread5, Event8/9					
2	AD1	ASEL	R/W	0	EPU Event6/7 thread selection to A 0: EPU Thread4, Event6/7 1: EPU Thread5, Event6/7	DC1				
1	AD19SEL R/W			0	EPU Event4/5 thread selection to ADC1					
0	AD1	8SEL	R/W	0	EPU Event2/3 thread selection to A 0: EPU Thread4, Event2/3 1: EPU Thread5, Event2/3					

9.3.20. EVSEL9 (EVC Select9)

Regi	Register EV)	EVC Select	9	Address	0xE339		
Bit	Bit	Name	R/W	Initial	Description		Remarks		
7	Res	erved	R	0	The read value is 0. The write value	must always be 0.			
6	Res	erved	R	0	The read value is 0. The write value	must always be 0.			
5	Reserved R		0	The read value is 0. The write value	ead value is 0. The write value must always be 0.				
4	Reserved		R	0	The read value is 0. The write value				
3	Res	erved	R	0 The read value is 0. The write value n		must always be 0.			
2	Res	erved	R	0	The read value is 0. The write value	must always be 0.			
1	DSA	C1SEL	R/W	0	CMP event selection to DSAC Char 0: CMP Thread0/2/4 1: CMP Thread1/3/5				
0	DSA	C0SEL	R/W	0	CMP event selection to DSAC Char 0: CMP Thread0/2/4 1: CMP Thread1/3/5				

9.3.21. EVSEL10 (EVC Select10)

Regi	ster	ster EVSEL10		EVC Select	110	Address				
Bit	Bit 1	Name	R/W	Initial	Description		Remarks			
7	Res	erved	R	0	The read value is 0. The write value	must always be 0.				
6	Res	Reserved R		0	The read value is 0. The write value	must always be 0.				
5	Res	erved	R	0	The read value is 0. The write value	must always be 0.				
4	Reserved R		R	0	The read value is 0. The write value	The read value is 0. The write value must always be 0.				
3	Res	erved	R	0	The read value is 0. The write value	must always be 0.				
2	Res	erved	R	0	The read value is 0. The write value	must always be 0.				
1	DSA	PWM event selection to DSAC Channel8 to Channel15 0: PWM0/1/2/3, Event0 1: PWM0/1/2/3, Event1								
0	DSAC0SEL R/W		0	PWM event selection to DSAC Cha 0: PWM0/1/2/3, Event0 1: PWM0/1/2/3, Event1						

9.3.22. EVSEL11 (EVC Select11)

Regi	Register EV		11	EVC Select11		Address	0xE33B			
Bit	Bit	Name	R/W	Initial	Description		Remarks			
7	Res	served	R	0	The read value is 0. The write value	must always be 0.				
6	Reserved		R	0	The read value is 0. The write value	must always be 0.				
5	Reserved R		R	0	The read value is 0. The write value	e is 0. The write value must always be 0.				
4	Reserved		R	0	The read value is 0. The write value	ad value is 0. The write value must always be 0.				
3	Res	served	R	0	The read value is 0. The write value	must always be 0.				
2	Res	served	R	0	The read value is 0. The write value	must always be 0.				
1	DSA	C1SEL	R/W	0	TMR event selection to DSAC Channel8 to Channel15 0: TMR0/1/2/3, CMA event 1: TMR0/1/2/3, CMB event					
0	DSA	C0SEL	R/W	0	TMR event selection to DSAC Char 0: TMR0/1/2/3, CMA event 1: TMR0/1/2/3, CMB event					

10. Event Processing Unit (EPU)

10.1. Overview

The event processing unit (EPU) is an operation unit that performs the data transfer, data processing, and event processing instead of the CPU. The EPU can process up to 6 threads (channels) in parallel in one operation unit. Since the thread is activated in one cycle at least from the event input, the EPU is suitable for the processing required the high speed response. Each thread has a context such as a program counter, a register, and a thread activation timer.

Since the high speed context switching is simple, the switching between threads is performed in zero cycle. The EPU can process at high speed in one throughput cycle with switching threads. The thread generates an activation request by an external event. The activation request of each thread is selected according to the priority, and processes the selected thread processing by the operation unit. User can program each thread processing. The program is allocated in the shared memory with all threads. The EPU operates for the bus masters of the MBUS that the program memory is connected, SBUS, and XBUS. The EPU transfers the data between these buses. Also, the EPU generates its own event. Using this function, the events that skipped an input event and the computed multiple input events can be generated.

Table 10-1. EPU Functional Descriptions

Item	Description		
Number of Threads	6 threads		
Resource (Each Thread)	Program counter: 9 bits General-purpose register: 16 bits × 2 (R0 or R1) Dedicated timer counter: 12 bits × 1 Prescaler: 8 bits × 1 Flag register: T (true), C (carry)		
Event Dedicated timer in the thread 16 outputs per thread			
Program Memory	16 bits × 256 words (connected to the MBUS)		
Instruction	16-bit fixed-length code, instruction set based on RISC architecture Arithmetic operation: ADD, SUB, MUL, signed/unsigned comparison Logic operation: AND, OR, NOT, XOR		
Instruction	Load/Store: Register-register, SBUS-register, XBUS-register, MBUS-register Branch: Conditional/unconditional absolute address branch Event: Input/wait/output/dedicated timer event wait		
Execution Unit	2-stage or 3-stage pipeline		
MBUS	Common program/data memory for all threads Address space: 256 words Data width: 16 bits per word Dedicated bus Access mode: Byte access mode		
SBUS	Address space: 256 words Data width: 16 bits per word Access mode: Word/byte access mode Access cycle: One cycle (min.), cycle extension with the wait control Priority: DSAC > EPU > CPU		
XBUS	Address space: 64 Kwords Data width: 8 bits per word Access cycle: One cycle (min.), cycle extension with the wait control Priority: EPU > CPU		

10.2. Block Diagram

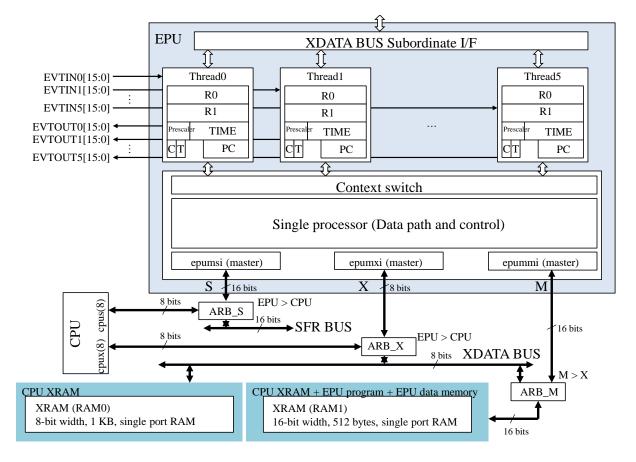


Figure 10-1. EPU Block Diagram

10.3. Common Resource

- (1) Program Memory
 - This is a 256-word (max.) memory that allocates programs and data. The data width is 16 bits per word. The program memory is accessed by the EPU instruction fetch and the LOADM or STOREM instruction.
- (2) EPU Core
 - This is an EPU instruction execution core that has 2-stage or 3-stage pipeline structure. The instruction is executed in one instruction (max.) per cycle.
- (3) MBUS
 - This is a memory interface that allocates the program and data of the EPU. The bus width is 16 bits. The MBUS has 8 bits per word addressing. The program fetch is performed in 16-bit unit. The program must be allocated in 2-byte alignment. The LOADM or STOREM instruction can access the data in 16-bit or 8-bit unit. The memory is shared with the CPU XRAM. The access priority is MBUS > XBUS.
- (4) SBUS
 - This is a high speed bus that can be accessed in one cycle (min.). The bus width is 16 bits. The SBUS is accessed by the CPU and the EPU. The priority is DSAC > EPU > CPU. The CPU can access with only 8-bit. The EPU can access with 8-bit or 16-bit, which can be specified. The SBUS has 16 bits per word addressing.
- (5) XBUS
 - This is a bus that can be accessed in one cycle (min.). The bus width is 8 bits. The XBUS is accessed by the CPU and the EPU. The priority is EPU > CPU. The XBUS has 8 bits per word addressing.

10.4. Resource of Each Thread

• General-purpose Registers (R0 and R1)

These are 16-bit width general-purpose registers, and are used for storing the operands of arithmetic logic operation and the operation results. In the XBUS access instruction, these registers are used for the base address registers of the XBUS access address. These registers can be accessed as the XBUS registers from the CPU. Therefore, the initial value before the each EPU thread execution can be set from the CPU.

• Program Counter (PC)

This indicates the present program address, and is incremented by 2 per one instruction execution. The PC can be accessed as the XBUS register from the CPU. The PC initial value of each thread must be set from the CPU.

• Dedicated Timer Counter (TIME)

This is 12-bit timer counter. When the TIMWAIT instruction is executed, the executed thread cancels the instruction execution request; furthermore, the subsequent instruction execution is suspended. The value specified by the TIMWAIT instruction is loaded to the TIME. The TIME counts down until the value becomes zero. When TIME = 0, this thread outputs the execution request of the subsequent instruction. The TIME counts down according to the count signal obtained by dividing the system clock by the prescaler. The TIME can be accessed as the XBUS register from the CPU.

• T Flag

This is updated by a comparison instruction, and is used for a condition of a subsequent branch instruction. If the result of the comparison instruction is true, T = 1. If the result of the comparison instruction is false, T = 0. The T flag can be accessed as the XBUS register from the CPU.

C Flag

This is a carry of the arithmetic logic operation result, and can be accessed from the CPU as the XBUS register.

Prescaler

This generates the TIME count signal, and has an 8-bit counter configuration. The prescaler operates from issuing the TIMWAIT instruction until the TIME register count is completed by the TIMWAIT instruction. To clear the prescaler, set EPCTRLn.RESET = 0.

10.5. Instruction

10.5.1. Instruction Format

Operations when an undefined instruction code is executed are not guaranteed. The execution of any undefined instruction code is prohibited.

Table 10-2. Instructions

Instruction	Description						(OPC	ODE	E (16	bits)				
ALU Rn, Rm	ALU Operation, Rn ← Rn op Rm (16 bits)	0	0	0	0	0	0	N	M 0 AM						
MUL Rn	Rn ← Unsigned R0[7:0] * Unsigned R1[7:0]	0	0	0	0	0	0	N	0 1111						
CMP Rn, Rm	Compare Operation, T ← Rn cmp Rm (16 bits)	0	0	0	0	0	0	N	М	M 1 CM					
EVTWAIT #EVT	Wait for Event #EVT (each thread owns 16x event-pending-flags)	0	0	0	0	0	1	0	0					EVT	
EVTIN #EVT	T←Event #EVT (no wait; only get specified event-pending-flags)	0	0	0	0	0	1	0	1 EVT						
EVTOUT #EVT	Output Event #EVT	0	0	0	0	0	1	1	0	0 EVT					
EVTCLR #EVT	Clear Event Flag #EVT	0	0	0	0	0	1	1	1	1 EVT					
JT @AddrM	If $(T==1)$ PC \leftarrow {AddrM[8:1], 1'b0}, else PC \leftarrow PC+2	0	0	0	0	1	0	0	AddrM[8:1] 0						
JF @AddrM	If $(T==0)$ PC \leftarrow {AddrM[8:1], 1'b0}, else PC \leftarrow PC+2	0	0	0	0	1	0	1	AddrM[8:1] 0						
JMP @AddrM	PC ← {AddrM[8:1], 1'b0}	0	0	0	0	1	1				A	ddrN	M[8:	1]	0
LOADS Rn, @AddrS	Load Rn from S@AddrS	0	0	0	1	R	M	N	0			Addr	S[7:	0] (8 bits)	
STORES @Addrs, Rm	Store Rn to S@Addrss	0	0	0	1	W	M	M	1			Addr	S[7:	0] (8 bits)	
LOADM Rn, @AddrM	Load Rn from M@AddrM	0	0	1	0	R	M	N			Ad	drM	[8:0]	(9 bits)	
STOREM @AddrM, Rm	Store Rm to M@AddrM	0	0	1	1	W	M	M	AddrM[8:0] (9 bits)						
TIMWAIT #TIME	Wait for #TIME x prescaler cycles	0	1	0	0				TIME[11:0] (12 bits)						
LOADX Rn, @(Rm+ZE(Offset))	Load Rn from X@(Rm+ZE(Offset))	1	0	N	M	R	М		Offset (10 bits)						
STOREX @(Rn+ZE(Offset)), Rm	Store Rm to X@(Rn+ZE(Offset))	1	1	N	M	W	M				Of	fset (10 b	its)	

Read Mode	Read Operation	R	M	Remarks
B_SE	8 bits, sign extended	0	0	X, M
B_ZE	8 bits, zero extended	0	1	X, M
W	16 bits, twice with address increment 1st read data is stored to Rn[7:0], 2nd read data is stored to Rn[15:8]	1	0	X
W_SA	16 bits, twice on same address 1st read data is stored to Rn[7:0], 2nd read data is stored to Rn[15:8]	1	1	X
B_LO	8-bit read mode (Byte access mode on DSAC), store to Rn[7:0]	0	0	S
B_HI	8-bit read mode (Byte access mode on DSAC), store to Rn[15:8]	0	1	S
W	16-bit read mode (Word access mode on DSAC)	1	0	S, M

Write Mode	Write Operation	W	M	Remarks	
B_LO	8 bits, lower side of operand	0	0	X, M	
B_HI	8 bits, higher side of operand	0	1	X, M	
M	16 bits, twice with address increment 1st write data is Rm[7:0], 2nd write data is Rm[15:8]	1	0	X	
W_SA	16 bits, twice on same address 1st write data is Rm[7:0], 2nd write data is Rm[15:8]	1	1	X	
B_LO	8-bit write mode (Byte access mode on DSAC), write Rn[7:0]	0	0	S	
B_HI	8-bit write mode (Byte access mode on DSAC), write Rn[15:8]	0	1	S	
W	16-bit write mode (Word access mode on DSAC)	1	0	S, M	

ALU Mode	Description AM Cod				
MOV	Rn ← Rm	0	0	0	0
ADD	{C, Rn} ← Rn + Rm (16 bits)	0	0	0	1
ADDC	$\{C, Rn\} \leftarrow Rn + Rm + \{\{15\{0\}\}, C\} (16 \text{ bits})$	0	0	1	0
SUB	{C, Rn} ← Rn - Rm (16 bits)	0	0	1	1
SUBC	$\{C, Rn\} \leftarrow Rn - Rm - \{\{15\{0\}\}, C\} (16 \text{ bits})$	0	1	0	0
INC	Rn ← Rm + 1 (16 bits)	0	1	0	1
DEC	Rn ← Rm – 1 (16 bits)	0	1	1	0
AND	Rn ← Rn & Rm (16 bits)	0	1	1	1
OR	Rn ← Rn Rm (16 bits)	1	0	0	0
XOR	Rn ← Rn ^ Rm (16 bits)	1	0	0	1
NOT	Rn ← ~Rm (16 bits)	1	0	1	0
SFTL	Rn ← (Rm << 1)	1	0	1	1
SFTR	Rn ←(Rm >> 1)	1	1	0	0
SFTLC	$C \leftarrow Rm[15], Rn \leftarrow (Rm \ll 1), Rn[0] \leftarrow C$	1	1	0	1
SFTRC	$C \leftarrow Rm[0], Rn \leftarrow (Rm >> 1), Rn[15] \leftarrow C$	1	1	1	0
MUL Rn	Rn ← Unsigned R0[7:0] * Unsigned R1[7:0]	1	1	1	1

Compare Mode Description			CM Code					
EQ	$T \leftarrow (Rn == Rm)$				0			
GTS	$T \leftarrow (Rn > Rm)$, Signed	0	0	1	0			
LTS	$T \leftarrow (Rn < Rm)$, Signed	0	1	0	0			
GTU	GTU $T \leftarrow (Rn > Rm)$, Unsigned				0			
LTU	$T \leftarrow (Rn < Rm)$, Unsigned	1	0	0	0			
ZERO	$T \leftarrow (Rn == 0)$	1	0	0	1			
CLRT	T ← 0	1	0	1	0			
SETT	T ← 1	1	0	1	1			
GETC	T ← C	1	1	0	0			
PUTC	$C \leftarrow T$	1	1	0	1			
CLRC	C ← 0	1	1	1	0			
SETC	C ← 1	1	1	1	1			

10.5.2. Instruction Set

In this section, the program counter and the dedicated timer counter are represented as the PC and the TIME, respectively. The R0 and R1 are general-purpose registers. For the details of each thread resource, see Section 10.4.

10.5.2.1. Instruction of Arithmetic Logic Unit (ALU)

MOV

This is a data transfer instruction between registers. Rm is written to Rn. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2.

• ADD

The result of Rn + Rm is stored to Rn. The carry of the calculation result is indicted in the C flag. The T flag is not updated. After the instruction is executed, the PC is incremented by 2.

• ADDC

The result of Rn + Rm + C is stored to Rn. The carry of the calculation result is indicted in the C flag. The T flag is not updated. After the instruction is executed, the PC is incremented by 2.

• SUB

The result of Rn - Rm is stored to Rn. The borrow of the calculation result is indicted in the C flag. The T flag is not updated. After the instruction is executed, the PC is incremented by 2.

• SUBC

The result of Rn - Rm - C is stored to Rn. The borrow of the calculation result is indicted in the C flag. The T flag is not updated. After the instruction is executed, the PC is incremented by 2.

• INC

The result that Rm is incremented by 1 is stored to Rn. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2.

• DEC

The result that Rm is decremented by 1 is stored to Rn. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2.

AND

The result of logical AND of Rn and Rm is stored to Rn. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2.

• OR

The result of logical OR of Rn and Rm is stored to Rn. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2.

XOR

The result of exclusive logical OR of Rn and Rm is stored to Rn. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2.

• NOT

The bit inversion of Rm is stored to Rn. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2.

• SFTL

The result that Rm is shifted left by 1 bit is stored to Rn. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2. The value to be stored to the LSB (least significant bit) is 0.

• SFTR

The result that Rm is shifted right by 1 bit is stored to Rn. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2. The value to be stored to the MSB (most significant bit) is 0.

• SFTLC

The result that Rm is shifted left by 1 bit is stored to Rn. At this time, the present C flag is stored to the LSB of Rn. Also, the MSB of Rm pushed out by left shifting is stored to the C flag. After the instruction is executed, the PC is incremented by 2.

• SFTRC

The result Rm is shifted right by 1 bit is stored to Rn. At this time, the present C flag is stored to the MSB of Rn. Also, the LSB of Rm pushed out by right shifting is stored to the C flag. After the instruction is executed, the PC is incremented by 2.

• MUL

The product of the lower 8 bits of R0 and R1 is stored to Rn. The R0 and R1 are regarded as unsigned values. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2.

10.5.2.2. Comparison Instruction and Flag Operation Instruction

• EQ

Rn = Rm: The T flag is set to 1. The PC is incremented by 2. Not Rn = Rm: The T flag is set to 0. The PC is incremented by 2.

• GTS

This regards Rn and Rm as the signed values.

Rn > Rm: The T flag is set to 1. The PC is incremented by 2.

 $Rn \le Rm$: The T flag is set to 0. The PC is incremented by 2.

• LTS

This regards Rn and Rm as the signed values.

Rn < Rm: The T flag is set to 1. The PC is incremented by 2.

 $Rn \ge Rm$: The T flag is set to 0. The PC is incremented by 2.

• GTU

This regards Rn and Rm as the unsigned values.

Rn > Rm: The T flag is set to 1. The PC is incremented by 2.

 $Rn \le Rm$: The T flag is set to 0. The PC is incremented by 2.

• LTU

This regards Rn and Rm as the unsigned values.

Rn < Rm: The T flag is set to 1. The PC is incremented by 2.

 $Rn \ge Rm$: The T flag is set to 0. The PC is incremented by 2.

• ZERO

Rn = 0: The T flag is set to 1. The PC is incremented by 2. Other than Rn = 0: The T flag is set to 0. The PC is incremented by 2.

• CLRT

The T flag is set to 0. After the instruction is executed, the PC is incremented by 2.

SETT

The T flag is set to 1. After the instruction is executed, the PC is incremented by 2.

• GETC

The C flag is transferred to the T flag. After the instruction is executed, the PC is incremented by 2. The C flag is not changed.

• PUTC

The T flag is transferred to the C flag. After the instruction is executed, the PC is incremented by 2. The T flag is not changed.

• CLRC

The C flag is set to 0. After the instruction is executed, the PC is incremented by 2.

• SETC

The C flag is set to 1. After the instruction is executed, the PC is incremented by 2.

10.5.2.3. Branch Instruction

JMP

This is an unconditional branch instruction. The specified address is set to the PC.

• JT

The T flag is 1: The specified address is set to the PC. The instruction is taken.

The T flag is 0: The PC is incremented by 2. The instruction is not taken.

• JF

The T flag is 0: The specified address is set to the PC. The instruction is taken.

The T flag is 1: The PC is incremented by 2. The instruction is not taken.

10.5.2.4. Data Transfer Instruction

• LOADS Rn, @AddrS

The SBUS address, AddrS, data is stored to Rn. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2. The instruction has 3 access modes (B_LO, B_HI, and W).

• STORES @AddrS, Rm

Rm is written to the SBUS address, AddrS. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2. The instruction has 3 access modes (B_LO, B_HI, and W).

• LOADM Rn, @AddrM

The MBUS address, AddrM, data is stored to Rn. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2. The instruction has 3 access modes (B SE, B ZE, and W).

• STOREM @AddrM, Rm

Rm is written to the MBUS address, AddrM. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2. The instruction has 3 access modes (B_LO, B_HI, and W).

• LOADX Rn, @(Rm+ZE(offset))

The XBUS address, Rm + offset (register relative), data is stored to Rn. The offset is unsigned 10-bit width. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2. The XBUS address has 16

bits. The 17th bit of the address calculation result is ignored. The instruction has 4 access modes (B_SE, B_ZE, W, and W_SA). In the word access mode of W or W_SA, the XBUS access occurs twice.

• STOREX @(Rn+ZE(offset)), Rm

Rm is stored to the XBUS address, Rn + offset (register relative). The offset is unsigned 10-bit width. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2. The XBUS address has 16 bits. The 17th bit of the address calculation result is ignored. The instruction has 4 access modes (B_LO, B_HI, W, and W_SA). In the word access mode of W or W_SA, the XBUS access occurs twice.

10.5.2.5. Event Instruction

• EVTIN

This stores 1 or 0 to the T flag when the specified event exists or does not exist, respectively. When the bit in the EPEISLn or EPEISHn register corresponding to the event status of the specified event number is 1, T = 1, and when it is 0, T = 0. The corresponding bit of the EPEISLn or EPEISHn register is not changed by the EVTIN instruction. The C flag is not updated. After the instruction is executed, the PC is incremented by 2.

• EVTOUT

This outputs the event corresponding to the specified event number. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2.

• EVTCLR

The corresponding bit of the event status in the EPEISLn or EPEISHn register is cleared. When the clearing operation conflicts with the setting operation, the clearing operation is ignored. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2.

• EVTWAIT

The specified event is waited. The thread execution is stopped (i.e., thread execution right is abandoned) until the corresponding bit of the event status in the EPEISLn or EPEISHn register becomes 1. When the specified event is input, and the corresponding bit in the EPEISLn or EPEISHn register becomes 1, the thread execution right is required, and the thread execution is restarted (i.e., thread execution right is acquired). When the EVTWAIT instruction is issued while the specified event exists (when the corresponding bit in the EPEISLn or EPEISHn register is 1), the execution of thread subsequent instruction is continued because the thread execution is not stopped. When the thread execution is restarted, the corresponding bit in the EPEISLn or EPEISHn register is cleared. The C and T flags are not updated. After the instruction is executed, the PC is incremented by 2. While the event is being waited, the thread execution is stopped.

• TIMWAIT

For the specified period, the thread execution is stopped (i.e., the thread execution right is abandoned). The C and T flags are not updated. When the instruction is executed, the value specified by this instruction is loaded to the TIME of each thread. The TIME counts down according to the count signal divided by the prescaler. When the TIME becomes 0, the suspended thread requires the thread execution right, and the thread execution is restarted. Even if 0 is specified for the TIME, the thread execution is stopped once, and the thread execution right is required at the timing of the next count signal. After the instruction is executed, the PC is incremented by 2.

10.6. Operation

10.6.1. Program Allocation

The EPU program can be allocated in 512-bytes area (RAM1) of 1.5-KB XRAM on the XBUS. This area is shared with the CPU. The addresses when accessing RAM1 from the CPU are 0x0400 to 0x05FF. The EPU program has 16-bit fixed-length. In the CPU address, the lower 8 bits and the higher 8 bits of the instruction codes are assigned to 2n (even address) and 2n + 1 (odd address), respectively.

10.6.2. Thread Resource Setting

Each thread has the resources such as general-purpose registers (R0 and R1), program counter (PC), dedicated timer counter (TIME), prescaler, T flag, and C flag. These resources can be accessed from the CPU as the registers on the XBUS. The initial value can be set to these resources before the thread activation. The program execution start address must be set to the PC.

10.6.3. Thread Activation and Stop

To activate the thread, set EPCTRLn.EN = 1. When the thread acquires the execution right, the instruction execution is started. To stop the thread at completing the instruction that is being executed, set EPCTRLn.EN = 0. If the TIME counts, the count is suspended. The prescaler just stops and not be reset. The event input can be accepted even while the thread is stopped. When the event input is detected, the EPEISLn and EPEISHn registers are changed. If the thread is stopped with the state waiting for the execution right, the thread execution right request is canceled. When EN = 0, the instructions already fetched or being executed are executed as they are. The stop states by the TIMWAIT and EVTWAIT instructions are held.

To reset the thread internal state (the EPSTSn.THSTS bit) and the prescaler to the initial state, set EPCTRLn.RESET = 1. The register values of other threads without EPCTRLn.RESET = 1 are not reset and are held. The thread state is initialized while the thread is disabled (i.e., EPCTRLn.EN = 0). Also, using this reset function, the TIMWAIT or EVTWAIT instruction forcibly cancels the thread execution wait state while the thread is enabled (i.e., EPCTRLn.EN = 1).

10.6.4. Thread Selection (Context Switch)

The thread to be executed is selected according to the thread priority from each thread execution request. For high speed switching of the threads to be executed, the contexts are switched with zero latency by the context switch. The normal thread priority is as follows: the highest priority when the thread number is low; the lowest priority when the thread number is high. The thread with the highest priority is selected from each thread outputs the execution request.

The priority can also be controlled by grouping. The EPCTRLn.PRI bits determine whether each thread belongs to one of 3 groups (A, B, or C) or not belong to any group. If EPCTRLn.PRI = 0b00, thread n does not belong to any priority control group, and the thread is selected with the normal thread priority. When the group A (EPCTRLn.PRI = 0b11), B (EPCTRLn.PRI = 0b10), and C (EPCTRLn.PRI = 0b11) are set, the priority is controlled according to a round-robin algorithm in the same group. In the initial state, Thread0 is the highest priority, followed by, Thread1, Thread2, …, Thread5. For example, when the Thread3 is selected, Thread4 is the highest priority in the next cycle, followed by Thread5, Thread0, Thread1, …, Thread3. The thread selected in the previous time is the lowest priority. The priorities between groups are determined by the normal priority from the threads selected by the individual group. Assigning the threads with the same frequency and the timing of operations to the same group makes it easier for the threads to operate in parallel. If the multiple threads that always operate exist, these threads must be assigned to the

The thread that executed the TIMWAIT or EVTWAIT instruction temporarily cancels the thread execution request. Then, the execution right is transferred to other threads that the context switch outputs the execution request. The EPU stops the instruction execution during no execution request from all threads. The thread suspended by the TIMWAIT instruction outputs the thread execution request when the TIME counts down to 0, and tries to restart the thread execution. The thread suspended by the EVTWAIT instruction outputs the thread execution request by the event input specified by the EVTWAIT instruction, and tries to restart the thread execution.

same group.

10.6.5. Event Input

Each thread has a function that detects 16 event inputs. The event acceptance is defined by the EPEICLn and EPEICHn registers. While the event is input when the thread is enabled (EPCTRL.EN = 1) and the corresponding bit of the EPEICLn or EPEICHn register is 1, the event input is accepted, and then the corresponding bits of the EPEISLn and EPEISHn registers set to 1. When the event input specified by the EVTWAIT instruction is accepted (i.e., the thread execution right is acquired), the corresponding bit of the EPEISLn or EPEISHn register is cleared. When the setting operation conflicts with the clearing operation, the setting operation has the highest priority. When the event input is set the level signal, this event is regarded as "continuous event." While the event is input, the corresponding bit of the EPEISLn or EPEISHn register holds the state of 1. Even if the event is lost, the corresponding bit of the EPEISLn or EPEISHn register is not cleared. The state of 1 is held unless the event is accepted by the EVTWAIT instruction. For the selection of event input, see Section 9.

10.6.6. Event Output

Each thread outputs the 16 events by the EVTOUT instruction.

Table 10-3. Event Output

Event No.	Thread0	Thread1	Thread2
0	PWM0, PWM1, PWM2, PWM3 re-trigger	PWM0, PWM1, PWM2, PWM3 re-trigger	PWM0, PWM1, PWM2, PWM3 re-trigger
1	PWM0, PWM1, PWM2, PWM3 re-trigger	PWM0, PWM1, PWM2, PWM3 re-trigger	PWM0, PWM1, PWM2, PWM3 re-trigger
2	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
3	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
4	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
5	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
6	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
7	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
8	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
9	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
10	POC0, POC1, POC2, POC3	POC0, POC1, POC2, POC3	POC0, POC1, POC2, POC3
11	POC0, POC1, POC2, POC3	POC0, POC1, POC2, POC3	POC0, POC1, POC2, POC3
12	AMPON0, AMPON1	AMPON0, AMPON1	AMPON0, AMPON1
13	AMPOFF0, AMPOFF1	AMPOFF0, AMPOFF1	AMPOFF0, AMPOFF1
14	CPU INT	CPU INT	CPU INT
15	Reserve	Reserve	Reserve

Event No.	Thread3	Thread4	Thread5
0	PWM0, PWM1, PWM2, PWM3 re-trigger	PWM0, PWM1, PWM2, PWM3 re-trigger	PWM0, PWM1, PWM2, PWM3 re-trigger
1	PWM0, PWM1, PWM2, PWM3 re-trigger	PWM0, PWM1, PWM2, PWM3 re-trigger	PWM0, PWM1, PWM2, PWM3 re-trigger
2	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
3	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
4	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
5	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
6	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
7	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
8	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
9	ADC0, ADC1	ADC0, ADC1	ADC0, ADC1
10	POC0, POC1, POC2, POC3	POC0, POC1, POC2, POC3	POC0, POC1, POC2, POC3
11	POC0, POC1, POC2, POC3	POC0, POC1, POC2, POC3	POC0, POC1, POC2, POC3
12	AMPON0, AMPON1	AMPON0, AMPON1	AMPON0, AMPON1
13	AMPOFF0, AMPOFF1	AMPOFF0, AMPOFF1	AMPOFF0, AMPOFF1
14	CPU INT	CPU INT	CPU INT
15	Reserve	Reserve	Reserve

10.6.7. Bus Access

The EPU is the bus master of the MBUS. The MBUS is used for the instruction fetch and the data accesses of the LOADM or STOREM instruction. In the LOADM or STOREM instruction, the EPU accesses by the absolute address.

The EPU also operates as the bus master of the XBUS and the SBUS. The access to the XBUS is performed by an indirect addressing with the address that the offset specified to the Rn register. The SBUS is accessed by the LOADS or STORES instruction. The access to the SBUS is performed by a direct addressing that specifies the absolute address during the instruction. The XBUS is accessed by the LOADX or STOREX instruction.

10.6.8. MBUS Access

The MBUS is for the data accesses of the instruction fetch and the LOADM or STOREM instruction. The bus width is 16 bits (2 bytes). The EPU can access up to 2 byte-data at the same time. The instruction fetch is performed in 2-byte unit of a word alignment. The instruction allocation address must be the word alignment. The data access by the LOADM or STOREM instruction can be performed in 1-byte or 2-byte (word) unit. In the word access mode, only word alignment address can be used. In the data access mode, the read mode (RM) or the write mode (WM) during the LOADM or STOREM instruction is specified. In the LOADM or STOREM instruction, the data access and the instruction fetch of the subsequent instruction occur simultaneously; as a result, the resource competition hazard of the MBUS occurs. At this time, the data access is processed first. After that, the instruction fetch access of the subsequent instruction occurs. While the data is being accessed, the instruction execution is waited.

10.6.9. XBUS Access

The XBUS is for the data access of the LOADX or STOREX instruction. The bus width is 8 bits (1 byte). The XBUS can access the peripheral function register and the XRAM shared with the CPU. The access mode is specified from the read mode (RM) or the write mode (WM) of the LOADX or STOREX instruction. The EPU can access in 1-byte or 2-byte unit. The XBUS access occurs twice in 2-byte access. The address of the LOADX or STOREX instruction is the address that the offset specified to the Rn register is added.

10.6.10. SBUS Access

The SBUS is for the data access of the LOADS or STORES instruction. The bus width is 16 bits (2 bytes). The EPU can access the SFR of the peripheral function, and cannot access the SFR related to the CPU and the INTC. The access mode is specified from the read mode (RM) or the write mode (WM) of the LOADS or STORES instruction. The EPU can access in 1-byte or 2-byte unit. In the SBUS, up to 2-byte data is assigned to one address.

10.6.11. XBUS Subordinate Register Access

The EPU register access is performed via the XBUS. The XBUS has 8-bit data width. On the other hand, since R0 and R1 are 16-bit width, the program counter (PC) is 9-bit width, and the dedicated timer counter (TIME) is 12-bit width, the value cannot be set in one write operation from the XBUS; therefore the value must be set in 2 write operations (lower 8 bits and higher 8 bits). Be sure to access these registers lower bits, higher bits, in the sequential order.

The XBUS register access to the above registers is as follows: the write data to the lower bits are once stored in the buffer. The stored values are reflected concurrently with writing to the higher bits. This guarantees the atomicity when accessing 16-bit register.

Likewise, the higher bit is held in the buffer when reading the lower bit. Regarding the read data of the higher bit, the value held in the buffer is read. The buffer is mounted independently for the CPU access and the EPU access. As a result, the atomicity is guaranteed even if the accesses of the EPU and the CPU occur alternately.

10.6.12. Pipeline Operation of Each Instruction

In the EPU, the memory read instructions (i.e., instructions with the write back stage such as LOADS, LOADM, and LOADX) operate with a 3-stage pipeline. Other instructions operate with a 2-stage pipeline. For the pipeline operation of each instruction, see Figure 10-2.

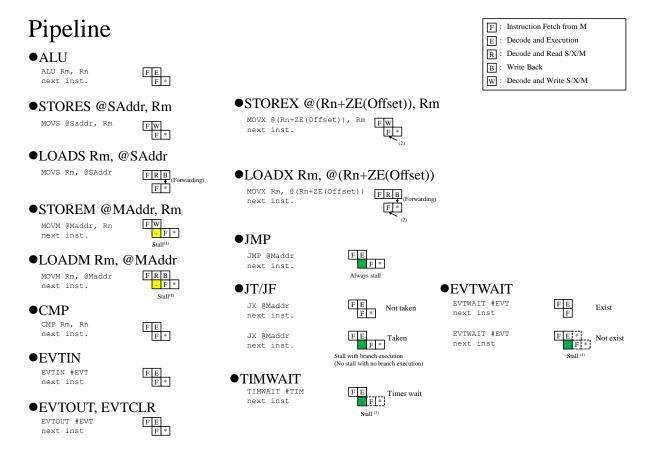


Figure 10-2. Pipeline Operation of Each Instruction

⁽¹⁾ The data access and the instruction fetch of the subsequent instruction occur simultaneously to the RAM1 (memory where the program is allocated). As a result, the resource conflict hazard of the MBUS access occurs. For this reason, the subsequent instruction is stalled.

⁽²⁾ Since the data conflicts with the instruction fetch when accessing to the RAM1, the subsequent instruction is stalled.

⁽³⁾ The subsequent instruction is stalled. Note that the instruction is fetched if the activation request of the other thread exists. Even if 0 is specified for the TIME, the thread execution is stopped once. The next count signal requires the thread execution right.

⁽⁴⁾ The subsequent instruction is stalled. Note that the instruction is fetched if the activation request of the other thread exists.

10.6.13. Execution Time of Each Instruction

The EPU operates in 1 cycle per instruction except for the following instructions.

• Branch Instruction

- Unconditional branch instruction: 2 cycles
- Conditional branch instruction is taken: 2 cycles (1 cycle when the conditional branch instruction is not taken)

• LOADM or STOREM Instruction

2 cycles (to the RAM1, the instruction fetch and the data access conflict)

• LOADX or STOREX Instruction

1 cycle, 2 cycles when accessing to the RAM1

• LOADS or STORES Instruction and LOADX or STOREX Instruction

When the wait cycle exists in the bus cycle of the data access of these instructions, the cycles of the wait cycle are added to the original instruction execution cycle.

- For the SBUS of the LOADS or STORES instruction, the DSAC has the highest priority. The wait cycles are added according to the DSAC transfer count: 2 cycles (max.) for 1 count, 4 cycles (max.) for 2 counts, 8 cycles (max.) for 4 counts, and 16 cycles (max.) for 8 counts.
- Since the XBUS of the LOADX or STOREX instruction is accessed with 2-cycle, 1-cycle wait is added.

• EVTWAIT Instruction

- The corresponding event already exists: 1 cycle
- No corresponding event exists: 2 cycles after the corresponding event is detected

• Subsequent Instruction of TIMWAIT Instruction

2 cycles

10.7. Register Descriptions

Table 10-4. List of Registers

Symbol*	Name*	Address*	Initial Value
EPMCR	EPU Master Control Register	0xE000	0x00
EPCTRLn	EPU Control Register for Thread n	$0xE000 + 0x10 \times (n+1)$	0x00
EPSTSn	EPU Status Register for Thread n	$0xE001 + 0x10 \times (n+1)$	0x00
EPR0Ln	EPU R0 Register Lower Side for Thread n	$0xE002 + 0x10 \times (n+1)$	0x00
EPR0Hn	EPU R0 Register Higher Side for Thread n	$0xE003 + 0x10 \times (n+1)$	0x00
EPR1Ln	EPU R1 Register Lower Side for Thread n	$0xE004 + 0x10 \times (n+1)$	0x00
EPR1Hn	EPU R1 Register Higher Side for Thread n	$0xE005 + 0x10 \times (n+1)$	0x00
EPPCLn	EPU Program Counter Register Lower Side for Thread n	$0xE006 + 0x10 \times (n+1)$	0x00
EPPCHn	EPU Program Counter Register Higher Side for Thread n	$0xE007 + 0x10 \times (n+1)$	0x00
EPTIMELn	EPU Timer Counter Register Lower Side for Thread n	$0xE008 + 0x10 \times (n+1)$	0x00
EPTIMEHn	EPU Timer Counter Register Higher Side for Thread n	$0xE009 + 0x10 \times (n + 1)$	0x00
EPEICLn	EPU Event Input Control Register Lower Side for Thread n	$0xE00A + 0x10 \times (n+1)$	0x00
EPEICHn	EPU Event Input Control Register Higher Side for Thread n	$0xE00B + 0x10 \times (n+1)$	0x00
EPEISLn	EPU Event Input Status Register Lower Side for Thread n	$0xE00C + 0x10 \times (n+1)$	0x00
EPEISHn	EPU Event Input Status Register Higher Side for Thread n	$0xE00D + 0x10 \times (n+1)$	0x00
EPPSPn	EPU Prescaler Period Register for Thread n	$0xE00E + 0x10 \times (n+1)$	0x00
EPEISCn	EPU Event Input Status Control Register for Thread n	$0xE00F + 0x10 \times (n+1)$	0x00

^{*} The arbitrary letter "n" represents a thread number.

10.7.1. EPMCR (EPU Master Control Register)

Regi	Register EPMCR		EPU Maste	ter Control Register Address		0xE000		
Bit	Bit Name	R/W	R/W Initial Description		Remarks			
7	PRIRST W		0	Resetting the priority control mechanism Write 0: No change Write 1: Reset The read value is always 0. The bit resets the state of the priority control mechanism.				
6	Reserved	R	0	The read value is 0. The write value must alw	The read value is 0. The write value must always be 0.			
5	Reserved	R	0	The read value is 0. The write value must alw	ays be 0.			
4	Reserved R		0	The read value is 0. The write value must alw	ays be 0.			
3	Reserved R		0	The read value is 0. The write value must always be 0.				
2	Reserved R		0	The read value is 0. The write value must alw				
1	Reserved R 0 The read value is 0. The write value must always be 0.							
0	Reserved	R	0	The read value is 0. The write value must alw				

10.7.2. EPCTRLn (EPU Control Register for Thread n) (n = 0 to 5)

Regi	Register El		EPU Contr	EPU Control Register for Thread n Address		See Table 10-4
Bit	Bit Nam	Bit Name R/W Initial Description			Remarks	
7	EN	R/W	0	Enabling the thread n 0: Thread n is disabled (stop) 1: Thread n is enabled (execution) The bit enables or disables the thread n. When enabled, the corresponding thread sends are execution request to the EPU core. When disabled, the corresponding thread cancels the execution request.	n instruction n the bit is	
6	RESET W		0	Resetting the status of the thread n Writing 1 to the bit clears the status of thread n (the EPSTSn.THSTS bit) and the prescaler, and initializes the status of the thread n.		
5	Reserve	d R	0	The read value is 0. The write value must alw	vays be 0.	
4	Reserve	d R	0	The read value is 0. The write value must alw	ays be 0.	
3	Reserved R		0	The read value is 0. The write value must alw	ays be 0.	
2	Reserved R 0 The read value is 0. The write value must always be 0.					
1		R/W	0	Selecting the group for priority control		
0	PRI	R/W	0	00: Ungrouped (fixed priority control) 01: Group A 10: Group B 11: Group C		

10.7.3. EPSTSn (EPU Status Register for Thread n) (n = 0 to 5)

Register EPST		TSn	EPU Status Register for Thread n Address		See Table 10-4		
Bit	Bit Na	me	R/W	Initial	Description		Remarks
7			R	0	Thread status		
6	THSTS		R	0	00: Thread n is stopped 01: Thread n is active 10: Waiting for a specified event 11: Waiting for the timer count to be finish	ned	
5	SET	С	W	Setting the C flag Writing 1 to the bit sets the C bit to 1. The read value is 0.			
4	SETT W		W	0	Setting the T flag Writing 1 to the bit sets the T bit to 1. The read value is 0.		
3	Reserved R 0 The read value is 0. The write value must alw		vays be 0.				
2	Reserv	erved R 0 The read value is 0. The write value must always be 0.					
1	C R/C 0 C flag Read: A value of the C flag Write 0: No change Write 1: The bit is cleared The priority is defined as follows: clearing the bit by writing 1 to the bit > setting the bit by the STEC bit > updating the bit by the EPU.						
0	T flag Read: A value of T flag Write 0: No change Write 1: The bit is cleared The priority is defined as follows: clearing the bit by writing 1 to the bit > setting the bit by the SETT bit > updating the bit by the EPU.						

10.7.4. EPR0Ln (EPU R0 Register Lower Side for Thread n) (n = 0 to 5)

Register EPF		EPR	.OLn	EPU R0 R	egister Lower Side for Thread n Address		See Table 10-4
Bit	Bit Name R/W		Initial	Description		Remarks	
7			R/W	0	The lower bits of the R0 register	:44 1 41	
6			R/W	0	Write: The bits must be sequentially written by CPU in low-to-high order. The write data to		
5			R/W	0	lower bits is once stored in the buff		
4			R/W	0	stored values are written to the register concurrently with writing to the higher bits. Read: The bits must be sequentially read by the CPU in low-to-high order. When the lower bits are read, the values of the higher bits are stored in		
3	RO)	R/W	0		•	
2			R/W	0		read, the values of the higher bits are stored in	
1			R/W	0	the buffer; then, the stored values are read at a time of reading the higher bits.	are read at a	
0			R/W	0	In the case where a write-by-CPU conflicupdate-by-EPU, the write-by-CPU takes prec		

10.7.5. EPR0Hn (EPU R0 Register Higher Side for Thread n) (n = 0 to 5)

Register E		EPR	t0Hn	EPU R0 Re	egister Higher Side for Thread n	Address	See Table 10-4
Bit	Bit Name R/W		Initial	Description		Remarks	
7	-		R/W	0	The higher bits of the R0 register		
6			R/W	0			
5			R/W	0	Write: The bits must be sequentially wr		
4	D.C		R/W	0	CPU in low-to-high order. Read: The bits must be sequentially read by the CPU in low-to-high order.		
3	R0		R/W	0		in low-to-high order. In the case where a write-by-CPU conflicts with a update-by-EPU, the write-by-CPU takes precedence.	
2			R/W	0	cts with an		
1			R/W	0	edence.		
0			R/W	0			

10.7.6. EPR1Ln (EPU R1 Register Lower Side for Thread n) (n = 0 to 5)

Regi	Register EPR1Ln		1Ln	EPU R1 R	egister Lower Side for Thread n	Address	See Table 10-4
Bit	Bit Name R/W			Initial	Description		Remarks
7			R/W	0	The lower bits of the R1 register		
6			R/W	0	Write: The bits must be sequentially wr CPU in low-to-high order. The writ		
5			R/W	0	lower bits is once stored in the buffer; then, the stored values are written to the register concurrently with writing to the higher bits. Read: The bits must be sequentially read by the CPU in low-to-high order. When the lower bits are read, the values of the higher bits are stored in		
4			R/W	0			
3	R1		R/W	0			
2			R/W	0			
1			R/W	0	the buffer; then, the stored values are read at a time of reading the higher bits.		
0			R/W	0	In the case where a write-by-CPU confliupdate-by-EPU, the write-by-CPU takes prec		

10.7.7. EPR1Hn (EPU R1 Register Higher Side for Thread n) (n = 0 to 5)

Regi	Register EPR1Hn		EPU R1 Register Higher Side for Thread n		Address	See Table 10-4			
Bit	Bit Na	ame	R/W	Initial	Description		Remarks		
7			R/W	0		-			
6			R/W	0	The higher bits of the R1 register	. 1 .1			
5			R/W	0	Write: The bits must be sequentially write CPU in low-to-high order.				
4	D 1		R/W	0	Read: The bits must be sequentially read by the CPU in low-to-high order.				
3	R1		R/W	0					
2			R/W	0	In the case whom a waite by CDU conflicts with an	te with an			
1			R/W	0	In the case where a write-by-CPU conflicts with an update-by-EPU, the write-by-CPU takes precedence.				
0			R/W	0					

10.7.8. EPPCLn (EPU Program Counter Register Lower Side for Thread n) (n = 0 to 5)

Regi	Register EPPCLn		EPU Program Counter Register Lower Side for Thread n Address			See Table 10-4					
Bit	Bit Na	ame	R/W	Initial	Description		Remarks				
7			R/W	0	The lower bits of the program counter						
6			R/W	0	<u> </u>	Write: The bits must be sequentially written by the CPU in low-to-high order. The write data to the					
5			R/W	0	lower bits is once stored in the buffer; then, the stored values are written to the register concurrently with writing to the higher bits. Read: The bits must be sequentially read by the CPU in low-to-high order. When the lower bits are read, the values of the higher bits are stored in						
4			R/W	0							
3	PC	-	R/W	0							
2			R/W	0							
1			R/W	0	the buffer; then, the stored values are read at a time of reading the higher bits.						
0			R	0	In the case where a write-by-CPU conflicupdate-by-EPU, the write-by-CPU takes prece						

10.7.9. EPPCHn (EPU Program Counter Register Higher Side for Thread n) (n = 0 to 5)

Regi	Register EPPCHn		CHn	EPU Program Counter Register Higher Side for Thread n Address			See Table 10-4
Bit	Bit Na	ıme	R/W	Initial	Description		Remarks
7	Reser	ved	R	0	The read value is 0. The write value must always	s be 0.	
6	Reser	ved	R	0	The read value is 0. The write value must always	s be 0.	
5	Reser	ved	R	0	The read value is 0. The write value must always	s be 0.	
4	Reserved R		R	0	The read value is 0. The write value must always	s be 0.	
3	Reserved R		R	0	The read value is 0. The write value must always	s be 0.	
2	Reser	ved	R	0	The read value is 0. The write value must always	s be 0.	
1	Reser	ved	R	0	The read value is 0. The write value must always	s be 0.	
0	PC	The higher bits of the program counter Write: The bits must be sequentially written by the CPU in low-to-high order. Read: The bits must be sequentially read by the CPU in low-to-high order. In the case where a write-by-CPU conflicts with an update-by-EPU, the write-by-CPU takes precedence.					

10.7.10. EPTIMELn (EPU Timer Counter Register Lower Side for Thread n) (n = 0 to 5)

Regi	Register EPTI		`IMELn	EPU Time	r Counter Register Lower Side for Thread n	Address	See Table 10-4
Bit	Bit Na	ame	R/W	Initial	Description		Remarks
7			R/W	0	The lower bits of the dedicated timer counter		
6			R/W	0	Write: The bits must be sequentially written by the CPU in low-to-high order. The write data to the		
5			R/W	0	lower bits is once stored in the buffer; t		
4			R/W	0	stored values are written to the register concurrently with writing to the higher bits. Read: The bits must be sequentially read by the CPU in low-to-high order. When the lower bits are read, the values of the higher bits are stored in		
3	TIM	Έ	R/W	0			
2			R/W	0			
1			R/W	0	the buffer; then, the stored values are r time of reading the higher bits.	read at a	
0			R/W	0	In the case where a write-by-CPU conflicts update-by-EPU, the write-by-CPU takes preceden		

10.7.11. EPTIMEHn (EPU Timer Counter Register Higher Side for Thread n) (n = 0 to 5)

Regi	Register EPTIMEH		TIMEHn	EPU Timer Counter Register Higher Side for Thread n Address		Address	See Table 10-4
Bit	Bit Na	ame	R/W	Initial	Description		Remarks
7	Reser	ved	R	0	The read value is 0. The write value must alwa	ys be 0.	
6	Reser	ved	R	0	The read value is 0. The write value must alwa	ys be 0.	
5	Reserved R		R	0	The read value is 0. The write value must alwa		
4	Reserved R		R	0	The read value is 0. The write value must alwa		
3			R/W	0	The higher bits of the dedicated timer counter	4 1 41	
2			R/W	0	Write: The bits must be sequentially writ CPU in low-to-high order.	ten by the	
1	TIME 1		R/W	0	Read: The bits must be sequentially read b	y the CPU	
0			R/W	0	in low-to-high order. In the case where a write-by-CPU conflicupdate-by-EPU, the write-by-CPU takes prece		

10.7.12. EPEICLn (EPU Event Input Control Register Lower Side for Thread n) (n = 0 to 5)

Regi	egister EPEICLn		EPU Event Input Control Register Lower Side for Thread n Address			See Table 10-4	
Bit	Bit Na	ame	R/W	Initial	Description		Remarks
7	EVE	[7]	R/W	0	Enabling the acceptance of events		
6	EVE[6] R/W		0	0: Acceptance of events is disabled			
5	EVE[5] R/W		0	1: Acceptance of events is enabled			
4	EVE[4] R/W		R/W	0	Setting the bit to 1 allows the corresponding ev		
3	EVE	[3]	R/W	0	accepted. When an event applicable to the bit the corresponding bit of the EPEISLn register is		
2	EVE[2] R/W		0	Setting the bit to 0 prohibits the correspondi			
1	EVE[1] R/W		0	from being accepted. Even when an event applicable to the bit is input, the event is ignored, thus ineffective to			
0	EVE	[0]	R/W	0	the corresponding bit of the EPEISLn register.		

10.7.13. EPEICHn (EPU Event Input Control Register Higher Side for Thread n) (n = 0 to 5)

Regi	gister EPEICHn		EPU Ever Thread n	See Table 10-4	
Bit	Bit Name	R/W	Initial	Description	Remarks
7	EVE[15]	R/W	0	Enabling the acceptance of events	
6	EVE[14] R/W		0	0: Acceptance of events is disabled	
5	EVE[13]	R/W	0	1: Acceptance of events is enabled	
4	EVE[12] R/W 0 Setting the bit to 1 allows the corresponding event to be				
3	EVE[11]	R/W	0	accepted. When an event applicable to the bit is input, the corresponding bit of the EPEISHn register is set.	
2	EVE[10] R/W		0	Setting the bit to 0 prohibits the corresponding event from being accepted. Even when an event applicable to	
1	EVE[9] R/W		0	the bit is input, the event is ignored, thus ineffective to	
0	EVE[8]	R/W	0	the corresponding bit of the EPEISHn register.	

10.7.14. EPEISLn (EPU Event Input Status Register Lower Side for Thread n) (n = 0 to 5)

Regi	egister EPEISLn		ISLn	EPU Event Input Status Register Lower Side for Thread n Address			See Table 10-4
Bit	Bit Name R/W Initial Description			Remarks			
7	EVS[7] R/C		0	Event input status	. ,		
6	EVS	[6]	R/C	0	Read 0: The corresponding event does not exist. Read 1: The corresponding event exists	ist	
5	EVS	[5]	R/C	0	Write 0: No change Write 1: The bit is cleared		
4	EVS[4] R/C		0	write 1: The bit is cleared			
3	EVS[3] R/C		0	When an event applicable to the bit of the register, which is set to 1, is input, the corresponding			
2	EVS	EVS[2] R/C		0	of this register is set. When the EVTCLR or E		
1	EVS	[1]	R/C	0	instruction, whose event number agrees with the input event, is executed, the corresponding by		
0	EVS	[0]	R/C	0	register is cleared. Writing 1 clears the bit. And the EPEISC defines the bit. A set operation by event input has the lowest pit conflicts with either of a clear operation by with the bit, or a set operation by the EPEISCn regist. Writing by the CPU takes precedence over proceeding the EVTCLR or EVTWAIT instruction.	oriority, if riting 1 to er.	

10.7.15. EPEISHn (EPU Event Input Status Register Higher Side for Thread n) (n = 0 to 5)

Regi	gister EPEISHn		EPU Event	See Table 10-4			
Bit	Bit Name R/W Initial Description					Remarks	
7	EVS[15] R/C		R/C	0	Event input status	. ,	
6	EVS[14] R/C		R/C	0	Read 0: The corresponding event does not exist Read 1: The corresponding event exists	ist	
5	EVS[13]	R/C	0	Write 0: No change Write 1: The bit is cleared		
4	EVS[12] R/C		0	write 1. The bit is cleared			
3	EVS[11] R/C		0	When an event applicable to the bit of the leading register, which is set to 1, is input, the corresponding			
2	EVS[EVS[10] R/C		0	of this register is set. When the EVTCLR or E		
1	EVS	[9]	R C	0	instruction, whose event number agrees with the input event, is executed, the corresponding by		
0	EVS	[8]	R/C	0	register is cleared. Writing 1 clears the bit. And the EPEISCr defines the bit. A set operation by event input has the lowest p it conflicts with either of a clear operation by writhe bit, or a set operation by the EPEISCn regist Writing by the CPU takes precedence over proc the EVTCLR or EVTWAIT instruction.	oriority, if riting 1 to er.	

10.7.16. EPPSPn (EPU Prescaler Period Register for Thread n) (n = 0 to 5)

Reg	Register EPPSPn		EPU Prescaler Period Register for Thread n			See Table 10-4	
Bit	Bit Na	ame	R/W	Initial	Description	Remarks	
7			R/W 0 The period of the prescaler counter		The period of the prescaler counter		
6			R/W	0	The hit defines the manied of the masseles count		
5			R/W	0	The bit defines the period of the prescaler counted. The prescaler counter repeats a countdown, if		
4			R/W	0	value defined by the EPPSPn register to 0, d	luring the	
3			R/W	0	period from an issuance the TIMWAIT instruction to a completion of the countdown by the TIMWAIT instruction.		
2	PSI	Þ	R/W	0			
1		L	R/W	0			
0			R/W	0	The period of the dedicated timer counter calculated by the following equation: $TIME Counter Period = \frac{PSP + 1}{EPU Clock Frequence}$		

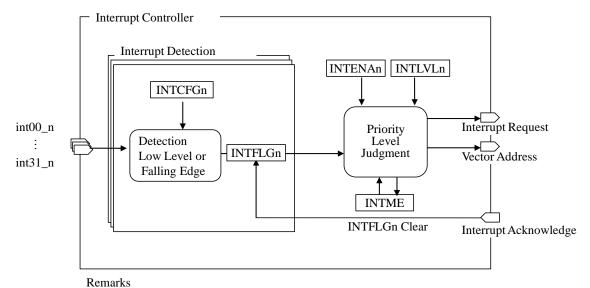
10.7.17. EPEISCn (EPU Event Input Status Control Register for Thread n) (n = 0 to 5)

Regi	Register EPEISCn		EPU Event	See Table 10-4	
Bit	Bit Name	e R/W	Initial	Description	Remarks
7	Reserved		0	The read value is 0. The write value must always be 0.	
6	Reserved	l R	0	The read value is 0. The write value must always be 0.	
5	5 SEL W		0	See the description of the SET bits, below.	
4			0	See the description of the SET bits, below.	
3	SET[3]	W	0	Writing 1 to the bit can set the corresponding bit of the EPEISLn/EPEISHn register. The controllable status bits	
2	SET[2]	W	0	depend on which value to be written to the SEL bits.	
1	SET[1]	W	0	When SEL = 0b00	
0	SET[0]	W	0	SET[3]: EPEISLn.EVS[3] SET[2]: EPEISLn.EVS[2] SET[1]: EPEISLn.EVS[1] SET[0]: EPEISLn.EVS[0] When SEL = 0b01 SET[3]: EPEISLn.EVS[7] SET[2]: EPEISLn.EVS[6] SET[1]: EPEISLn.EVS[5] SET[0]: EPEISLn.EVS[4] When SEL = 0b10 SET[3]: EPEISHn.EVS[3] SET[2]: EPEISHn.EVS[2] SET[1]: EPEISHn.EVS[1] SET[0]: EPEISHn.EVS[1] SET[0]: EPEISHn.EVS[0] When SEL = 0b11 SET[3]: EPEISHn.EVS[7] SET[2]: EPEISHn.EVS[6] SET[1]: EPEISHn.EVS[6] SET[1]: EPEISHn.EVS[6] SET[1]: EPEISHn.EVS[5]	

10.8. Usage Notes and Restrictions

For the usage notes and restrictions on the conflicts between the EPU and CPU buses, see Section 5.7.

11. Interrupt Controller (INTC)


11.1. Overview

The interrupt controller (INTC) processes the interrupt requests from the peripheral functions, and requests the interrupt from the CPU.

Table 11-1 and Figure 11-1 show the INTC overview and the INTC block diagram, respectively. For the GPIO interrupt, see Section 7.

Table 11-1. INTC Functional Descriptions

Item	Description
Number of Source	32 sources
Interrupt Detection Type	Low level detection or falling edge detection (selectable per interrupt source) Low level detection must be selected in the LSI.
Interrupt Enable	Selectable per interrupt source
Interrupt Priority	High or low (selectable per interrupt source from 2 levels)
Vector Address	Fixed vector address is assigned per interrupt vector

INTME: Interrupt Master Enable Signal INTENAn: Interrupt Enable n Register INTLVLn: Interrupt Level n Register INTCFGn: Interrupt Configuration n Register

INTFLGn: Interrupt Flag n Register

Figure 11-1. INTC Block Diagram

11.2. Interrupt Vector

The INTC processes 32 interrupt sources. Table 11-2 lists the vector addresses and interrupt sources corresponding to the interrupt vectors. The interrupt handler (interrupt service routine) in small device C compiler (SDCC) is defined as follows.

```
void some_isr(void) __interrupt (5) __using (3)
{
}
```

[&]quot;using (3)" means that the register bank is specified to 3. The SDCC automatically generates a vector table.

Table 11-2. I	nterrupt Vectors
---------------	------------------

Interrupt Vector No.	Vector Address	Interrupt Sources(1)	Default Priority	Remarks
0	0x0003	GPIO0	High	
1	0x000B	GPIO1		
2	0x0013	GPIO2		
3	0x001B	Reserved		
4	0x0023	LVD Interrupt		
5	0x002B	WDT Interrupt		
6	0x0033	Comparator O Interrupt		
7	0x003B	Comparator1 Interrupt		
8	0x0043	Comparator2 Interrupt/Comparator4 Interrupt		
9	0x004B	Comparator3 Interrupt/Comparator5 Interrupt		
10	0x0053	ADC0 Interrupt		
11	0x005B	ADC1 Interrupt		
12	0x0063	Reserved		
13	0x006B	PWM0 Interrupt0		
14	0x0073	PWM0 Interrupt1		
15	0x007B	PWM1 Interrupt0		
16	0x0083	PWM1 Interrupt1		
17	0x008B	PWM2 Interrupt0		
18	0x0093	PWM2 Interrupt1		
19	0x009B	PWM3 Interrupt0		
20	0x00A3	PWM3 Interrupt1		
21	0x00AB	Timer0 Interrupt		
22	0x00B3	Timer1 Interrupt		
23	0x00BB	TinyDSP0 Interrupt		
24	0x00C3	TinyDSP1 Interrupt		
25	0x00CB	SPI Rx Interrupt		
26	0x00D3	SPI Tx/Timer2 Interrupt		
27	0x00DB	Tx or Rx Interrupt of I ² C		
28	0x00E3	SCID		
29	0x00EB	Tx or Rx Interrupt of UART		
30	0x00F3	EVC		
31	0x00FB	Flash Memory/Timer3	Low	

⁽¹⁾ The interrupt source that the 2 modules are connected with "/" operates as an interrupt request of corresponding vector number is generated when an interrupt signal is output from either of the 2 modules.

[&]quot;__interrupt (5)" means the interrupt service routine (ISR) corresponding to the interrupt vector number 5.

11.3. Register Descriptions

Table 11-3 lists the INTC registers. The INTC registers are assigned to the SFR area. Only the CPU can access the INTC registers. The DSAC and the EPU cannot access the INTC registers.

Table 11-3. List of Registers

Symbol	Name	Address	Initial Value
INTMST	Interrupt Master Control Register	0x9C	0x00
INTENA0	Interrupt Enable0 Register	0xA4	0x00
INTENA1	Interrupt Enable1 Register	0xA5	0x00
INTENA2	Interrupt Enable2 Register	0xA6	0x00
INTENA3	Interrupt Enable3 Register	0xA7	0x00
INTLVL0	Interrupt Level0 Register	0xAC	0x00
INTLVL1	Interrupt Level1 Register	0xAD	0x00
INTLVL2	Interrupt Level2 Register	0xAE	0x00
INTLVL3	Interrupt Level3 Register	0xAF	0x00
INTCFG0	Interrupt Configuration Register	0xB4	0x00
INTCFG1	Interrupt Configuration1 Register	0xB5	0x00
INTCFG2	Interrupt Configuration2 Register	0xB6	0x00
INTCFG3	Interrupt Configuration3 Register	0xB7	0x00
INTFLG0	Interrupt Flag0 Register	0xBC	0x00
INTFLG1	Interrupt Flag1 Register	0xBD	0x00
INTFLG2	Interrupt Flag2 Register	0xBE	0x00
INTFLG3	Interrupt Flag3 Register	0xBF	0x00

11.3.1. INTMST (Interrupt Master Control Register)

Regi	Register INTM		INTMST		aster Control Register	Address	0x9C
Bit	Bit	Name	R/W	Initial	Description		Remarks
7]	HIP	R	0	High-priority interrupt flag 0: A high-priority interrupt is not being executed 1: A high-priority interrupt is being executed		
6	LIP		R	0	Low-priority interrupt flag 0: A low-priority interrupt is not being executed 1: A low-priority interrupt is being executed, or being suspended due to a high-priority interrupt		
5	Re	served	R	0	The read value is 0. The write value must always be 0.		
4	Re	served	R	0	The read value is 0. The write value must always be 0.		
3	Re	served	R	0	The read value is 0. The write value must	st always be 0.	
2	Re	served	R	0	The read value is 0. The write value must always be 0.		
1	Re	served	R	0	The read value is 0. The write value must always be 0.		
0	IN	TME	R/W	0	Interrupt Master Enable 0: All interrupt requests are disabled 1: Interrupt requests are enabled		

11.3.2. INTENAn (Interrupt Enable n Register) (n = 0 to 3)

Regi	ister INTENA		INTENA0		Interrupt Enable0 Register		0xA4
Regi	ster	INTENA	.1	Interrupt E	nable1 Register	Address	0xA5
Regi	ster	INTENA	.2	Interrupt E	nable2 Register	Address	0xA6
Regi	ster	INTENA3		Interrupt E	nable3 Register	Address	0xA7
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	IN	ITE7	R/W	0			
6	IN	TE6	R/W	0			
5	IN	ITE5	R/W 0 Interrupt enable 0: The corresponding interrupt re		0: The corresponding interrupt reques	t is not	
4	IN	ITE4	R/W	0	accepted	t is seconted	
3	IN	ITE3	R/W	0	1: The corresponding interrupt request is accepted		
2	1111122 11/11 0		The INTENAn.INTEx bit corresponds	to an interrupt			
1	IN	TE1	R/W	0	vector number $(8 \times n + x)$.		
0	IN	TE0	R/W	0			

11.3.3. INTLVLn (Interrupt Level n Register) (n = 0 to 3)

Regi	egister INTLVL0 Interrupt Level0 Register		Interrupt Level0 Register		0xAC		
Regi	Register		INTLVL1		evel1 Register	Address	0xAD
Regi	ster	INTLVL	2	Interrupt Le	evel2 Register	Address	0xAE
Regi	ster	INTLVL3		Interrupt Le	evel3 Register	Address	0xAF
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	IN	ITL7	R/W	0			
6	IN	ITL6	R/W	0			
5	IN	ITL5	R/W	0	Interrupt priority		
4	IN	ITL4	R/W	0	0: Priority is set to low 1: Priority is set to high		
3	IN	ITL3	R/W	0	The INTLY I INTLY bit corresponds t	o on interment	
2	IN	ITL2	R/W	0	The INTLVLn.INTLx bit corresponds to an interrupt vector number $(8 \times n + x)$.		
1	IN	ITL1	R/W	0			
0	IN	TL0	R/W	0			

11.3.4. INTCFGn (Interrupt Configuration n Register) (n = 0 to 3)

Regi	ster	INTCFG	TCFG0 Interrupt Configuration Register		Address	0xB4	
Regi	ster	INTCFG	1	Interrupt C	onfiguration1 Register	Address	0xB5
Regi	ster	INTCFG	2	Interrupt C	onfiguration2 Register	Address	0xB6
Regi	ster	INTCFG3		Interrupt C	onfiguration3 Register	Address	0xB7
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	IN	ITS7	R/W	0			
6	IN	TS6	R/W	0			
5	IN	ITS5			Interrupt detection type 0: Low level detection is selected	• •	
4	IN	ITS4	R/W	0	1: Falling edge detection is selected		
3	IN	ITS3	R/W	0	The value must always be set to 0.		
2	IN	ITS2	R/W	0	The INTCFGn.INTSx bit corresponds to an interrupt vector number $(8 \times n + x)$.		
1	IN	TS1	R/W	0			
0	IN	TS0	R/W	0			

11.3.5. INTFLGn (Interrupt Flag n Register) (n = 0 to 3)

Although the interrupt detection type can be selected from the low level detection or the falling edge detection by the INTCFGn.INTSx bit, the low level detection must be set in the LSI. While the low level detection is selected (INTCFGn.INTSx = 0), the INTCFGn.INTSx bit indicates an interrupt request. To clear the INTFLGn.INTFx bit, it is necessary to clear the interrupt flag of the interrupt request generation source. If the falling edge detection is selected (INTCFGn.INTSx = 1), the INTFLGn.INTFx bit and interrupt request are cleared when 1 is written to the INTFLGn.INTFx bit.

Regi	ster	INTFLG0		Interrupt Fl	ag0 Register	Address	0xBC
Regi	Register INTFL		1	Interrupt Fl	ag1 Register	Address	0xBD
Regi	ster	INTFLG	2	Interrupt Fl	ag2 Register	Address	0xBE
Regi	ster	INTFLG3		Interrupt Fl	ag3 Register	Address	0xBF
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	IN	NTF7	R/C	0	Interrupt flag		
6	IN	NTF6	R/C	0			
5	IN	NTF5	TTF5 R/C 0 Read 0: No interrupt is detec		Read 0: No interrupt is detected		
4	IN	NTF4	R/C	0	Read 1: An interrupt is detected Write 0: No change		
3	IN	NTF3	R/C	0	Write 1: The corresponding bit is clea	red	
2	IN	NTF2	R/C	0	The INTFLGn.INTFx bit corresponds to an interrupt		
1	IN	NTF1	R/C	0	vector number $(8 \times n + x)$.		
0	IN	NTF0	R/C	0			

11.4. Operational Descriptions

11.4.1. Initial Setting

The INTC initial setting procedure is as follows (see Figure 11-2):

- (1) Set the priority (high or low) per interrupt source by the INTLVLn.INTLx bit. For the interrupt priority, see Section 11.4.3.
- (2) Set the interrupt detection type (low level detection or falling edge detection) per interrupt source by the INTCFGn.INTSx bit. Always set the low level detection in the LSI.
- (3) Set enable or disable of the interrupt per interrupt source by the INTENAn.INTEx bit.
- (4) Set enable or disable of the interrupt master by the INTMST.INTME bit.

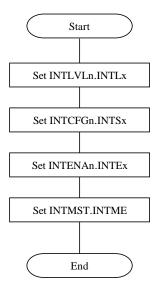


Figure 11-2. Procedure of INTC Initial Setting

11.4.2. Interrupt Flag

The INTFLGn register indicates that an interrupt request from the peripheral function is generated regardless of the INTENAn.INTEx bit setting.

Although the interrupt detection type can be selected from the low level detection or the falling edge detection by the INTCFGn.INTSx bit, the low level detection must be set in the LSI. While the low level detection is selected, the INTCFGn.INTSx bit indicates an interrupt request. To clear the INTFLGn.INTFx bit, it is necessary to clear the interrupt flag of interrupt request generation source. If the falling edge detection is selected, the INTFLGn.INTFx bit and the interrupt request are cleared when 1 is written to the INTFLGn.INTFx bit.

11.4.3. Interrupt Priority

The interrupt priority can be set high or low per interrupt. The interrupt is processed according to the priority as follows (see Figure 11-3):

- While the CPU processes a high priority interrupt, the CPU does not accept any interrupts including other high priority interrupts.
- When a high priority interrupt request is detected during a low priority interrupt processing by CPU, the CPU suspends the low priority interrupt processing, and accepts the high priority interrupt. Then, the CPU processes the high priority interrupt.
- After the high priority interrupt processing completes, the processing of the suspended low priority interrupt is restarted.
- While any interrupt is not accepted by the CPU, both low priority and high priority interrupts are accepted.
- When the interrupt requests of low priority and high priority occur simultaneously, the interrupt request of high priority is accepted.
- When the interrupt requests of the same priority occur simultaneously, the interrupt request of a smaller interrupt vector number is accepted.

To complete the ISR, clear the interrupt flag of interrupt source in the ISR. When another interrupt request is detected at the RETI instruction execution, the CPU returns an acknowledge indicating interrupt acceptance to the INTC, and accepts the subsequent interrupt request.

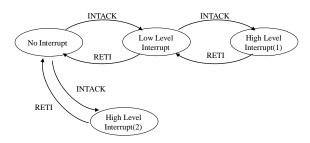


Figure 11-3. State Transition of Interrupt Priority Processing

The INTMST.HIP and INTMST.LIP bits indicate one of the following states.

- Processing the high priority and low priority interrupts
- Waiting for the acceptance of interrupt request
- Suspending

When the INTMST.HIP bit is 1, it indicates that the high priority interrupt is being processed. When the INTMST.LIP bit is 1, it indicates that the low priority interrupt is being processed or the low priority interrupt processing is suspended by the high priority interrupt processing.

Figure 11-4 shows the acceptance procedure of interrupt request in the INTC.

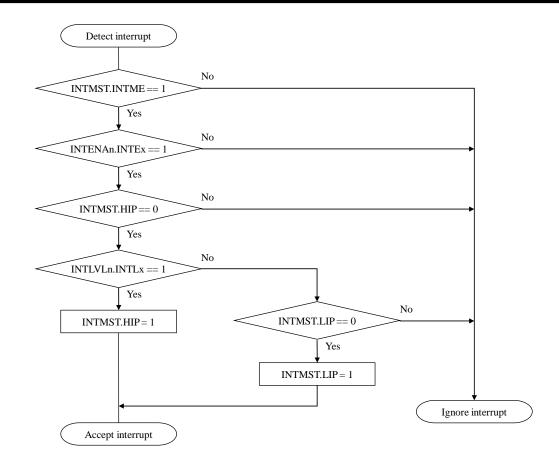


Figure 11-4. Acceptance Procedure of Interrupt Request

11.4.4. External Pin (GPIO) Interrupt

All GPIO pins are the interrupt inputs. The GPIO interrupt is defined by the registers in the GPIO. The interrupt of each pin is integrated in the unit of GPIOx (x = 0 to 2), the interrupt request is notified to the INTC. Figure 11-5 and Figure 11-6 show the logic diagram of GPIO interrupt generation and the generation timing of GPIO edge interrupt, respectively. For the detail of GPIO interrupt, see Section 7.

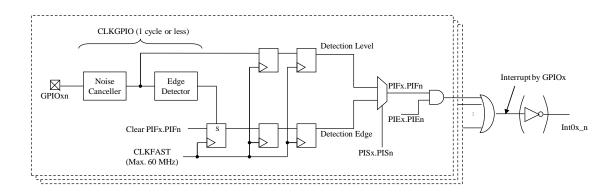


Figure 11-5. Logic Diagram of GPIO Interrupt Generation

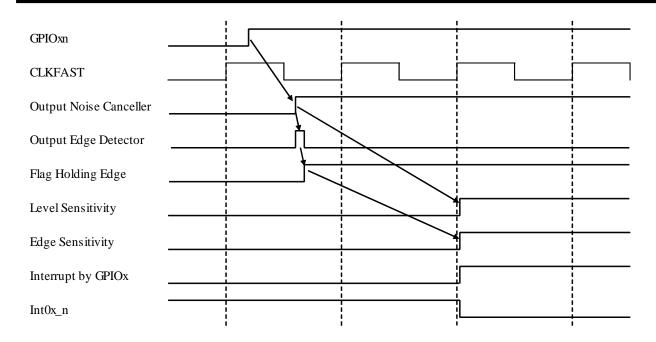


Figure 11-6. Generation Timing of GPIO Edge Interrupt

12. Direct SFR Access Controller (DSAC)

12.1. Overview

The direct SFR access controller (DSAC) can transfer the data directly between the SFRs without the CPU. The data transfer time can be greatly reduced by applying this function to the SFR of a peripheral function.

The DSAC cannot access the SFR related to the CPU or the INTC. When the DSAC reads these SFRs, the data becomes unstable. Writing from the DSAC to these SFRs is invalid. Figure 12-1 and Table 12-1 show the DSAC block diagram and the DSAC functional descriptions, respectively.

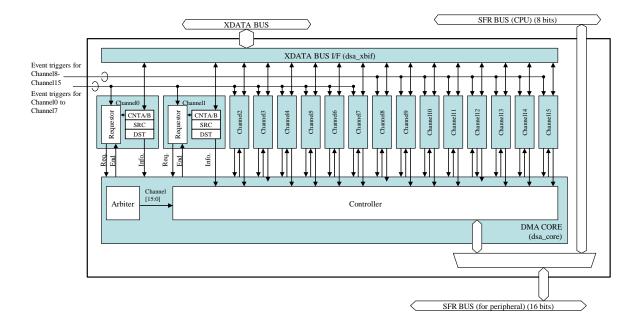


Figure 12-1. DSAC Block Diagram

Table 12-1. DSAC Functional Descriptions

Item	Description
Number of Channels	16 channels
Number of Transfer Request Events	32 events (max.) Selects one trigger event for each cannel by the corresponding register
Data Size	Transmits the selectable data (1 byte or 1 word) at once
Number of Data Transmissions	Selectable number of data transmissions per event (1 time, 2 times, 4 times, 8 times)
Address Mode	Fixed, +1, +8 Independently selectable increment modes for the source and destination addresses
Channel Priority	Channel0 > Channel1 > > Channel14 > Channel15
SFR BUS Access Priority	DSAC > EPU > CPU
Transfer Mode	Cycle steal

12.2. Events

The DSAC is activated by the trigger event as shown in Table 12-2. The trigger event to activate the DSAC is defined by the DSACNTAn register and the event select register in the event controller (EVC). For the event selection, see the EVSELn register in Section 9.

Table 12-2. DSAC Events of Channel 0 to Channel 15

Event No.	Event Source	Trigger Event
0	Comparator0/1	Event generation
1	Comparator2/3	Event generation
2	Comparator4/5	Event generation
3	ADC Unit0 Group0	Event output from Group0 of ADC0
4	ADC Unit0 Group1	Event output from Group1 of ADC0
5	ADC Unit0 Group2	Event output from Group2 of ADC0
6	ADC Unit0 Group3	Event output from Group3 of ADC0
7	ADC Unit0 Group4	Event output from Group4 of ADC0
8	ADC Unit0 Group5	Event output from Group5 of ADC0
9	ADC Unit0 Group6	Event output from Group6 of ADC0
10	ADC Unit0 Group7	Event output from Group7 of ADC0
11	ADC Unit1 Group0	Event output from Group0 of ADC1
12	ADC Unit1 Group1	Event output from Group1 of ADC1
13	ADC Unit1 Group2	Event output from Group2 of ADC1
14	ADC Unit1 Group3	Event output from Group3 of ADC1
15	ADC Unit1 Group4	Event output from Group4 of ADC1
16	ADC Unit1 Group5	Event output from Group5 of ADC1
17	ADC Unit1 Group6	Event output from Group6 of ADC1
18	ADC Unit1 Group7	Event output from Group7 of ADC1
19	PWM0 Event0/1	Event generation
20	PWM1 Event0/1	Event generation
21	PWM2 Event0/1	Event generation
22	PWM3 Event0/1	Event generation
23	TinyDSP0 Event0	Event generation
24	TinyDSP0 Event1	Event generation
25	TinyDSP1 Event0	Event generation
26	TinyDSP1 Event1	Event generation
27	TMR0 Event A/B	Event generation
28	TMR1 Event A/B	Event generation
29	TMR2 Event A/B	Event generation
30	TMR3 Event A/B	Event generation
31	CPU Trigger	Activation by CPU trigger

12.3. Register Descriptions

Table 12-3. List of XDATA BUS Registers

Symbol	Name	Address	Initial Value
DSACNTA0	DSA Control A Channel0	0xF880	0x00
DSACNTB0	DSA Control B Channel0	0xF881	0x00
DSASRC0	DSA Source Address Channel0	0xF882	0x80
DSADST0	DSA Destination Address Channel0	0xF883	0x80
DSACNTA1	DSA Control A Channel1	0xF884	0x00
DSACNTB1	DSA Control B Channel1	0xF885	0x00
DSASRC1	DSA Source Address Channel1	0xF886	0x80
DSADST1	DSA Destination Address Channel1	0xF887	0x80
DSACNTA2	DSA Control A Channel2	0xF888	0x00
DSACNTB2	DSA Control B Channel2	0xF889	0x00
DSASRC2	DSA Source Address Channel2	0xF88A	0x80
DSADST2	DSA Destination Address Channel2	0xF88B	0x80
DSACNTA3	DSA Control A Channel3	0xF88C	0x00
DSACNTB3	DSA Control B Channel3	0xF88D	0x00
DSASRC3	DSA Source Address Channel3	0xF88E	0x80
DSADST3	DSA Destination Address Channel3	0xF88F	0x80
DSACNTA4	DSA Control A Channel4	0xF890	0x00
DSACNTB4	DSA Control B Channel4	0xF891	0x00
DSASRC4	DSA Source Address Channel4	0xF892	0x80
DSADST4	DSA Destination Address Channel4	0xF893	0x80
DSACNTA5	DSA Control A Channel5	0xF894	0x00
DSACNTB5	DSA Control B Channel5	0xF895	0x00
DSASRC5	DSA Source Address Channel5	0xF896	0x80
DSADST5	DSA Destination Address Channel5	0xF897	0x80
DSACNTA6	DSA Control A Channel6	0xF898	0x00
DSACNTB6	DSA Control B Channel6	0xF899	0x00
DSASRC6	DSA Source Address Channel6	0xF89A	0x80
DSADST6	DSA Destination Address Channel6	0xF89B	0x80
DSACNTA7	DSA Control A Channel7	0xF89C	0x00
DSACNTB7	DSA Control B Channel7	0xF89D	0x00
DSASRC7	DSA Source Address Channel7	0xF89E	0x80
DSADST7	DSA Destination Address Channel7	0xF89F	0x80
DSACNTA8	DSA Control A Channel8	0xF8A0	0x00
DSACNTB8	DSA Control B Channel8	0xF8A1	0x00

Symbol	Name	Address	Initial Value
DSASRC8	DSA Source Address Channel8	0xF8A2	0x80
DSADST8	DSA Destination Address Channel8	0xF8A3	0x80
DSACNTA9	DSA Control A Channel9	0xF8A4	0x00
DSACNTB9	DSA Control B Channel9	0xF8A5	0x00
DSASRC9	DSA Source Address Channel9	0xF8A6	0x80
DSADST9	DSA Destination Address Channel9	0xF8A7	0x80
DSACNTA10	DSA Control A Channel10	0xF8A8	0x00
DSACNTB10	DSA Control B Channel10	0xF8A9	0x00
DSASRC10	DSA Source Address Channel10	0xF8AA	0x80
DSADST10	DSA Destination Address Channel10	0xF8AB	0x80
DSACNTA11	DSA Control A Channel11	0xF8AC	0x00
DSACNTB11	DSA Control B Channel11	0xF8AD	0x00
DSASRC11	DSA Source Address Channel11	0xF8AE	0x80
DSADST11	DSA Destination Address Channel11	0xF8AF	0x80
DSACNTA12	DSA Control A Channel12	0xF8B0	0x00
DSACNTB12	DSA Control B Channel12	0xF8B1	0x00
DSASRC12	DSA Source Address Channel12	0xF8B2	0x80
DSADST12	DSA Destination Address Channel12	0xF8B3	0x80
DSACNTA13	DSA Control A Channel13	0xF8B4	0x00
DSACNTB13	DSA Control B Channel13	0xF8B5	0x00
DSASRC13	DSA Source Address Channel13	0xF8B6	0x80
DSADST13	DSA Destination Address Channel13	0xF8B7	0x80
SACNTA14	DSA Control A Channel14	0xF8B8	0x00
DSACNTB14	DSA Control B Channel14	0xF8B9	0x00
DSASRC14	DSA Source Address Channel14	0xF8BA	0x80
DSADST14	DSA Destination Address Channel14	0xF8BB	0x80
DSACNTA15	DSA Control A Channel15	0xF8BC	0x00
DSACNTB15	DSA Control B Channel15	0xF8BD	0x00
DSASRC15	DSA Source Address Channel 5	0xF8BE	0x80
DSADST15	DSA Destination Address Channel15	0xF8BF	0x80
DSATRG0	DSA Activation Trigger 0 for Channel0 to Channel7	0xF8F0	0x00
DSATRG1	DSA Activation Trigger 1 for Channel8 to Channel15	0xF8F1	0x00

12.3.1. DSACNTAn (DSA Control A Channel n) (n = 0 to 15)

Registe	er	DSACN	ГА0	DSA Contr	rol A Channel0	Address	0xF880
Registe	er	DSACN	ГА1	DSA Conti	OSA Control A Channel 1 Address		0xF884
Registe	er	DSACNTA2		DSA Contr	rol A Channel2	Address	0xF888
Registe	er	DSACN	ГА3	DSA Contr	rol A Channel3	Address	0xF88C
Registe	er	DSACN	ΓΑ4	DSA Contr	rol A Channel4	Address	0xF890
Registe	er	DSACN	ГА5	DSA Contr	rol A Channel5	Address	0xF894
Registe	er	DSACN	ГА6	DSA Contr	rol A Channel6	Address	0xF898
Registe	er	DSACN	ГА7	DSA Contr	rol A Channel7	Address	0xF89C
Registe	er	DSACN	ГА8	DSA Contr	rol A Channel8	Address	0xF8A0
Registe	er	DSACN	ГА9	DSA Contr	rol A Channel9	Address	0xF8A4
Registe	er	DSACN	ГА10	DSA Contr	rol A Channel10	Address	0xF8A8
Registe	er	DSACN	ГА11	DSA Contr	rol A Channel11	Address	0xF8AC
Registe	er	DSACN	ГА12	DSA Contr	Control A Channel12 Address		0xF8B0
Registe	Register DSACNTA13		DSA Contr	rol A Channel13	Address	0xF8B4	
Registe	Register DSACNTA14		DSA Contr	rol A Channel14	Address	0xF8B8	
Registe	DSACNTA15		DSA Contr	ontrol A Channel15 Address		0xF8BC	
Bit	Bi	t Name	R/W	Initial	Description		Remarks
7	DS	SACHE	R/W	0	DSA channel enable 0: DSA channel is disabled 1: DSA channel is enabled		
6			R/W	0	Setting of the number of DSA data trans	fers	
5	5 DSATB		R/W	0	00: 1 time 01: 2 times 10: 4 times 11: 8 times These bits set the number of Channel n per event. DSACNTBn.DSAWDACS bit determintransfer data size.		
4			R/W	0	DGA 1		_
			D/III	0	DSA channel trigger 00000: Event0 is selected		
3			R/W	U	00000: Event0 is selected		
3 2	D	SAEV	R/W	0	00000: Event0 is selected 00001: Event1 is selected		
	D	SAEV					

12.3.2. DSACNTBn (DSA Control B Channel n) (n = 0 to 15)

Registe	DSACNTB()	DSA Co	ontrol B Channel0	Address	0xF881
Registe	DSACNTB1		DSA Co	Control B Channel 1 Address		0xF885
Registe	r DSACNTB2	2	DSA Co	DSA Control B Channel2 Address		0xF889
Registe	DSACNTB3	3	DSA Co	ontrol B Channel3	Address	0xF88D
Registe	DSACNTB4	ļ	DSA Co	ontrol B Channel4	Address	0xF891
Registe	DSACNTB5	5	DSA Co	ontrol B Channel5	Address	0xF895
Registe	DSACNTB6	5	DSA Co	ontrol B Channel6	Address	0xF899
Registe	DSACNTB7	7	DSA Co	ontrol B Channel7	Address	0xF89D
Registe	DSACNTB8	3	DSA Co	ontrol B Channel8	Address	0xF8A1
Registe	DSACNTB9)	DSA Co	ontrol B Channel9	Address	0xF8A5
Registe	DSACNTB1	10	DSA Co	ontrol B Channel10	Address	0xF8A9
Registe	r DSACNTB1	1	DSA Co	ontrol B Channel11	Address	0xF8AD
Registe	r DSACNTB1	12	DSA Co	ontrol B Channel12	Address	0xF8B1
Registe	r DSACNTB1	13	DSA Co	ontrol B Channel13	Address	0xF8B5
Registe	DSACNTB1	4	DSA Co	Control B Channel14 Address		0xF8B9
Registe	Register DSACNTB15		DSA Co	ontrol B Channel15	Address	0xF8BD
Bit	Bit Name	R/W	Initial	Description		Remarks
7	DSAWDACS	R/W	0	Transfer data size setting 0: 1 byte (8 bits) 1: 1 word (16 bits)		
6	Reserved	R	0	The read value is 0. The write value must		
5	Reserved	R	0	The read value is 0. The write value must	s 0. The write value must always be 0.	
4	Reserved	R	0	The read value is 0. The write value must	always be 0.	
3	DSTINCMD	R/W	0	Destination address increment mode settin (Only when DSADSTC = 1, the DS' affects the operation.) 0: Destination address is incremented by transfer 1: Destination address is incremented by transfer	TINCMD bit 7 1 per	
2	2 SRCINCMD R/W		0	Source address increment mode setting (Only when DSASRCC = 1, the SRCINCMD bit affects the operation.) 0: Source address is incremented by 1 per transfer 1: Destination address is incremented by 8 per transfer		
1	DSADSTC	R/W	0	Destination address setting 0: Fixed address 1: Incrementation according to the DST setting	INCMD bit	
0	DSASRCC	R/W	0	Source address setting 0: Fixed address 1: Incrementation according to the DST setting	INCMD bit	

12.3.3. DSASRCn (DSA Source Address Channel n) (n = 0 to 15)

Registe	r	DSASRO	CO	DSA Source	ce Address Channel0	Address	0xF882
Registe	r	DSASRO	DSASRC1		DSA Source Address Channel1		0xF886
Registe	r	DSASRO	C2	DSA Source	ce Address Channel2	Address	0xF88A
Registe	r	DSASRO	C3	DSA Source	ce Address Channel3	Address	0xF88E
Registe	r	DSASRO	C4	DSA Source	ce Address Channel4	Address	0xF892
Registe	r	DSASRO	C5	DSA Source	ce Address Channel5	Address	0xF896
Registe	r	DSASRO	C6	DSA Source	ce Address Channel6	Address	0xF89A
Registe	r	DSASRO	C 7	DSA Source	ce Address Channel7	Address	0xF89D
Registe	r	DSASRO	C8	DSA Source	ce Address Channel8	Address	0xF8A2
Registe	r	DSASRO	C9	DSA Source	ce Address Channel9	Address	0xF8A6
Registe	r	DSASRO	DSASRC10		Source Address Channel10		0xF8AA
Registe	r	DSASRC11		DSA Source	A Source Address Channel11 Address		0xF8AE
Registe	r	DSASRO	C12	DSA Source Address Channel12 Address		Address	0xF8B2
Registe	r	DSASRO	C13	DSA Source Address Channel13 Addre		Address	0xF8B6
Registe	r	DSASRO	C14	DSA Source	ce Address Channel14	Address	0xF8BA
Registe	r	DSASRO	C15	DSA Source	ce Address Channel15	Address	0xF8BE
Bit	Bi	t Name	R/W	Initial	Description		Remarks
7			R/W	1			
6			R/W	0			
5			R/W	0			
4	DSASA		R/W	0	GED		
3			R/W	0	SFR source address		
2			R/W	0	1		
1			R/W	0			
0			R/W	0			

12.3.4. DSADSTn (DSA Destination Address Channel n) (n = 0 to 15)

Registe	r	DSADS	Γ0	DSA Desti	nation Address Channel0	Address	0xF883
Registe	er	DSADS	DSADST1		DSA Destination Address Channel1		0xF887
Registe	er	DSADS	Г2	DSA Desti	nation Address Channel2	Address	0xF88B
Registe	er	DSADS	Г3	DSA Desti	nation Address Channel3	Address	0xF88F
Registe	er	DSADS	Г4	DSA Desti	nation Address Channel4	Address	0xF893
Registe	er	DSADS	Γ5	DSA Desti	nation Address Channel5	Address	0xF897
Registe	er	DSADS	Г6	DSA Desti	nation Address Channel6	Address	0xF89B
Registe	er	DSADS	Г7	DSA Desti	nation Address Channel7	Address	0xF89F
Registe	r	DSADS	Г8	DSA Desti	nation Address Channel8	Address	0xF8A3
Registe	er	DSADS	Г9	DSA Desti	nation Address Channel9	Address	0xF8A7
Registe	er	DSADS	DSADST10		DSA Destination Address Channel10		0xF8AB
Registe	r	DSADS	DSADST11		DSA Destination Address Channel11		0xF8AF
Registe	er	DSADST12		DSA Destination Address Channel12		Address	0xF8B3
Registe	r	DSADS	Г13	DSA Destination Address Channel13		Address	0xF8B7
Registe	er	DSADS	Γ14	DSA Desti	nation Address Channel14	Address	0xF8BB
Registe	er	DSADS	Γ15	DSA Desti	nation Address Channel15	Address	0xF8BF
Bit	Bi	t Name	R/W	Initial	Description		Remarks
7			R/W	1			
6			R/W	0			
5			R/W	0			
4			R/W	0			
3	D	SADA	R/W	0	SFR destination address		
2			R/W	0			
1	•		R/W	0	1		
0			R/W	0			
1	1			I			I

12.3.5. DSATRGm (DSA Trigger m Channel0 to Channel7) (m = 0 to 1)

Register	DSATRG)	DSA Trigg	ger m for Channel0 to Channel7	Address	0xF8F0
Bit	Bit Name	R/W	Initial	Description		Remarks
7	TRGCH7	R/W	0	Channel7 transfer trigger Read 0: Channel7 is in the idle state Read 1: Channel7 is in the transfer stat waiting for other channel tran completed Write 0: No change Write 1: Channel7 activation		
6	TRGCH6	R/W	0	Channel6 transfer trigger Read 0: Channel6 is in the idle state Read 1: Channel6 is in the transfer stat waiting for other channel tran completed Write 0: No change Write 1: Channel6 activation		
5	TRGCH5	R/W	0	Channel5 transfer trigger Read 0: Channel5 is in the idle state Read 1: Channel5 is in the transfer stat waiting for other channel tran completed Write 0: No change Write 1: Channel5 activation		
4	TRGCH4	R/W	0	Channel4 transfer trigger Read 0: Channel4 is in the idle state Read 1: Channel4 is in the transfer stat waiting for other channel tran completed Write 0: No change Write 1: Channel4 activation		
3	TRGCH3	R/W	0	Channel3 transfer trigger Read 0: Channel3 is in the idle state Read 1: Channel3 is in the transfer stat waiting for other channel tran completed Write 0: No change Write 1: Channel3 activation		
2	TRGCH2	R/W	0	Channel2 transfer trigger Read 0: Channel2 is in the idle state Read 1: Channel2 is in the transfer stat waiting for other channel tran completed Write 0: No change Write 1: Channel2 activation		
1	TRGCH1	R/W	0	Channel1 transfer trigger Read 0: Channel1 is in the idle state Read 1: Channel1 is in the transfer stat waiting for other channel tran completed Write 0: No change Write 1: Channel1 activation		

Register DSATRG0		DSA Trigger m for Channel0 to Channel7 Address			0xF8F0	
Bit	Bit Name	R/W	Initial	Description		Remarks
0	TRGCH0	R/W	0	Channel0 transfer trigger Read 0: Channel0 is in the idle state Read 1: Channel0 is in the transfer state waiting for other channel transcompleted Write 0: No change Write 1: Channel0 activation	,	

12.3.6. DSATRGm (DSA Trigger m Channel8 to Channel15) (m = 0 to 1)

Register	DSATRG1	<u> </u>	DSA Trigg	DSA Trigger m for Channel8 to Channel15 Address		0xF8F1	
Bit	Bit Name	R/W	Initial	Description		Remarks	
7	TRGCH15	R/W	0	Channel15 transfer trigger Read 0: Channel15 is in the idle state Read 1: Channel15 is in the transfer state waiting for other channel transcompleted Write 0: No change Write 1: Channel15 activation			
6	TRGCH14	R/W	0	Channel14 transfer trigger Read 0: Channel14 is in the idle state Read 1: Channel14 is in the transfer sta	Channel14 transfer trigger Read 0: Channel14 is in the idle state Read 1: Channel14 is in the transfer state, or is waiting for other channel transfers to be completed Write 0: No change		
5	TRGCH13	R/W	0	Channel13 transfer trigger Read 0: Channel13 is in the idle state Read 1: Channel13 is in the transfer state waiting for other channel tran completed Write 0: No change Write 1: Channel13 activation			
4	Write 1: Channel13 activation Channel12 transfer trigger Read 0: Channel12 is in the idle state Read 1: Channel12 is in the transfer state, or is waiting for other channel transfers to be completed Write 0: No change Write 1: Channel12 activation						
3	TRGCH11	R/W	0	Channel11 transfer trigger Read 0: Channel11 is in the idle state Read 1: Channel11 is in the transfer state waiting for other channel transcompleted Write 0: No change Write 1: Channel11 activation			

Register	DSATRG1		DSA Trigg	ger m for Channel8 to Channel15	Address	0xF8F1
Bit	Bit Name	R/W	Initial	Description		Remarks
2	TRGCH10	R/W	0	Channel10 transfer trigger Read 0: Channel10 is in the idle state Read 1: Channel10 is in the transfer state, or is waiting for other channel transfers to be completed Write 0: No change Write 1: Channel10 activation		
1	TRGCH9	R/W	0	Channel9 transfer trigger Read 0: Channel9 is in the idle state Read 1: Channel9 is in the transfer state, or is waiting for other channel transfers to be completed Write 0: No change		
0	TRGCH8	R/W	0	Write 1: Channel9 activation Channel8 transfer trigger Read 0: Channel8is in the idle state Read 1: Channel8 is in the transfer state, or is waiting for other channel transfers to be completed Write 0: No change Write 1: Channel8 activation		

12.4. Operation

The DSAC is activated (started to transfer) by the trigger event as shown in Table 12-2. The trigger event to activate the DSAC is set by the DSACNTAn.DSAEV bit. The DSAC has 16 channels. The activation source of each channel is selected an event from 32 trigger events. The channel transfer operation is started when the trigger event defined by the DSACNTAn.DSAEV bit is detected. DSAC is also activated by writing 1 to the DSATRGm.TRGCHn bit. DSAC activation by this bit is separately from the setting of DSACNTAn.DSAEV bit.

The smaller the channel number, the higher the priority of the DSAC (i.e., Channel0 > Channel1 > ... Channel15). When multiple channels are transferred at the same time, the transfer starts from the channel with the smallest number, and the channel with the large number waits until this transfer operation is completed. Even if a transfer trigger event is generated again on the same channel during transferring data in one channel, this event is ignored. The details are shown in Figure 12-2.

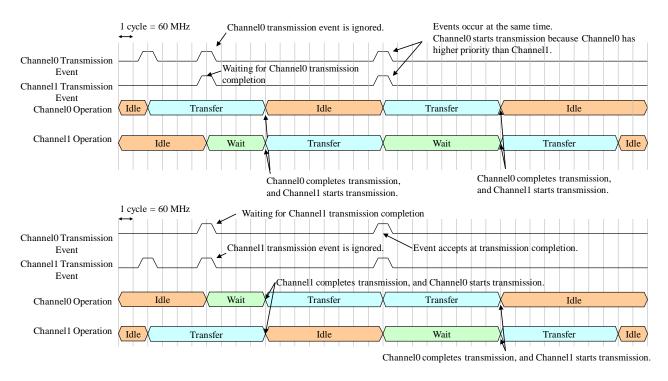


Figure 12-2. Event Trigger Priority

The source, destination, the number of data transfers, and address increment at transfer are determined by the following registers, respectively.

- DSASRCn: Source SFR address
- DSADSTn: Destination SFR address
- DSACNTAn: Number of data transfers per event (1 time, 2 times, 4 times, 8 times) determined by the DSATB bit
- DSACNTBn: Address increment at transfer (source/destination address is fixed, increment by 1, increment by 8)

The address is incremented according to the setting at each transfer, but the values of the DSASRCn and DSADSTn registers do not change. When the next event is accepted after the transfer, the transfer of the address defined by the DSASRCn and DSADSTn registers is started again.

The DSAC BUS access is processed with higher priority than other bus masters (CPU and EPU). When the accesses from the DSAC and other bus master are generated at the same time, the DSAC access is processed first. While the DSAC access is not generated, the access to the bus master that was waiting is processed. The details are shown in Figure 12-3.

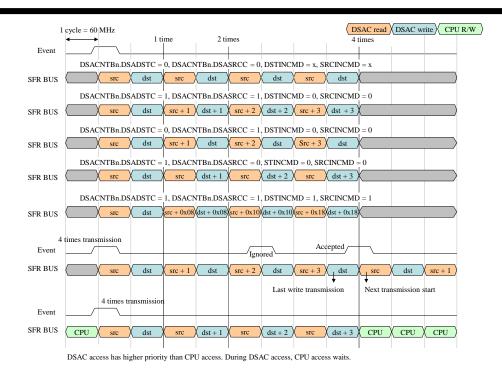


Figure 12-3. Example of Transfer Operation

Figure 12-4 shows the SFR BUS configuration. 8-bit width or 16-bit width register is connected to the SFR BUS. The SFR BUS of the CPU has 8 bits. The CPU is accessed one time with 8-bit width register. The 16-bit width registers of the modules such as PWM, TinyDSP, ADC, and DAC are accessed from the lower byte to the higher byte of the same address.

As for the method of accessing DSAC, there are also the following access methods using the BUS extended to 16 bits, in addition to the method of accessing two times with 8 bits.

• Method 1:

DSAC transfer size: 8 bits (DSACNTBn.DSAWDACS = 0)

SFR register width of source and destination: 8 bits

The DSAC uses only the lower 8 bits of the SFR BUS.

• Method 2:

DSAC transfer size: 8 bits (DSACNTBn.DSAWDACS = 0)

SFR register width of source and destination: 16 bits

The DSAC uses the lower 8 bits of the SFR BUS. The access method is the sames as the CPU (see Table 12-4). The 16-bit SFR register assigned to the same address is accessed in the order of lower byte to highr byte.

• Method 3: This setting is not recommended.

DSAC transfer size: 16 bits (DSACNTBn.DSAWDACS = 1)

SFR register width of source and destination: 8 bits

The operation is almost the same as the method 1. When the DSAC reads the 8-bit SFR register with 16-bit transfer size, the lower 8 bits of the data read by the DSAC is the value of the read register, but the higher 8 bits become 0x00. When the DSAC writes the 8-bit SFR register with 16-bit transfer size, the lower 8 bits of the 16-bit write data output by the DSAC are actually written to the 8-bit SFR register, but the higher 8 bits are ignored.

• Method 4:

DSAC transfer size: 16 bits (DSACNTBn.DSAWDACS = 1)

SFR register width of source and destination: 16 bits

The DSAC uses both higher and lower 8 bits of the SFR BUS to transfer 16-bit data.

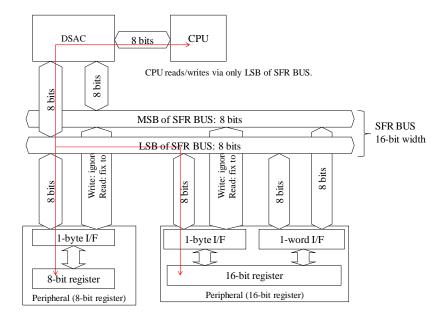
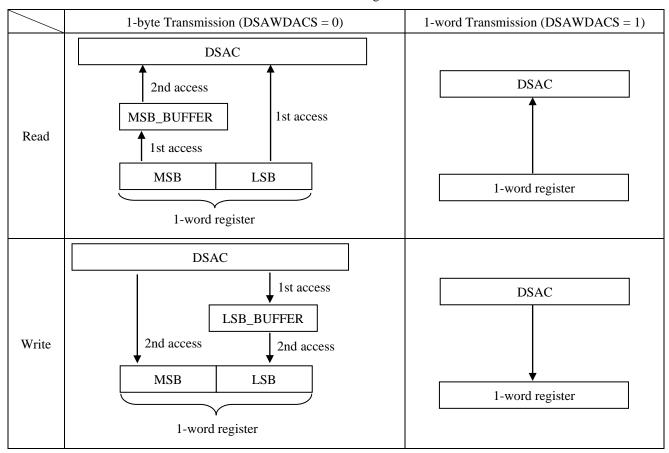



Figure 12-4. SFR BUS Configuration

Table 12-4. Access to 16-bit Register of SFR BUS

12.5. Initial Setting Sequence

Figure 12-5 shows the initial setting sequence.

- (1) Set the source start address.
- (2) Set the destination start address.
- (3) Set the transfer mode (1 word or 1 byte), the source address (fix or increment), and the destination address (fix or increment).
- (4) Selet the increment units (1 or 8) of the source address and the destination address.
- (5) Select the tranfer trigger event and the number of transfers.
- (6) Enable the DSAC, and wait the trigger start.

Figure 12-5. Initial Setting Sequence

12.6. Usage Notes and Restrictions

12.6.1. Invalidating the Channels

The following are the operational descriptions to disable Channel n.

Writing 0 to the DSACNTAn.DSACHE bit renders Channel n disabled. When 0 is written to the DSACNTAn.DSACHE bit during a transfer process, Channel n will be disabled after the transfer process completes. If 0 is written to the DSACNTAn.DSACHE bit even an unprocessed transfer request exists in Channel n, Channel n will be disabled after the corresponding transfer process completes. A transfer request received after writing 0 to the DSACNTAn.DSACHE bit will be ignored.

12.6.2. Restrictions when DSAC transfer data size is 8 bits

In case the following three conditions were met simultaneously, the DSAC will not transfer the data properly.

- Tranfer data size is 8 bits.
- Source and destination addresses are allocated to the same module.
- Source or destination register width is 16 bits.

13. Flash Memory Controller (FLC)

13.1. Overview

The flash memory controller (FLC) controls as follows: program fetch by the CPU, programming/erasing for the flash memory, and access security for the LSI.

Table 13-1. FLC Functional Descriptions

	Item	Description
	Maximum Programming Cycles	20,000 cycles
Flash Memory	Main Block (Programming)	 Capacity: 32 KB (8 Kwords × 32 bits) Number of pages: 32 pages Number of rows: 8 rows per page Number of columns: 32 columns per row = 128 bytes per row (1 column = 1 word = 32 bits)
	Information Block	 Capacity: 1 KB (256 words × 32 bits) Number of pages: 1 page Number of rows: 8 rows per page Number of columns: 32 columns per row = 128 bytes per row (1 column = 1 word = 32 bits)
Program F	Setch	 Fetch data width: 32 bits Instruction buffer: 32 bits × 2 lines Data buffer: 32 bits × 1 line Access mode: High-speed clock mode (2 cycles), low-speed clock mode (1 cycle) Prefetch: For instruction buffer only Generated by the fetch of the addresses, 4n + 2 and 4n + 3 (high-speed clock mode). Generated by the fetch of the address, 4n + 3 (low-speed clock mode).
Flash Memory Operation Mode		 Programming: Row programming for main block or information block Erasing: Mass erase/page erase (erasing 1 page) for main block pages Reading: Row read for main block or information block Protection release: Decreasing of protection level Re-protection: Resetting of protection level Runtime flash memory operation: Programming, erasing, and reading for flash memory during program execution on flash memory by the CPU
Flash Memory Security Management		 Protection level: Level 1 or level 2 Protection code width: 32 bits Placed protection code in information block Programmable protection level by protection release and re-protection Protection level 2: Blocks flash memory accessing from programs on RAM; allows a part of register accesses from the OCD

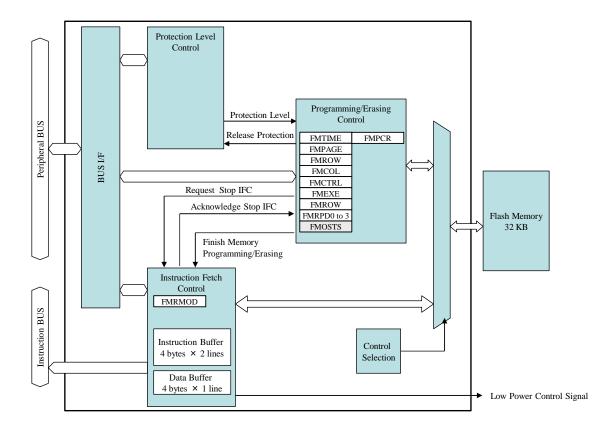


Figure 13-1. FLC Block Diagram

13.2. Register Descriptions

Table 13-2 lists the registers of FLC.

Table 13-2. List of Registers

Symbol	Name	Address	Initial Value
FMTIME	Flash Memory Control Time Register	0xFF00	0x0F
FMPAGE	Flash Memory Page Address Register	0xFF01	0x00
FMROW	Flash Memory Row Address Register	0xFF02	0x00
FMCOL	Flash Memory Column Address Register	0xFF03	0x00
FMCTRL	Flash Memory Control Register	0xFF04	0x00
FMEXE	Flash Memory Program Execution Register	0xFF05	0x00
FMRPD0	Flash Memory Row Program Data0 Register	0xFF10	0x00
FMRPD1	Flash Memory Row Program Data1 Register	0xFF11	0x00
FMRPD2	Flash Memory Row Program Data2 Register	0xFF12	0x00
FMRPD3	Flash Memory Row Program Data3 Register	0xFF13	0x00
FMRMOD	Flash Memory Read Mode Register	0xFF20	0x01
FMPCR	Flash Memory Program Control Register	0xFF23	0x00

13.2.1. FMTIME (Flash Memory Control Time Register)

Regi	gister FMTIME Flash Memory Control Time Register			Address	0xFF00		
Bit	Bit Bit Name R/W		R/W	Initial	Description		Remarks
7	R/W R/W R/W R/W		R/W	0			
6			0	Flash memory control time			
5			0	A setting value of the counter for generating an internal			
4			R/W	0	timing signal of 1 μs.		
3		IME	R/W	1	$FMTIME = \frac{CLKFAST}{1 \times 10^6} - 1$		
2		R/W R/W		1	1 × 10°		
1				1	Change the settings only when the FMEXE.FMEXE		
0			R/W	1	bit is 0.		

13.2.2. FMPAGE (Flash Memory Page Address Register)

Regi	ster	FMPAG	E	Flash Mei	mory Page Address Register	Address	0xFF01
Bit	Bit Name R/W			Initial	Description		Remarks
7	Reserved R		R	0	The read value is 0. The write value must	always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	always be 0.	
5	Reserved R			0	The read value is 0. The write value must	always be 0.	
4		R/W		0	Flash memory page address		
3			R/W	0	The bit specifies a page address in		
2	PAGE R/W R/W		R/W	0	operation modes: row program, row re		
1			R/W	0	erase. The bit is writable only when the FMEX		
0			R/W	0	is 0.		

13.2.3. FMROW (Flash Memory Row Address Register)

When the protection level is 1, in the row read mode or row program mode for the information block, set FMROW.ROW[2] = 1. Setting the FMROW.ROW[2] bit to 0 allows the LSI to execute control sequence of the flash memory, but has no effect on the flash memory.

When the protection level is 2, set the FMROW.ROW bits to the ROW5, ROW6, or ROW7. Setting the FMROW.ROW bits to other rows allows the LSI to execute the control sequence of the flash memory, but has no effect on the flash memory.

Regi	ster	FMROW	Ţ	Flash Mei	mory Row Address Register	Address	0xFF02
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Reserved R		R	0	The read value is 0. The write value must	always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	always be 0.	
5	Reserved R			0	The read value is 0. The write value must	always be 0.	
4	Reserved R			0	The read value is 0. The write value must	always be 0.	
3	Res	served	R	0	The read value is 0. The write value must	always be 0.	
2	R/W R/W		R/W	0	Flash memory row address		
1			0	The bit specifies a row address in operation modes: row program and row ro	ead.		
0			R/W	0	The bit is writable only when the FMEX is 0.		

13.2.4. FMCOL (Flash Memory Column Address Register)

Regis	ster	FMCOL		Flash Mei	mory Column Address Register	Address	0xFF03
Bit	Bit Name R/W			Initial	Description	Remarks	
7	Reserved R			0	The read value is 0. The write value must		
6	6 Reserved R			0	The read value is 0. The write value must	always be 0.	
5	Reserved R			0	The read value is 0. The write value must	always be 0.	
4		R/W		0	Flash memory column address		
3			R/W	0	,		
2	COL R/W R/W		0	The bit specifies a column address in the row program and row read. At the comp			
1			R/W	0	or writing one column, the bit is automatic		
0			R/W	0	by 1 (except when $COL = 31$).		

13.2.5. FMCTRL (Flash Memory Control Register)

Regi	ster	FMCTR	L	Flash Me	mory Control Register	Address	0xFF04			
Bit	Bit	Name	R/W	Initial	Description		Remarks			
7	F	MIF	R/C	0	Flash memory interrupt flag Read 0: Erasing/programming is not co Read 1: Erasing/programming is compl Write 0: No change Write 1: The bit is cleared					
6	FMIE R/W			0	Flash memory interrupt enable 0: Output of interrupt request is disable 1: Output of interrupt request is enabled When FMIE = 1 and FMIF = 1, an in output to the CPU.	d				
5	RF	OMD	R/W	Runtime flash memory operation mode enable 0: Runtime flash memory operation is disabled 1: Runtime flash memory operation is enabled						
4	BWSEL R/W			0	Bit width setting for writing to flash mem 0: 32 bits 1: 16 bits	ory				
3			R/W	0	Flash memory operation mode					
2			R/W	0	0000: Normal mode; instruction fetch by CPU is allowed					
1			R/W	0	0100: Row read for the main block					
0	FMCMD		0	0101: Row program for the main block 0110: Page erase for the main block 0111: Mass erase for the main block 1000: Row read for the information blo 1001: Row program for the information 1110: Re-protection 1111: Protection release Other than above: Setting prohibited The bit is writable only when the FMEXE Note that setting values differ according levels. For more details, see Table 13-3.						

Table 13-3. Setting Values for Flash Memory Operation Modes

Mode	Setting Value	Level 1	Level 2
Normal Mode (Instruction/Data Fetch)	0b0000	Y	Y ⁽²⁾
Row Read for Main Block	0b0100	Y	_
Row Program for Main Block	0b0101	Y	_
Page Erase for Main Block	0b0110	Y	_
Mass Erase for Main Block	0b0111	Y	_
Row Read for Information Block	0b1000	Y ⁽¹⁾	_
Row Program for Information Block	0b1001	Y ⁽¹⁾	_
Re-protection	0b1110	Y	_
Protection Release	0b1111	Y	Y

⁽¹⁾ Available to the user-releasable area (ROW4 to ROW7)

13.2.6. FMEXE (Flash Memory Program Execution Register)

Regi	ster	FMEXE		Flash Mei	mory Program Execution Register	Address	0xFF05
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	always be 0.	
5	Res	served	R	0	The read value is 0. The write value must	always be 0.	
4	Res	served	R	0	The read value is 0. The write value must	always be 0.	
3	3 Reserved R			0	The read value is 0. The write value must	always be 0.	
2	Res	served	R	0	The read value is 0. The write value must	always be 0.	
1	Res	served	R	0	The read value is 0. The write value must		
0			0	Execution of flash memory operation Read 0: Flash memory control is being Read 1: Flash memory control is being Write 0: Flash memory control is cance Write 1: Flash memory control is starte Writing 1 to the bit is prohibited FMCTRL.FMCMD bit is 0b0000.	executed elled d		

⁽²⁾ Available only to the CPU operation and the OCD

13.2.7. FMRPDn (Flash Memory Row Program Data n Register) (n = 0 to 3)

Regis	ster	FMRPD()	Flash Me	mory Row Program Data0 Register	Address	0xFF10			
Regis	ster	FMRPD1		Flash Me	Flash Memory Row Program Data1 Register Address					
Regis	ster	FMRPD2	2	Flash Me	Flash Memory Row Program Data2 Register Address					
Regis	ster	FMRPD3	3	Flash Mei	mory Row Program Data3 Register	Address	0xFF13			
Bit	Bit Name R/W			Initial	Description		Remarks			
7	R/W			0	Flash memory data	Flash memory data				
6			R/W	0	FMRPD1: Address 4n					
5			R/W	0	FMRPD1: Address 4n + 1 FMRPD2: Address 4n + 2					
4	т) DD	R/W	0	FMRPD3: Address 4n + 3					
3	r	RPD	R/W	0	0 $n = 256 \times FMPAGE + 32 \times FMROW + FMCOL$					
2	R/W		R/W	0		1.1.4				
1	R/V			0	The bit specifies the data to be program program mode. The read data is stored					
0			R/W	0	mode.					

13.2.8. FMRMOD (Flash Memory Read Mode Register)

Regi	ster	FMRMO	D	Flash Me	mory Read Mode Register	Address	0xFF20
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Re	served	R	0	The read value is 0. The write value must	always be 0.	
6	Re	served	R	0	The read value is 0. The write value must	always be 0.	
5	Re	served	R	0	The read value is 0. The write value must	always be 0.	
4	Re	served	R	0	The read value is 0. The write value must	always be 0.	
3	Re	served	R	0	The read value is 0. The write value must		
2	Reserved R			0	The read value is 0. The write value must	always be 0.	
1	Re	served	R	0	The read value is 0. The write value must	always be 0.	
0	Reserved R 0 FAST R/W 1		1	Fast clock read mode 0: Low-speed clock mode (1 cycle) 1: High-speed clock mode (2 cycles) The write value is reflected when the access is put into an idle state. After cl make sure that the setting value is readable. When setting the bit to the low-speed specify an appropriate frequency of beforehand.	hanging the bit, le. d clock mode,		

MD6603

13.2.9. FMPCR (Flash Memory Program Control Register)

Re	egister	FMPCR	Flash M	Memory Program Control Register	Address	0xFF23
Bit	Bit Name	R/W	Initial	Description		Remarks
7	Reserved	R	0	The read value is 0. The write value must always be	0.	
6	Reserved	R	0	The read value is 0. The write value must always be	0.	
5	Reserved	R	0	The read value is 0. The write value must always be	0.	
4	Program wait status Read 0: Not waiting for the next program data Read 1: Waiting for the next program data Write 0: No change Write 1: The bit is cleared Writing 1 to the bit is enabled when the bit is waiting for the coludata to be ready, or when the column writing is completed. The bautomatically cleared by setting the FMRPD3 register during column data wait, or by writing 0 to the FMEXE.FMEXE bit.		ppleted. The bit is gister during the			
3	Reserved	R	0	The read value is 0. The write value must always be	0.	
2	Reserved	R	0	The read value is 0. The write value must always be	0.	
1	Reserved	R	0	The read value is 0. The write value must always be	0.	
0	PWAITIE	R/W	0	Program wait interrupt enable 0: Output of interrupt request is disabled 1: Output of interrupt request is enabled The bit controls the interrupt requests of the PWAIT	CS bit.	

13.3. Flash Memory

Figure 13-2 shows the map of the flash memory. The flash memory has 32-KB main block and 1-KB information block. The main block has 32 pages. This configuration is 8 rows per page, 32 columns per row, and 4 bytes per column. The information block has 1 page. This configuration is 8 rows per page, 32 columns per row, and 4 bytes per column.

The CPU programs are stored in the main block. The protection code is stored in the information block. In addition, user data can be placed in the ROW5 to the ROW7 in the information block.

The protection level 1 allows the programming and erasing for the main block.

The protection level 2 allows the programming and erasing for the main block from the operating programs on the flash memory only, and does not allow the erasing for the information block. In addition, it allows the programming for the ROW5 to the ROW7, and does not allow the programming for the ROW0 to the ROW4. Write the protection code of the protection level 2 to the address 0xA200 (the COLUMN0 of the ROW4 in the information block).

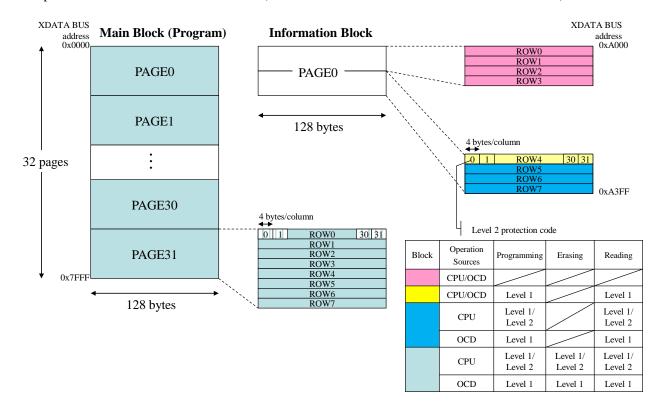


Figure 13-2. Flash Memory Map

13.4. Operation

13.4.1. Instruction Fetch

The instruction fetch controller (IFC) controls instruction fetches to the CPU from the flash memory. The IFC has the instruction buffer (IBUF) that is 4 bytes \times 2 lines. The instruction fetch operation of the CPU is as follows:

- When the IBUF has the instruction code of the adress requested by the CPU: The instruction code stored in the IBUF is fetched without wait cycles.
- When the IBUF does not have the instruction code of the adress requested by the CPU: The IFC fetches 1 column (4 bytes) of the flash memory. Then, the IFC returns necessary 1 byte to the CPU, and stores the fetched 1-column (4-byte) instruction code in the IBUF. The CPU waits until the flash memory accessing finishes.

In addition, the IFC has the data buffer (DBUF) that is 1 byte \times 1 line. When the CPU reads the constant data from the flash memory by the MOVX or MOVC instruction, the reading operation is as follows:

- When the DBUF has the data of the adress requested by the CPU: The data stored in the DBUF is read without wait cycles.
- When the DBUF does not have the data of the adress requested by the CPU:

 The IFC fetches 1 column (4 bytes) of the flash memory. Then, the IFC returns necessary 1 byte to the CPU, and stores the fetched 1-column (4-byte) data in the DBUF. The CPU waits until the flash memory accessing finishes.

The IFC has programmable access modes to the flash memory, which are the high-speed and low-speed clock modes. The access mode to the flash memory is defined by the FMRMOD register. In the high-speed clock mode, the access cycle to the flash memory is 2 cycles. In the low-speed clock mode, the access cycle to the flash memory is 1 cycle. When an operation frequency of the CPU is more than 30 MHz, it is required to set to the high-speed clock mode. When the operation frequency of the CPU is 30 MHz or less, the low-speed clock mode can be used. The low-speed clock mode achieves an efficient operation because the wait cycles of the CPU are reduced.

The IBUF has a prefetch function to reduce the wait cycles at accessing the flash memory. In the high-speed clock mode, the prefetching starts after the CPU fetches the instruction of the address 4n + 2 or 4n + 3 ($n \ge 0$). In the low-speed clock mode, the prefetching starts after the CPU fetches the instruction of the address 4n + 3 ($n \ge 0$). When the CPU fetches the prefetched code, the CPU executes the instruction without wait cycles. When the prefetched instruction is not executed by the instruction such as the JMP, the CPU waits while an instruction is fetched again from the flash memory.

13.4.2. Flash Memory Operation Mode

13.4.2.1. Mass Erase

The mass erase mode is the mode for erasing the all pages of the main block. To use the mass erase mode, set FMCTRL.FMCMD = 0b0111. In addition, to start the mass erase, set FMEXE.FMEXE = 1. During the mass erase execution, the FMEXE.FMEXE bit is kept to 1 that indicates the erasure is being executed. When the erasure completes, the FMEXE.FMEXE bit is cleared, and the FMCTRL.FMIF bit is set to 1. In addition, for outputting an interrupt request to the CPU, set FMCTRL.FMIE = 1. The FMCTRL.FMIF bit should be cleared in the interrupt routine.

Figure 13-3 shows the mass erase operation sequence. In addition, a part of the operation sequence is described below.

- (1) Set FMCTRL.FMCMD = 0b0111 (mass erase mode in the main block).
- (2) Wait for the erasure to complete. When the erasure completes, the FMCTRL.FMIF bit is set to 1. In addition, the FMEXE.FMEXE bit is automatically cleared. When FMCTRL.FMIE = 1 and FMCTRL.FMIF = 1, an interrupt request is output to the CPU.
- (3) To clear the FMCTRL.FMIF bit, set FMCTRL.FMIF = 1.

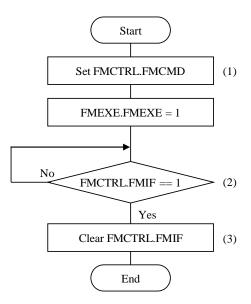


Figure 13-3. Mass Erase Operation Sequence

13.4.2.2. Page Erase

The page erase mode is the mode for erasing the specified one page of the main block. To use the page erase mode, set FMCTRL.FMCMD = 0b0110, and set the erased page to the FMPAGE register. Then, to start the page erase, set FMEXE.FMEXE = 1. During the page erase execution, the FMEXE.FMEXE bit is kept to 1 that indicates the erasure is being executed. When the erasure completes, the FMEXE.FMEXE bit is cleared, and the FMCTRL.FMIF bit is set to 1. In addition, for outputting an interrupt request to the CPU, set FMCTRL.FMIE = 1. The FMCTRL.FMIF bit should be cleared in the interrupt routine.

Figure 13-4 shows the page erase operation sequence. In addition, a part of the operation sequence is described below.

- (1) Set FMCTRL.FMCMD = 0b0110 (page erase mode in the main block).
- (2) Wait for the erasure to complete. When the erasure completes, the FMCTRL.FMIF bit is set to 1. In addition, the FMEXE.FMEXE bit is automatically cleared. When FMCTRL.FMIE =1 and FMCTRL.FMIF =1, an interrupt request is output to the CPU.
- (3) To clear the FMCTRL.FMIF bit, set FMCTRL.FMIF = 1.

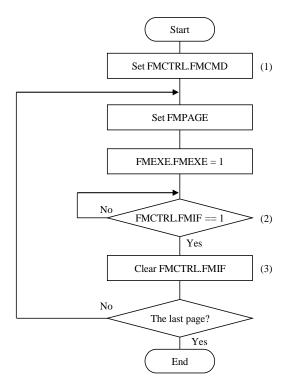


Figure 13-4. Page Erase Operation Sequence

13.4.2.3. Row Program

The row program mode has following 2 modes to program (i.e., to write) data to the specified address of the information block or the main block:

- Main block program mode: FMCTRL.FMCMD = 0b0101
- Information block program mode: FMCTRL.FMCMD = 0b1001

The programmed page, the programmed row, and programming start column are defined by the FMPAGE, FMROW, and FMCOL registers, respectively. To start the row program, set FMEXE.FMEXE = 1. Set the data to program to the FMRPD0 to FMRPD3 registers. When the FMRPD3 register is set (i.e., this setting is the programming trigger), the programming is performed to the specified current column. When the programming of the column completes, the FMCOL register is automatically incremented.

When the programming of the COLUMN31 completes, the FMEXE.FMEXE bit is cleared, and the FMCTRL.FMIF bit is set to 1. In this time, the FMCOL register is not updated. In addition, for outputting an interrupt request to the CPU, set FMCTRL.FMIE = 1. The FMCTRL.FMIF bit should be cleared in the interrupt routine.

To finish the row program midway, write the data to the FMRPD3 register and wait 46 µs, then clear the FMEXE.FMEXE bit. When the FMEXE.FMEXE bit becomes 0, the row program is finished, and the FMCTRL.FMIF bit is set to 1.

The flash memory on the LSI can be programmed by the half of one column (higher 2-byte unit or lower 2-byte unit). The programming in 2-byte unit reduces the programming period. For using the programming in 2-byte unit, set FMCTRL.BWSEL = 1. To program to higher 2 bytes in a column, set the writing values to the FMRPD0 and FMRPD1 registers, and set 0xFF to the FMRPD2 and FMRPD3 registers. On the other hand, to program to lower 2 bytes in a column, set 0xFF to the FMRPD0 and FMRPD1 registers, and set the writing values to the FMRPD2 and FMRPD3 registers.

When the column of one row is continuously programmed when FMCTRL.BWSEL = 1, note that the FMEXE.FMEXE bit is not automatically cleared at the completion of the COLUMN31 programming. Thus, to finish the programming, write the data to the FMRPD3 register and wait 23 μ s, then clear the FMEXE.FMEXE bit.

In the row program mode, complete the programming (i.e., clear the FMEXE.FMEXE bit) within 8 ms after the programming is started.

Figure 13-5 shows the row program operation sequence. In addition, a part of the operation sequence is described below.

- (1) Set the FMCTRL.FMCMD bits to 0b0101 (main block program mode) or 0b1001 (information block program mode).
- (2) Set the bit width for writing to the flash memory, which is defined by the FMCTRL.BWSEL bit.
- (3) Set the writing data to the flash memory. To start the programing operation, set the FMRPD3 register. When the FMEXE.FMEXE bit is set to 1 after writing the data to the FMRPD3 register, note that the programming operation is started after 17 µs.
- (4) The period for writing completion is 46 µs. Wait 46 µs after the FMRPD3 register setting, and then, set the next data to the FMRPD3 register. The FMRPD0 to FMRPD2 registers can be set again while waiting. Since the accessing interval using the OCD is very long, need less attention for waiting period.
- (5) When the writing to the last column (COLUMN31) completes, the FMEXE.FMEXE bit is automatically cleared.
- (6) The FMCTRL.FMIF bit is automatically set to 1. When FMCTRL.FMIE = 1 and FMCTRL.FMIF = 1, an interrupt request is output to the CPU.
- (7) To clear the FMCTRL.FMIF bit, set FMCTRL.FMIF = 1.

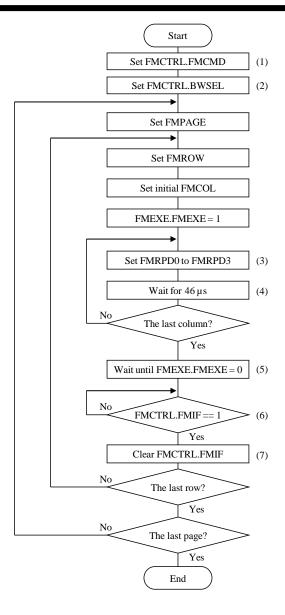


Figure 13-5. Row Program Operation Sequence

The FMPCR.PWAITS bit is cleared when the column programming starts, and is set to 1 when the column programming completes. To start the next column programming, be sure to check that FMPCR.PWAITS = 1, and then, set the FMRPD3 register. In addition, to set the next operation after the FMRPD3 register setting, be sure to check that FMPCR.PWAITS = 0. Since the FMPCR.PWAITS bit is not automatically cleared after the programming to the COLUMN31 completes, be sure to clear the FMPCR.PWAITS bit.

Figure 13-6 shows the row program operation sequence using the FMPCR.PWAITS bit. In addition, a part of the operation sequence is described below.

- Set the FMCTRL.FMCMD bits to 0b0101 (main block program mode) or 0b1001 (information block program mode).
- (2) Set the bit width for writing to the flash memory, which is defined by the FMCTRL.BWSEL bit.
- (3) Set the writing data to the flash memory. To start the programing operation, set the FMRPD3 register. When the FMEXE.FMEXE bit is set to 1 after writing the data to the FMRPD3 register, note that the programming operation is started after $17 \mu s$.
- (4) Check that FMPCR.PWAITS = 0.
- (5) Wait for the completion of the writing to the column (FMPCR.PWAITS = 1). After checking the completion, set the next data to the FMRPD0 to FMRPD3 registers.
- (6) When the writing to the last column (COLUMN31) completes, the FMEXE.FMEXE bit is automatically cleared.

- (7) The FMCTRL.FMIF bit is automatically set to 1. When FMCTRL.FMIE = 1 and FMCTRL.FMIF = 1, an interrupt request is output to the CPU.
- (8) To clear the FMCTRL.FMIF bit, set FMCTRL.FMIF = 1.
- (9) To clear the FMPCR.PWAITS bit, set FMPCR.PWAITS = 1.

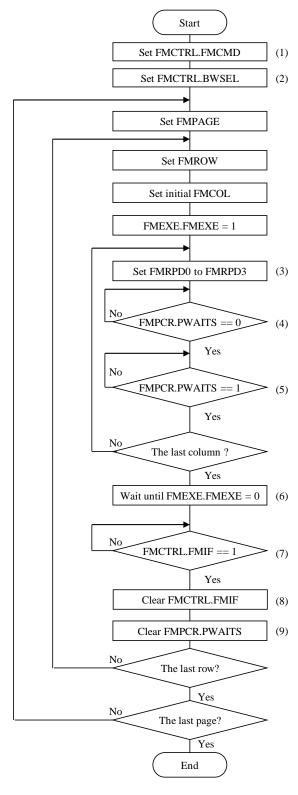


Figure 13-6. Row Program Operation Sequence Using FMPCR.PWAITS Bit

13.4.2.4. Row Read

The row read mode has following 2 modes to read data from the specified address of the information block or the main block:

- Main block read mode: FMCTRL.FMCMD = 0b0100
- Information block read mode: FMCTRL.FMCMD = 0b1000

The read page, the read row, and reading start column are defined by the FMPAGE, FMROW, and FMCOL registers, respectively. To start the row read, set FMEXE.FMEXE = 1. The read data is stored in the FMRPD0 to FMRPD3 registers. 6 cycles of the CLKFAST are required from setting the FMEXE.FMEXE bit to 1 to storing the read data to the FMRPD0 to FMRPD3 registers; wait with the instruction such as NOP.

When the reading of the FMRPD3 register completes, the FMCOL register is automatically incremented. 3 cycles of the CLKFAST are required from completing the FMRPD3 register read to storing the next read data to the FMRPD0 to FMRPD3 registers; wait with the instruction such as NOP.

When the reading from the COLUMN31 completes, the FMEXE.FMEXE bit is cleared, and the FMCTRL.FMIF bit is set to 1. In this time, the FMCOL register is not updated. In addition, for outputting an interrupt request to the CPU, set FMCTRL.FMIE = 1. The FMCTRL.FMIF bit should be cleared in the interrupt routine.

To finish the row read midway, clear the FMEXE.FMEXE bit. When the FMEXE.FMEXE bit becomes 0, the reading of the row data is finished, and the FMCTRL.FMIF bit is set to 1.

Figure 13-7 shows the row read operation sequence. In addition, a part of the operation sequence is described below.

- (1) Set the FMCTRL.FMCMD bits to 0b0100 (main block read mode) or 0b1000 (information block read mode).
- (2) To start the reading operation, set FMEXE.FMEXE = 1.
- (3) When the reading of the FMRPD3 register is completed, the reading operation of the next column starts.
- (4) When the reading from the last column (COLUMN31) completes, the FMEXE.FMEXE bit is automatically cleared.
- (5) The FMCTRL.FMIF bit is automatically set to 1. When FMCTRL.FMIE = 1 and FMCTRL.FMIF = 1, an interrupt request is output to the CPU.
- (6) To clear the FMCTRL.FMIF bit, set FMCTRL.FMIF = 1.

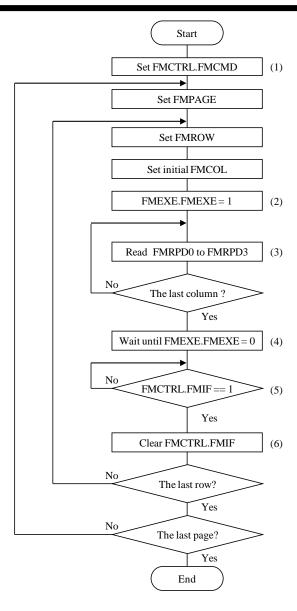


Figure 13-7. Row Read Operation Sequence

13.4.2.5. Protection Release

The protection release mode is the mode for decreasing the current protection level. The protection code that is set to enable the flash memory protection is necessary to down the protection level.

To use the protection release mode, set FMCTRL.FMCMD = 0b1111, and set the protection code to the FMRPD0 to FMRPD3 registers. Then, to execute the protection release, set the FMEXE.FMEXE = 1. When the protection release completes, the FMEXE.FMEXE bit is cleared, and the FMCTRL.FMIF bit is set to 1. In addition, for outputting an interrupt request to the CPU, set FMCTRL.FMIE = 1. The FMCTRL.FMIF bit should be cleared in the interrupt routine.

When the protection code written to the FMRPD0 to FMRPD3 registers matches the protection code written in the flash memory, the protection level is decreased from level 2 to level 1. Thus, resources in the LSI can be accessed using the OCD because the protection level is temporarily level 1.

Figure 13-8 shows the protection release operation sequence. In addition, a part of the operation sequence is described below.

- (1) Set FMCTRL.FMCMD = 0b1111 (protection release).
- (2) Set the protection code of level 2 to the FMRPD0 to FMRPD3 registers.
- (3) To start the protection release, set FMEXE.FMEXE =1.
- (4) Wait for the protection release to complete. When the protection release completes, the FMCTRL.FMIF bit is set to 1. When FMCTRL.FMIE =1 and FMCTRL.FMIF =1, an interrupt request is output to the CPU.
- (5) To clear the FMCTRL.FMIF bit, set FMCTRL.FMIF = 1.

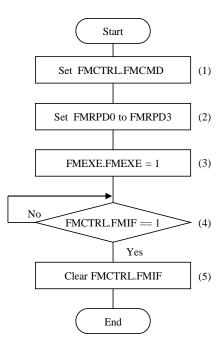


Figure 13-8. Protection Release Operation Sequence

13.4.2.6. Re-protection

The re-protection function is the mode for resetting the level that is decreased by the protection release mode. The protection level after re-protection is determined with or without the protection code of level 2 that is written in the flash memory.

To use the re-protection mode, set FMCTRL.FMCMD = 0b1110 and FMEXE.FMEXE = 1. When the re-protection completes, the FMEXE.FMEXE bit is cleared, and the FMCTRL.FMIF bit is set to 1. In addition, for outputting an interrupt request to the CPU, set FMCTRL.FMIE = 1. The FMCTRL.FMIF bit should be cleared in the interrupt routine.

Figure 13-9 shows the re-protection operation sequence. In addition, a part of the operation sequence is described below

- (1) Set FMCTRL.FMCMD = 0b1110 (re-protection).
- (2) To start the re-protection, set FMEXE.FMEXE =1.
- (3) Wait for the re-protection to complete. When the re-protection completes, the FMCTRL.FMIF bit is set to 1. When FMCTRL.FMIE =1 and FMCTRL.FMIF =1, an interrupt request is output to the CPU.
- (4) To clear the FMCTRL.FMIF bit, set FMCTRL.FMIF = 1.

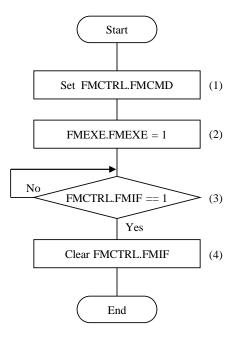


Figure 13-9. Re-protection Operation Sequence

13.5. Protection Level Control

It is required to control the accesses to the flash memory such as programming, erasing, and reading by the protection level control to protect programs from malicious attacks. In addition, this control limits to access resources in the LSI from the OCD.

• Protection Level 1

The following instructions are blocked:

- Mass erase of the information and main blocks in the flash memory
- Erasing of the information block
- Programming/Reading of ROW0 to ROW3 in the information block

• Protection Level 2

- Blocks the flash memory accessing from programs on RAM.
- Allows to program to/read from only ROW5 to ROW7 of the information block in the CPU operation (user controls).
- Allows the execution of only the protection release mode from the OCD. In addition, accesses such as an OCD instruction and a data fetch are allowed for only following registers: DEVER, FMCTRL, and FMEXE.

Table 13-4 shows the relationship between protection levels and flash memory controls.

Table 13-4. Relationship between Protection Levels and Flash Memory Controls

		Information	n Block		Ma	in Block	Protection	Re-	Instruction/	
Protection Level		Programming	Reading	Mass Erase	Erasing	Programming	Reading	Release	_	Data Fetch
	Program on RAM (1)	Yes	Yes							
Level 1	CPU Operation	ROW4 to ROW7	ROW4 to ROW7	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	OCD	KOW7	KOW /							
	Program on RAM (1)	No	No	No	No	No	No	No	No	No
Level 2	CPU Operation	Yes ROW5 to ROW7	Yes ROW5 to ROW7	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	OCD	No	No	No	No	No	No	Yes	No	(2)

⁽¹⁾ Including the operand reading by a MOVC instruction.

⁽²⁾ Allows reading from/writing to the FMCTRL and FMEXE registers. Accessing other than these registers is not allowed.

13.6. Runtime Flash Memory Operation

The LSI achieves programming, erasing, and reading of the flash memory during program execution on flash memory (runtime flash memory operation). This operation is used to write system log to the flash memory. While the flash memory is accessed by the runtime flash memory operation, the CPU is waited. When the runtime flash memory operation finishes, the CPU is released from the waiting, and restarts the program execution. The entries stored in the instruction buffer and the data buffer become invalid at the runtime flash memory operation start.

To enable the runtime flash memory operation, set FMCTRL.RFOMD = 1. The reading/writing in the runtime flash memory operation is executed the specified one column only. Note that the FMCOL register is not automatically incremented when this reading/writing operation completes.

Figure 13-10 shows the runtime flash memory operation sequence for one column writing. In addition, a part of the operation sequence is described below.

- (1) Set the FMCTRL.FMCMD bits to 0b0101 (main block program mode) or 0b1001 (information block program mode).
- (2) Set the bit width for writing to the flash memory, which is defined by the FMCTRL.BWSEL bit.
- (3) Set FMCTRL.RFOMD = 1.
- (4) Set writing data to flash memory to the FMRPD0 to FMRPD3 registers. Then, set FMEXE.FMEXE = 1.
- (5) When the writing completes, the FMEXE.FMEXE bit is automatically cleared.
- (6) The FMCTRL.FMIF bit is automatically set to 1. When FMCTRL.FMIE = 1 and FMCTRL.FMIF = 1, an interrupt request is output to the CPU.
- (7) To clear the FMCTRL.FMIF bit, set FMCTRL.FMIF = 1.

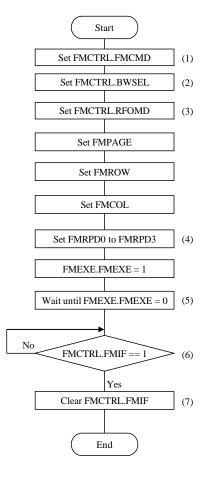


Figure 13-10. Runtime Flash Memory Operation Sequence (One Column Writing)

Figure 13-11 shows the runtime flash memory operation sequence for one column reading. In addition, a part of the operation sequence is described below.

- (1) Set the FMCTRL.FMCMD bits to 0b0100 (main block read mode) or 0b1000 (information block read mode).
- (2) Set FMCTRL.RFOMD = 1.
- (3) To start the reading operation, set FMEXE.FMEXE = 1.
- (4) Read from the FMRPD0 to FMRPD3 registers.
- (5) When the reading completes, the FMEXE.FMEXE bit is automatically cleared.
- (6) The FMCTRL.FMIF bit is automatically set to 1. When FMCTRL.FMIE = 1 and FMCTRL.FMIF = 1, an interrupt request is output to the CPU.
- (7) To clear the FMCTRL.FMIF bit, set FMCTRL.FMIF = 1.

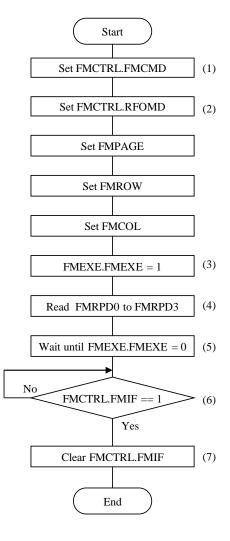


Figure 13-11. Runtime Flash Memory Operation Sequence (One Column Reading)

13.7. Usage Notes and Restrictions

13.7.1. Transition to Low Power Consumption Mode

For making a transition to the low power consumption mode, a NOP instruction must be inserted immediately after the write to the LPCTRL register. For more details, see Section 4.

13.7.2. Row Program Time

Set the program time of one row (i.e., a time during which the FMEXE.FMEXE bit is held at 1) to below 4 ms.

13.7.3. Usage Notes on Erasing or Programming (Writing) Immediately after Re-protection

Erasing or programming (writing) immediately after re-protection of the flash memory normally starts after a wait period. The duration of this wait period depends on the value* of the FMTIME register. For details on the FMTIME register setting, see Section 13.2.1. Even after a wait period, erasing and programming (writing) to the flash memory can be successfully executed. If not re-executing the re-protection, no wait period occurs before subsequent erasing or programming (writing) is performed.

The LSI can perform erasing and programming (writing) to the flash memory without protection release when operated according to programs in the flash memory itself (see Table 13-4). Consequently, for the operations executed by the programs in the flash memory, the LSI does not require any protection release or re-protection on the flash memory.

* If CLKFAST = 60 MHz and FMTIME = 59, the wait period is 32 ms.

14. TinyDSP

14.1. Overview

The TinyDSP is a dedicated processing unit for calculating a digital filter. The CPU and the TinyDSP can process each operation at the same time because the TinyDSP is separately from the CPU. The LSI has 2 TinyDSPs and these can be operated simultaneously.

The TinyDSP is calculated based on 16-bit fixed-point method. The program sequence can be composed of the simple instructions such as multiplication, division, multiply-accumulate calculation, shift calculation, move, jump, and minimum/maximum saturation. Each TinyDSP has sixteen 16-bit data registers (for storing coefficients, temporary data, and input/output data), eight 16-bit constant registers (for storing constants), and one 36-bit accumulator. Also, the TinyDSP supports the hardware division to improve the system performance.

The calculation sequence start is controlled by writing to the data registers from any of the units such as CPU, EPU, or DSAC. This calculation scheme can be configured by user.

For example, the user can configure the entire scheme to execute all operations without the CPU. The DSAC can transfer the data to the TinyDSP by the trigger that is the event generated in the LSI (such as AD conversion completion). Thus, the TinyDSP trigger can be transmitted from the internal hardware. When the calculation sequence is completed, the TinyDSP can generate the event that becomes an activation trigger for to the DSAC. The DSAC that receives the event can transfer the calculation result of the TinyDSP to the high-resolution PWM as a PWM duty cycle. As described above, the operations, such as from the trigger sending to the TinyDSP to the transferring of a calculation result, can be completely independent from the CPU.

Table 14-1. TinyDSP Functional Descriptions

Item	Description							
Number of Units	2 units							
Operation	16-bit fixed-point							
Program Memory	48 steps (independent per unit)							
Data Memory Eight 16-bit constant registers One 36-bit accumulator								
Instruction	Multiplication, division, multiply-accumulate calculation, shift calculation, move, jump, and minimum/maximum saturation							
Hardware Divider	Integrated							
Sequence Control	Controlled by internal events							
Event Output	Output at any time (with some exceptions)							
Performance	3P2Z IIR: 10 cycles							

14.2. Block Diagram

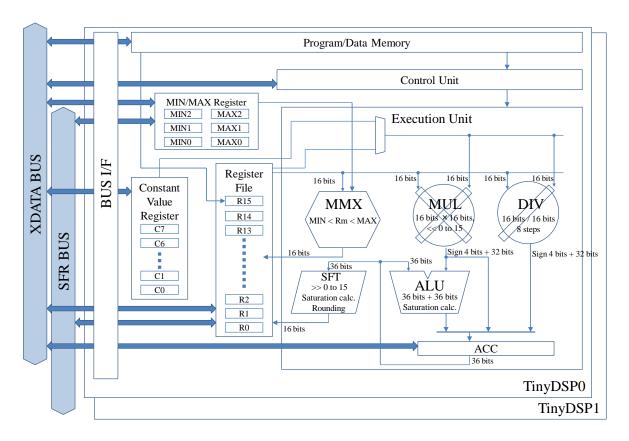


Figure 14-1. TinyDSP Block Diagram

14.3. Resources

• Register File (Data Registers: R0 to R15)

Each unit has one register file including sixteen 16-bit data registers, R0 to R15. The data registers are used for storing coefficients, or for internal memory (delay element of digital filter). R0 to R7 are accessible via the SFR BUS, whereas R8 to R15 are accessible via the XDATA BUS. Since the DSAC can access only R0 to R7, it is recommended to assign the input values from the ADC and the output values for the PWM duty cycle to R0 to R7 in order to validate the DSAC transfer. The register files are connected to input ports of the instructions such as MUL, DIV, or MMX.

Also the register files receive the data from the ACC via a shift instruction.

• ACC (Accumulator)

Each unit has one 36-bit accumulator register (ACC) for storing internal calculation results. The ACC receives the calculation results from the ALU, MUL, and DIV. The ACC is accessed from the XDATA BUS. When the overflowed calculation result is output to the ACC, the overflowed calculation result is saturated with the positive maximum value or the negative minimum value.

• MUL (Multiplier)

Each unit has one multiplier that multiplies 32 bits (16 bits \times 16 bits). The MUL receives the data from R0 to R15, and outputs the results to the ALU or the ACC.

• ALU (Arithmetic and Logical Unit)

Each unit has one arithmetic logic unit that adds 36 bits (36 bits + 36 bits).

SFT (Shifter)

Each unit has one shifter with only the right shift function. The SFT receives the 36-bit data from the ACC. The SFT cuts 16 bits out of the received data, and outputs the cut 16 bits to R0 to R15. In right shifting, an overflow may occur. When the overflow occurs, saturation processing is performed. Also, the result truncated on right shift (LSB) is rounded to the nearest value.

• DIV (Divider)

Each unit has one divider. The processing of this divider are as follows: The reciprocal of the divisor is calculated by the Newton-Raphson method, and is indicated with a 16-bit fixed-point number. Then, multiply the reciprocal of this divisor by the dividend and store the 32-bit result in the ACC.

Since DIV operation is processed using the resources such as MUL, ALU, and ACC, there is no DIV dedicated internal hardware.

• MMX

Each unit has one MMX unit that performs a saturation processing. When the MMX receives the data from R0 to R15, the MMS saturates with the predefined minimum value (MIN0 to MIN2) and maximum value (MAX0 to MAX2), and then stores the result in the same register. The TinyDSP has the registers that hold the maximum value and minimum value.

• Program/Data Memory

Each unit has one memory for storing 48 words of instructions of 16-bit length. The instructions (16 bits) for configuring the TinyDSP processing sequence and the constants for the LDR function are stored in this memory. Hereafter, this memory is called "Program/Data Memory".

• CVR (Constant Value Register, C0 to C7)

Each unit has eight 16-bit constant registers, C0 to C7, for storing constants. When the CVR function is enabled, the TinyDSP can use the constant registers, as an argument for with the instructions of MUL, MAC, and DIV. For details, see Section 14.9.1.

• LDR (Load Data Register)

When the LDR function is enabled, the R15 register can be used as a window to read the constant data stored in the Program/Data Memory. Addresses of the Program/Data Memory accessible by the LDR function are 32 to 47. For details, see Section 14.9.2.

14.4. TinyDSP Instruction

Table 14-3 shows the TinyDSP instructions.

Prepare the sequence using these instructions in advance, and store them in the Program/Data Memory. The instructions other than MMX, MVS, and RSF have the trigger wait and event output functions.

14.4.1. TinyDSP Instruction Format

The TinyDSP instruction is configured as follows:

• TRIG_WAIT Bit

The trigger wait field is used to wait for a trigger before executing the instruction. When TRIG_WAIT = 1, the instruction is executed after receiving the trigger. When TRIG_WAIT = 0, the instruction is executed without waiting for the trigger.

• TRIG_WHAT Bits

The TinyDSP registers, R0 to R7, are selected in the trigger selection field (see Table 14-2). Writing to the selected register becomes the TinyDSP activation trigger.

Bit 14 Bit 13 Bit 12 Register 0 R00 0 R1 0 0 1 0 R2 1 0 0 R3 1 1 0 0 R4 1 0 R5 1 1 0 **R6** 1 1 R7 1 1 1

Table 14-2. TRIG_WHAT Bits

• EVENT Bit

The event field is used for the event output control. An event is output when EVENT = 1, whereas no event is output when EVENT = 0.

• OPCODE Bits

The OPCODE field specifies the instruction TinyDSP executes. For details, see Section 14.4.2.

• FIELD A/B Bits

The FIELD A/B field specifies the instruction Rn, Rm, # n. Rn and Rm are selected from the data registers, R0 to R15, respectively. #n is the size of the shift bit.

Table 14-3. TinyDSP Instructions

		Inst	ructi	ion F	Form	at						
	MSB (B	its 15 to	8)				LSB ((Bits 7 to	o 0)	Instruction	Operation	Execute Frequency
TRIG_ WAIT	TRIG_ WHAT	EVENT	OI	PCO	DE		ELD A	FIE H				Trequency
0	001	0				F	Rm	#n	#k	0x0 MMX	If $(Rm > MAXn) Rm \leftarrow MAXn$; Else if $(Rm < MINk)$ $Rm \leftarrow MINk$; $\#n > 2 \rightarrow \#n = 0$	1
0	010	0	0	0	0	F	Rm	MAX/ MIN	#n	0x0 MVS	FIELD_B[3] = 0 MAXn \leftarrow Rm FIELD_B[3] = 1 MINn \leftarrow Rm #n > 2: No-operation (NOP)	1
T	WHAT	Е					on't are	Don't care		0x0 NOP	No-operation (NOP)	1
						0	Nex	xt PC		0x1 JMP	Jump	1
Т	WHAT	Е	0	0	1	1	Loa	dAddr		0x1 LDD	R15 ← Memory[LoadAddr] LDA = LoadAddr + 1	1
T	WHAT	Е	0	1	0	F	Rm	R	ln	0x2 MUL	ACC ← Rn × Rm	1
T	WHAT	Е	0	1	1	F	Rm	R	ln	0x3 MAC	$ACC \leftarrow ACC + Rn \times Rm$	1
T	WHAT	Е	1	0	0	F	Rm	R	n	0x4 DIV	ACC ← Rn/Rm	8
T	WHAT	Е	1	0	1	F	Rm	#	n	0x5 LSF	ACC ← Rm << #n	1
T/#n[4]	WHAT	Е	1	1	0	F	Rm	n #n[3:0]		0x6 RSF	Rm ← ACC >> #n	1
Т	WHAT	E	1	1	1	F	Rm	R	'n	0x7 MVC	Chain movement (delay element) Rm ← Rm-1 ←····← Rn+1 ← Rn Initial Rm is discarded. Rn is kept at the same value.	1

14.4.2. Instruction Set

• 0x0

- MMX

When the MMX instruction is executed, Rm is saturated with both the maximum value and minimum value. When Rm is the maximum value or more, the maximum value is stored in Rm. When Rm is the minimum value or less, the minimum value is stored in Rm. There are 3 maximum values and 3 minimum values. Each of the maximum and minimum values, which are used in the MMX instruction, can be specified by the corresponding bits in the instruction code FIELD B: bits 3 to 2 for the maximum values, and bits 1 to 0 for the minimum values. Hereafter, the values of bits 3 to 2 and bits 1 to 0 are defined as #n and #k, respectively. When #n or #k is set to a value more than 2, the each value is treated as zero. The MMX instruction has no trigger wait and event output functions. To use the MMX instruction, set TRIG_WAIT and EVENT field to 0, and set TRIG_WHAT to 1.

- MVS

When the MVS instruction is executed, the DSPnMAX register or the DSPnMIN register is updated to the value of Rm. Bits 3 to 0 of the instruction code determine which register to update. To update the DSPnMAX register, set bit 3 = 0. To update the DSPnMIN register, set bit 3 = 1. Bits 2 to 0 specify the value of #n. When #n is set to a value more than 2, the instruction code is considered as the NOP instruction. To use the MVS instruction, set TRIG_WAIT and EVENT field to 0, and set TRIG_WHAT to 2.

MD6603

- NOP

When the NOP instruction is executed, the program counter (PC) is started, and do not affect the others.. When the instruction code is neither the MMX instruction nor MVS instruction, whose settings are as follows, the instruction code is considered as the NOP instruction.

MMX instruction setting: TRIG_WAIT and EVENT field = 0, TRIG_WHAT = 1 MVS instruction setting: TRIG_WAIT and EVENT field = 0, TRIG_WHAT = 2

0x1

- JMP

When the JMP instruction is executed, the program counter (PC) is changed to the specific position. Although the jump address is 7-bit length, its MSB is ignored. When the instruction bit 7 is 0 or the LDR function is disabled, the instruction code is considered as the JMP instruction.

- LDD

When the LDD instruction is executed, the TinyDSP reads the data from the Program/Data Memory, and stores it in R15. Although the source address of the LDD is 7-bit length, its MSB is ignored. When the LDR function is enabled and the instruction bit 7 is 1, the instruction code is considered as the LDD instruction. For the details of the LDD instruction, see Section 14.9.2.

• 0x2 MUL

When the MUL instruction is executed, the 32-bit result of multiplying Rn (16 bits) by Rm (16 bits) is sign-extended to 36 bits, and then the sign-extended result is stored in the ACC.

• 0x3 MAC

When the MAC instruction is executed, the 32-bit result obtained by multiplying Rn (16 bits) by Rm (16 bits) is sign-extended to 36 bits, and the sign-extended result is added to the ACC value of 36 bits, and then the added result is stored in the ACC. When overflowing to the positive direction in the adding process, the saturated value of 0x7_FFFF_FFFF is stored in the ACC. When overflowing to the negative direction in the adding process, the saturated value of 0x8_0000_0000 is stored in the ACC.

• 0x4 DIV

When the DIV instruction is executed, the reciprocal of the 16-bit divisor Rm (i.e., 1/Rm) is approximately calculated firstly, and then the result is internally transformed to 16-bit fixed-point number. Next, multiply the transformed value by the dividend Rn (16 bits), and then the multiplying result is sign-extended to 36 bits. Finally, the sign-extended result is stored in the ACC. The DIV instruction has 2 calculation modes (normal mode and high accuracy mode). The calculation mode of the DIV instruction is determined by the DSPnCTRL2.HPDIV bit. For improvement of the accuracy of calculation result when the value of the divisor, Rm, is high, use the high accuracy mode. Both modes are executed in 8 cycles.

The decimal point exists only on user's assumption. When the decimal point of the divisor, Rm, is located between bit 1 and bit 0 (Q 1), the decimal point of 1/Rm is located between bit 14 and bit 13 (Q 14). When the decimal point of Rn is between bit 1 and bit 0 (Q1), the decimal point of the finally stored value in ACC is located between bit 15 and bit $14 (Q1 \times Q14 = Q15)$. The value that is any 16-bit field in the ACC selected by user can be stored in the register file (see Section 14.3) by the RSF instruction. Only the DIV instruction needs the multiple cycles for the execution.

• 0x5 LSF

When the LSF instruction is executed, Rm is shifted left by n bits, and then the shifted value is stored in the ACC. When shifting left, the sign is extended using the sign of Rm. Lower bits are filled up with zeros.

0x6 RSF

When the RSF instruction is executed, the ACC is shifted right by n bits, and then the shifted value is stored in Rm. The 16-bit data that is cut according to the amount shifting right from the 36-bit ACC is output to Rm. If an overflow occurs in right shifting, the saturated value is stored in Rm. Also, the result truncated on right shift (LSB) is rounded to the nearest value.

The RSF instruction has 2 modes, one can use the trigger function, and the other cannot. In the mode where the trigger function can be used, the right shift range is 0 to 15. In the mode where the trigger function cannot be used, the right shift range is 0 to 31. The DSPnCTRL2.EXRSF bit determines which mode to be used.

• 0x7 MVC

When the MVC instruction is executed, the data in the register file is moved in a chain (chain movement), and then the delay element of the digital filter is implemented. The targets of the chain movement are consecutive number data registers. When m > n in the instruction field, Rm receives the value from Rm-1, Rm-1 receives the value from Rm-2, and finally Rn+1 receives the value from Rn. The value of Rm before executing the MVC instruction is discarded. The value of Rn does not change even after executing the MVC instruction. When $m \le n$, the MVC instruction operates in the same way as the NOP instruction.

14.5. Operations

The setting procedure and the operation of the TinyDSP are as follows:

- (1) The following settings are required for the TinyDSP in advance.
 - Set the program sequence in the Program/Data Memory.
 - Set the initial value of R0 to R15 and C0 to C7 (such as coefficient or delay element of digital filter).
- (2) To enable the TinyDSP, set the DSPnCTRL.DSPE bit.

 The program sequence starts from PC = 0x00 usually, although the initial value of instruction sequence program counter (PC) can be set in advance.
- (3) The TinyDSP instruction sequence is started. When the TRIG_WAIT flag of the TinyDSP instruction is set, the TinyDSP instruction is not executed until a trigger occurs. The trigger occurs when the data register is updated (data writing). The data register is selected from R0 to R7. R0 to R7 are defined by the TRIG_WHAT filed (see Table 14-2). When the trigger is detected, the TinyDSP executes the instruction that is set to the trigger, and then goes on to the next PC address processing.
- (4) For the trigger to restart the TinyDSP instruction, see the description of the DSPnTRG register in Section 14.11.11. For example, the operations when TRIG_WAIT = 1 and TRIG_WHAT = 3 in the TinyDSP instruction field (see Table 14-3) are described as follows. This means that the TinyDSP, which is set a trigger, is waiting for R3 update by any of the CPU, EPU, or DSAC.
- (5) When the DSPnTRG.SET_R3 bit is 0, the instruction is suspended before execution. When the new value is written to R3 by any of the CPU, EPU, or DSAC, the DSPnTRG.SET_R3 bit is automatically set, and the TinyDSP instruction execution is restarted. At this time, the DSPnTRG.SET_R3 bit is automatically cleared. When the CPU or the DSAC updates R3 to set DSPnTRG.SET_R3 = 1 before the TinyDSP instruction is executed, the TinyDSP instruction restarts execution immediately without suspending, and then the DSPnTRG.SET_R3 bit is cleared. Although the DSPnTRG register does not need to be accessed from the CPU during the TinyDSP operation, the DSPnTRG register can be accessed from the CPU for initializing again.
- (6) When the PC reaches its final address (0x2F) during the TinyDSP instruction sequence, the PC is returned to 0x00, and then the TinyDSP continues the instruction sequence.
- (7) When the instruction EVENT = 1 is completed, the TinyDSP interrupt flag (i.e., DSPnCTRL.DSPIF bit) is set to 1. Also, internal event pulses are generated for other modules. While the DSPnCTRL.DSPIE bit is set, the interrupt signal is asserted.
- (8) When the saturation processing occurs during the TinyDSP instruction execution, the DSPnCTRL.DSP_SA bit (for the ALU) or the DSPnCTRL.DSP_SS bit (for the shifter) is set to 1. Only the occurrence of saturation processing is notified to the CPU. Each flag can be cleared by the CPU.
- (9) While the DSPnDBG.DSP_DBG bit is 1, the TinyDSP operates with a debug mode. In the debug mode, the TinyDSP executes the program sequence with the step operation. The step operation is executed only when 1 is written to the DSPnDBG.DSP_STP bit during DSPnDBG.DSP_DBG = 1. When the DSPnDBG.DSP_DBG and DSPnDBG.DSP_STP bits are set at the same time, the step operation is not executed. Even if the TRIG_WAIT flag of the TinyDSP instruction is set, this instruction for the step operation is forced to execute. When the PC specifies the final address, the PC is returned to 0x00, and the step operation is repeated from the first address.
- (10) Regarding the register or storage resource that can be accessed from the TinyDSP and the any of the CPU, EPU, or DSAC, when the TinyDSP and any of the CPU, EPU, or DSAC access the same resource simultaneously, the access by the CPU, EPU, or DSAC has the highest priority.

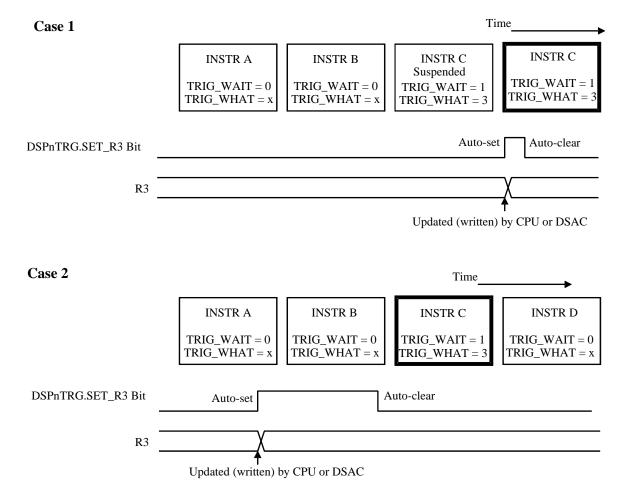


Figure 14-2. Trigger Operation of Instruction Sequence

14.6. 16-bit Register Access

All data registers (R8 to R15) in the register file and all constant registers (C0 to C7, MAX0 to MAX2, MIN0 to MIN2) are 16-bit width. These 16-bit width registers are composed of the lower byte (LSByte) register and higher byte (MSByte) register.

Data registers (R8 to R15) and all constant registers respectively have 3 addresses in the following addresses on the XDATA BUS area.

- TinyDSP0: 0xF788 to 0xF78F, 0xF798 to 0xF79F, 0xF7A8 to 0xF7AD
- TinyDSP1: 0xF808 to 0xF80F, 0xF818 to 0xF81F, 0xF828 to 0xF82D

LSByte and MSByte are assigned to one of the 3 addresses. The other 2 addresses are contiguous; LSByte and MSByte are assigned to the smaller and higher addresses, respectively.

Each data register (R0 to R7) and constant register (MAX0 to MAX2 and MIN0 to MIN2) has one address, which LSByte and MSByte are assigned, on the SFR area

The 16-bit register must be written in the order of LSByte and MSByte, sequentially. When LSByte is written first, the value of the written LSByte is stored in the temporary register for LSByte. When MSByte is written next, the value of the temporary register for LSByte and the value of MSByte are written to the 16-bit register simultaneously. The data must be read from the 16-bit register in the order of LSByte and MSByte, sequentially. When LSByte is read first, only the LSByte value out of the value of the 16-bit register is read, and the MSByte value is stored in a dedicated temporary register. At the next read, the MSByte value is read from the dedicated temporary register.

The DSPnMAXxL/H and DSPnMINxL/H registers have the addresses in both the XDATA BUS and SFR BUS areas. When the SFR BUS access conflicts with the XDATA BUS access, the writing of XDATA BUS has the highest priority.

Writing to Data Register, Rn Reading from Data Register, Rn Rn L Rn L Rn H Rn H 2nd access 2nd access 1st access 1st access Temp. for Rn_L Temp. for Rn_H 1st access 2nd access 8 bits 8 bits

Figure 14-3. Data Register Access

The access states of LSByte and MSByte of the 16-bit register is managed by the access counter of the units such as CPU, DSAC, or EPU as follows, respectively.

• CPU

When the CPU reads the data from the 16-bit register, the CPU access counter is incremented. The access counter of the XDATA BUS is separated with its of the SFR BUS. When the DSPnRST.CPUACCLA bit is set to 1, both the SFR BUS CPU access counter and the XDATA BUS CPU access counter are cleared, and the CPU is ready to read LSByte.

• DSAC

When the DSAC reads the data from one of registers R0 to R7, MIN0 to MIN2, or MAX0 to MAX2, the DSAC access counter is incremented. When the DSPnRST.DSACACCLA bit is set to 1, the DSAC access counter is cleared, and the DSAC is ready to read LSByte. The 16-bit data can be directly read from and write to registers assigned to the SFR area by the DSAC. For the direct access to 16-bit data, see Section 11.

• EPU

When the EPU reads data from the 16-bit register via the XDATA BUS, the EPU access counter is incremented. When the DSPnRST.EPUCACCLA bit is set to 1, the EPU access counter is cleared, and the EPU is ready to read LSByte. When the EPU accesses the 16-bit register of the TinyDSP via the SFR BUS, the access length must be 16 bits because the EPU does not have a buffer in the SFR area.

14.7. Event Output

2 events (Event0 and Event1) are output from each TinyDSP to the DSAC.

- TinyDSP0 Event0
- TinyDSP0 Event1
- TinyDSP1 Event0
- TinyDSP1 Event1

The event outputs are controlled by the event field of each instruction code. The Event0 and Event1 are selected as follows. When the TinyDSP outputs the Event0 or Event1, the DSPnCTRL.DSPIF bit that is interrupt flag is set.

- Event0: EVENT = 1, TRIG_WHAT != 7
- Event1: EVENT = 1, TRIG_WHAT = 7

Where, the event is output according to the TinyDSP instruction as follows:

- When TRIG_WAIT = 1, EVENT = 1, and TRIG_WHAT != 7, the TinyDSP instruction waits for the writing to the register specified by the TRIG_WAIT. When the register is written (i.e., it is the trigger), the TinyDSP executes the instruction. Then,the Event0 is output after the instruction processing is completed.
- When EVENT = 1, TRIG_WAIT = 1, and TRIG_WHAT = 7, the TinyDSP waits for writing to R7. When the register is written (i.e., it is the trigger), the TinyDSP executes the instruction. Then, the Event1 is output after the instruction processing is completed.

14.8. Program/Data Memory

48 instructions can be stored in the Program/Data Memory that stores instructions and data (see Table 14-4 and Table 14-5). The Program/Data Memory has its own address space (0x00 to 0x2F) that 16 bits (one instruction, one data) are assigned to one address. To write data to the Program/Data Memory, write the address to be written to the DSPn_PRG_ADR register, first. Then, write the LSByte and MSByte of the data to be written to the DSPn_PRG_DATL and DSPn_PRG_DATH registers, respectively. There is no buffer function. Written data is reflected to the Program/Data Memory when the LSByte and MSByte are written, respectively. To read data from the Program/Data Memory, write the address to be read to the DSPn_PRG_ADR register. As a result, the LSByte and MSByte of the data to be read can be read from the DSPn_PRG_DATL and DSPn_PRG_DATH registers, respectively. As well as the writing, there is no buffer function.

Table 14-4. Program/Data Memory for Holding Instructions

	MSB (Bit 15)	LSB (Bit 0)	
Address (PC)	Program/Data Memory for holding the instruction (16-bit width)		
(DSPn_PRG_ADR)	(The DSPn_PRG_ADR register is assigned to the CPU data area)		
0x00 to 0x2F	DSPn_PRG_DATH	DSPn_PRG_DATL	

Table 14-5. Program/Data Memory for Holding Data

	MSB (Bit 15)	LSB (Bit 0)	
Address (LDA)	Constant data for LDR (16-bit width)		
(DSPn_PRG_ADR)	(The DSPn_PRG_ADR register is assigned to the CPU data area)		
0x20 to 0x2F	DSPn_PRG_DATH	DSPn_PRG_DATL	

14.9. Coefficient Hold Functions

The coefficient information of the TinyDSP is held in R0 to R15, C0 to C7, and the Program/Data Memory.

14.9.1. CVR Function

The CVR function is for holding coefficients in C0 to C7.

The FIELD B in the instruction code means R0 to R7 in the normal mode, but means C0 to C7 in the CVR mode. Enabling the CVR mode is defined by the DSPnCNSTEN register. The value of 0 to 15 can be specified to the FIELD B. The DSPnCTRL2.CNSTSEL bit determines whether 0 to 7 or 8 to 15 are assigned to C0 to C7. When the instructions of MUL, MAC, and DIV are executed, the CVR function operates.

When DSPnCTRL2.CNSTSEL = 0, 0 to 7 of the FIELD B are assigned to R0 to R7, and 8 to 15 of the FIELD B are assigned to R8 to R15 or C0 to C7. Using registers, R8 to R15 or C0 to C7, are defined by the DSPnCNSTEN register. For example, the DSPnCNSTEN register is 0x01, only 8 of the FIELD B are assigned to C0.

When DSPnCTRL2.CNSTSEL = 1, 8 to 15 of the FIELD B are assigned to R8 to R15, and 0 to 7 of the FIELD B are assigned to R0 to R7 or C0 to C7. Using the registers, R0 to R7 or C0 to C7, are defined by the DSPnCNSTEN register. For example, the DSPnCNSTEN register is 0x01, only 0 of the FIELD B are assigned to C0.

14.9.2. LDR Function

The LDR function is for holding coefficients in the Program/Data Memory.

In the LDR mode (DSPnCTRL2.LDEN = 1), the instructions of MUL, MAC, and DIV can reference constant data in the Program/Data Memory. To use the LDR mode, it is recommended to initialize the LDR function using the LDD instruction.

When the LDD instruction is executed, the value of the Program/Data Memory address indicated in the LoadAddr field is transferred to R15. As a result, the value of LoadAddr + 1 is set to the DSPnLDA register. The 16 registers (32 to 47) of the Program/Data Memory address can be used in the data area of the LDR function.

When FIELD B in the instruction codes of the MUL, MAC, and DIV is 15 (0b1111), each instruction uses a value of the Program/Data Memory stored in R15. After each instruction is executed, the program/data memory, which is stored in the address indicated by the DSPnLDA register, is transferred to R15, and the DSPnLDA register is incremented by 1. The LDR function has the higher priority than the CVR function.

Figure 14-4 and Figure 14-5 show the block diagrams of LDD instruction and LDR function, respectively.

14.9.3. Priority of CVR and LDR Funcitons

The LDR has the higher priority than the CVR. When the LDR function is enabled, and C7 is assigned to FIELD B = 15, the value stored in R15 is used because the LDR function has the highest priority.

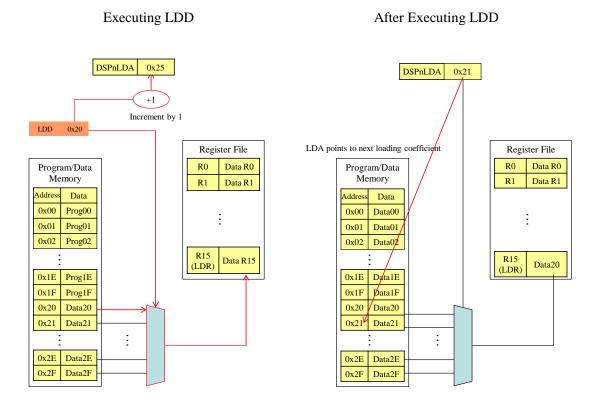


Figure 14-4. Block Diagram of LDD Instruction

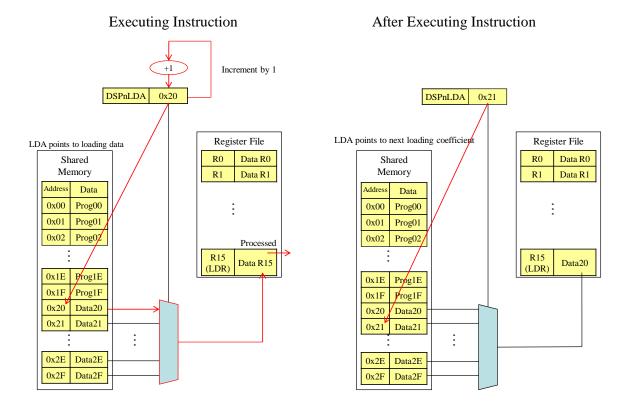


Figure 14-5. Block Diagram of LDR Function

14.10. Application Examples

Figure 14-6 and Figure 14-7 show the digital filter application examples. Although the filters of 2 applications are the same, Figure 14-6 is the application example without using the LDR function, and Figure 14-7 is the application example using the LDR function.

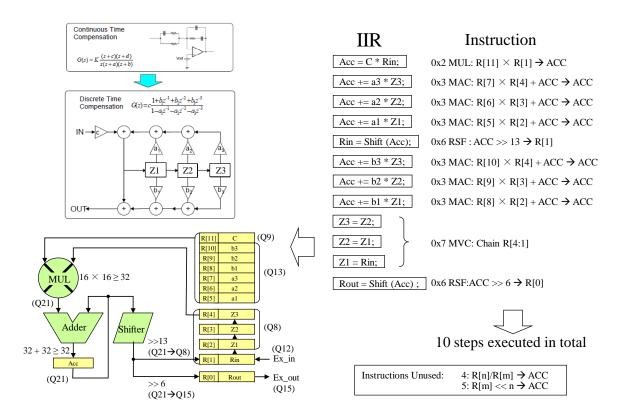


Figure 14-6. Application Example (LDR Function Disabled)

Instruction IIR LDR $C \rightarrow R15$ 0x1 LDD: LDD 0x20 b3 → R15 $0x2 \text{ MUL: } R[15] \times R[1] \rightarrow ACC$ DSPnLDA Acc = C * Rin;b2 → R15 Acc += a3 * Z3; 0x3 MAC: R[15] \times R[4] + ACC \rightarrow ACC Shared Memory Acc += a2 * Z2; $0x3 \text{ MAC} : R[15] \times R[3] + ACC \rightarrow ACC$ b1 → R15 Acc += a1 * Z1; 0x3 MAC: R[15] \times R[2] + ACC \rightarrow ACC a3 → R15 Rin = Shift (Acc); 0x6 RSF: ACC >> 13 => R[1](Q13) Acc += b3 * Z3; $0x3 \text{ MAC}: R[15] \times R[4] + ACC \rightarrow ACC$ a2 → R15 a1 → R15 Acc += b2 * Z2; 0x3 MAC: R[15] \times R[3] + ACC \rightarrow ACC Acc += b1 * Z1; 0x3 MAC: R[15] \times R[2] + ACC \rightarrow ACC Z3 = Z2;Z2 = Z1;0x7 MVC: Chain R[4:1] Z1 = Rin;16×16≥32 Rout = Shift (Acc); 0x6 RSF: ACC >> $6 \rightarrow R[0]$ (Q8) Shifter >>13 (Q12) (Q21→Q8) Ex_in (Q21) Ex_out (Q15) (Q21→Q15)

IIR Example When LDR Enabled

Figure 14-7. Application Example (LDR Function Enabled)

14.11. Register Descriptions

Table 14-6. List of XDATA BUS Registers

Symbol	Name	Address 1	Address 2	Initial Value
DSP0CTRL	TinyDSP0 Control Register	0xF780	_	0x00
DSP0EXEC	TinyDSP0 Execution Register	0xF781	_	0x00
DSP0TRG	TinyDSP0 Execution Trigger Status	0xF782	_	0x00
DSP0RST	TinyDSP0 Access Counter Clear Register	0xF783	_	0x00
DSP0DBG	TinyDSP0 Debug Register	0xF784	_	0x00
DSP0CTRL2	TinyDSP0 Control2 Register	0xF785	_	0x00
DSP0CNSTEN	TinyDSP0 CVR Enable Register	0xF786	_	0x00
DSP0_R8_L	TinyDSP0 R8 LSB Side	0xF788	0xF7C0	0x00
DSP0_R8_H	TinyDSP0 R8 MSB Side	0xF788	0xF7C1	0x00
DSP0_R9_L	TinyDSP0 R9 LSB Side	0xF789	0xF7C2	0x00
DSP0_R9_H	TinyDSP0 R9 MSB Side	0xF789	0xF7C3	0x00
DSP0_R10_L	TinyDSP0 R10 LSB Side	0xF78A	0xF7C4	0x00
DSP0_R10_H	TinyDSP0 R10 MSB Side	0xF78A	0xF7C5	0x00
DSP0_R11_L	TinyDSP0 R11 LSB Side	0xF78B	0xF7C6	0x00
DSP0_R11_H	TinyDSP0 R11 MSB Side	0xF78B	0xF7C7	0x00
DSP0_R12_L	TinyDSP0 R12 LSB Side	0xF78C	0xF7C8	0x00
DSP0_R12_H	TinyDSP0 R12 MSB Side	0xF78C	0xF7C9	0x00
DSP0_R13_L	TinyDSP0 R13 LSB Side	0xF78D	0xF7CA	0x00
DSP0_R13_H	TinyDSP0 R13 MSB Side	0xF78D	0xF7CB	0x00
DSP0_R14_L	TinyDSP0 R14 LSB Side	0xF78E	0xF7CC	0x00
DSP0_R14_H	TinyDSP0 R14 MSB Side	0xF78E	0xF7CD	0x00
DSP0_R15_L	TinyDSP0 R15 LSB Side	0xF78F	0xF7CE	0x00
DSP0_R15_H	TinyDSP0 R15 MSB Side	0xF78F	0xF7CF	0x00
DSP0_ACC_0	TinyDSP0 ACC[7:0]	0xF790	_	0x00
DSP0_ACC_1	TinyDSP0 ACC[15:8]	0xF791	_	0x00
DSP0_ACC_2	TinyDSP0 ACC[23:15]	0xF792	_	0x00
DSP0_ACC_3	TinyDSP0 ACC[31:24]	0xF793	_	0x00
DSP0_ACC_4	TinyDSP0 ACC[36:32]	0xF794	_	0x00
DSP0_C0_L	TinyDSP0 C0 LSB Side	0xF798	0xF7D0	0x00
DSP0_C0_H	TinyDSP0 C0 MSB Side	0xF798	0xF7D1	0x00
DSP0_C1_L	TinyDSP0 C1 LSB Side	0xF799	0xF7D2	0x00
DSP0_C1_H	TinyDSP0 C1 MSB Side	0xF799	0xF7D3	0x00
DSP0_C2_L	TinyDSP0 C2 LSB Side	0xF79A	0xF7D4	0x00
DSP0_C2_H	TinyDSP0 C2 MSB Side	0xF79A	0xF7D5	0x00

MD6603

Symbol	Name	Address 1	Address 2	Initial Value
DSP0_C3_L	TinyDSP0 C3 LSB Side	0xF79B	0xF7D6	0x00
DSP0_C3_H	TinyDSP0 C3 MSB Side	0xF79B	0xF7D7	0x00
DSP0_C4_L	TinyDSP0 C4 LSB Side	0xF79C	0xF7D8	0x00
DSP0_C4_H	TinyDSP0 C4 MSB Side	0xF79C	0xF7D9	0x00
DSP0_C5_L	TinyDSP0 C5 LSB Side	0xF79D	0xF7DA	0x00
DSP0_C5_H	TinyDSP0 C5 MSB Side	0xF79D	0xF7DB	0x00
DSP0_C6_L	TinyDSP0 C6 LSB Side	0xF79E	0xF7DC	0x00
DSP0_C6_H	TinyDSP0 C6 MSB Side	0xF79E	0xF7DD	0x00
DSP0_C7_L	TinyDSP0 C7 LSB Side	0xF79F	0xF7DE	0x00
DSP0_C7_H	TinyDSP0 C7 MSB Side	0xF79F	0xF7DF	0x00
DSP0_PRG_DATL	TinyDSP0 Program Memory LSB Side	0xF7A0	_	0x00
DSP0_PRG_DATH	TinyDSP0 Program Memory MSB Side	0xF7A1	_	0x00
DSP0_PRG_ADR	TinyDSP0 Program Memory Address	0xF7A2	_	0x00
DSP0LDA	TinyDSP0 LDR Load Address Register	0xF7A3	_	0x20
DSP0MAX0L	TinyDSP0 MAX LSB Side	0xF7A8	0xF7E0	0x00
DSP0MAX0H	TinyDSP0 MAX MSB Side	0xF7A8	0xF7E1	0x00
DSP0MIN0L	TinyDSP0 MIN LSB Side	0xF7A9	0xF7E2	0x00
DSP0MIN0H	TinyDSP0 MIN MSB Side	0xF7A9	0xF7E3	0x00
DSP0MAX1L	TinyDSP0 MAX LSB Side	0xF7AA	0xF7E4	0x00
DSP0MAX1H	TinyDSP0 MAX MSB Side	0xF7AA	0xF7E5	0x00
DSP0MIN1L	TinyDSP0 MIN LSB Side	0xF7AB	0xF7E6	0x00
DSP0MIN1H	TinyDSP0 MIN MSB Side	0xF7AB	0xF7E7	0x00
DSP0MAX2L	TinyDSP0 MAX LSB Side	0xF7AC	0xF7E8	0x00
DSP0MAX2H	TinyDSP0 MAX MSB Side	0xF7AC	0xF7E9	0x00
DSP0MIN2L	TinyDSP0 MIN LSB Side	0xF7AD	0xF7EA	0x00
DSP0MIN2H	TinyDSP0 MIN MSB Side	0xF7AD	0xF7EB	0x00
DSP1CTRL	TinyDSP1 Control Register	0xF800	_	0x00
DSP1EXEC	TinyDSP1 Execution Register	0xF801	_	0x00
DSP1TRG	TinyDSP1 Execution Trigger Status	0xF802		0x00
DSP1RST	TinyDSP1 Access Counter Clear Register	0xF803	_	0x00
DSP1DBG	TinyDSP1 Debug Register	0xF804	_	0x00
DSP1CTRL2	TinyDSP1 Control2 Register	0xF805	_	0x00
DSP1CNSTEN	TinyDSP1 CVR Enable Register	0xF806	_	0x00
DSP1_R8_L	TinyDSP1 R8 LSB Side	0xF808	0xF840	0x00
DSP1_R8_H	TinyDSP1 R8 MSB Side	0xF808	0xF841	0x00
DSP1_R9_L	TinyDSP1 R9 LSB Side	0xF809	0xF842	0x00
DSP1_R9_H	TinyDSP1 R9 MSB Side	0xF809	0xF843	0x00

Symbol	Name	Address 1	Address 2	Initial Value
DSP1_R10_L	TinyDSP1 R10 LSB Side	0xF80A	0xF844	0x00
DSP1_R10_H	TinyDSP1 R10 MSB Side	0xF80A	0xF845	0x00
DSP1_R11_L	TinyDSP1 R11 LSB Side	0xF80B	0xF846	0x00
DSP1_R11_H	TinyDSP1 R11 MSB Side	0xF80B	0xF847	0x00
DSP1_R12_L	TinyDSP1 R12 LSB Side	0xF80C	0xF848	0x00
DSP1_R12_H	TinyDSP1 R12 MSB Side	0xF80C	0xF849	0x00
DSP1_R13_L	TinyDSP1 R13 LSB Side	0xF80D	0xF84A	0x00
DSP1_R13_H	TinyDSP1 R13 MSB Side	0xF80D	0xF84B	0x00
DSP1_R14_L	TinyDSP1 R14 LSB Side	0xF80E	0xF84C	0x00
DSP1_R14_H	TinyDSP1 R14 MSB Side	0xF80E	0xF84D	0x00
DSP1_R15_L	TinyDSP1 R15 LSB Side	0xF80F	0xF84E	0x00
DSP1_R15_H	TinyDSP1 R15 MSB Side	0xF80F	0xF84F	0x00
DSP1_ACC_0	TinyDSP1 ACC[7:0]	0xF810	_	0x00
DSP1_ACC_1	TinyDSP1 ACC[15:8]	0xF811	_	0x00
DSP1_ACC_2	TinyDSP1 ACC[23:15]	0xF812	_	0x00
DSP1_ACC_3	TinyDSP1 ACC[31:24]	0xF813	_	0x00
DSP1_ACC_4	TinyDSP1 ACC[36:32]	0xF814	_	0x00
DSP1_C0_L	TinyDSP1 C0 LSB Side	0xF818	0xF850	0x00
DSP1_C0_H	TinyDSP1 C0 MSB Side	0xF818	0xF851	0x00
DSP1_C1_L	TinyDSP1 C1 LSB Side	0xF819	0xF852	0x00
DSP1_C1_H	TinyDSP1 C1 MSB Side	0xF819	0xF853	0x00
DSP1_C2_L	TinyDSP1 C2 LSB Side	0xF81A	0xF854	0x00
DSP1_C2_H	TinyDSP1 C2 MSB Side	0xF81A	0xF855	0x00
DSP1_C3_L	TinyDSP1 C3 LSB Side	0xF81B	0xF856	0x00
DSP1_C3_H	TinyDSP1 C3 MSB Side	0xF81B	0xF857	0x00
DSP1_C4_L	TinyDSP1 C4 LSB Side	0xF81C	0xF858	0x00
DSP1_C4_H	TinyDSP1 C4 MSB Side	0xF81C	0xF859	0x00
DSP1_C5_L	TinyDSP1 C5 LSB Side	0xF81D	0xF85A	0x00
DSP1_C5_H	TinyDSP1 C5 MSB Side	0xF81D	0xF85B	0x00
DSP1_C6_L	TinyDSP1 C6 LSB Side	0xF81E	0xF85C	0x00
DSP1_C6_H	TinyDSP1 C6 MSB Side	0xF81E	0xF85D	0x00
DSP1_C7_L	TinyDSP1 C7 LSB Side	0xF81F	0xF85E	0x00
DSP1_C7_H	TinyDSP1 C7 MSB Side	0xF81F	0xF85F	0x00
DSP1_PRG_DATL	TinyDSP1 Program Memory LSB Side	0xF820		0x00
DSP1_PRG_DATH	TinyDSP1 Program Memory MSB Side	0xF821		0x00
DSP1_PRG_ADR	TinyDSP1 Program Memory Address	0xF822		0x00
DSP1LDA	TinyDSP1 LDR Load Address Register	0xF823		0x20

Symbol	Name	Address 1	Address 2	Initial Value
DSP1MAX0L	TinyDSP1 MAX0 LSB Side	0xF828	0xF860	0x00
DSP1MAX0H	TinyDSP1 MAX0 MSB Side	0xF828	0xF861	0x00
DSP1MIN0L	TinyDSP1 MIN0 LSB Side	0xF829	0xF862	0x00
DSP1MIN0H	TinyDSP1 MIN0 MSB Side	0xF829	0xF863	0x00
DSP1MAX1L	TinyDSP1 MAX1 LSB Side	0xF82A	0xF864	0x00
DSP1MAX1H	TinyDSP1 MAX1 MSB Side	0xF82A	0xF865	0x00
DSP1MIN1L	TinyDSP1 MIN1 LSB Side	0xF82B	0xF866	0x00
DSP1MIN1H	TinyDSP1 MIN1 MSB Side	0xF82B	0xF867	0x00
DSP1MAX2L	TinyDSP1 MAX2 LSB Side	0xF82C	0xF868	0x00
DSP1MAX2H	TinyDSP1 MAX2 MSB Side	0xF82C	0xF869	0x00
DSP1MIN2L	TinyDSP1 MIN2 LSB Side	0xF82D	0xF86A	0x00
DSP1MIN2H	TinyDSP1 MIN2 MSB Side	0xF82D	0xF86B	0x00

Table 14-7. List of SFR BUS Registers

Symbol	Name	Address	Initial Value
DSP0_R0_L	TinyDSP0 R0 LSB Side	0xC4	0x00
DSP0_R0_H	TinyDSP0 R0 MSB Side	0xC4	0x00
DSP0_R1_L	TinyDSP0 R1 LSB Side	0xC5	0x00
DSP0_R1_H	TinyDSP0 R1 MSB Side	0xC5	0x00
DSP0_R2_L	TinyDSP0 R2 LSB Side	0xC6	0x00
DSP0_R2_H	TinyDSP0 R2 MSB Side	0xC6	0x00
DSP0_R3_L	TinyDSP0 R3 LSB Side	0xC7	0x00
DSP0_R3_H	TinyDSP0 R3 MSB Side	0xC7	0x00
DSP0_R4_L	TinyDSP0 R4 LSB Side	0xCC	0x00
DSP0_R4_H	TinyDSP0 R4 MSB Side	0xCC	0x00
DSP0_R5_L	TinyDSP0 R5 LSB Side	0xCD	0x00
DSP0_R5_H	TinyDSP0 R5 MSB Side	0xCD	0x00
DSP0_R6_L	TinyDSP0 R6 LSB Side	0xCE	0x00
DSP0_R6_H	TinyDSP0 R6 MSB Side	0xCE	0x00
DSP0_R7_L	TinyDSP0 R7 LSB Side	0xCF	0x00
DSP0_R7_H	TinyDSP0 R7 MSB Side	0xCF	0x00
DSP0MIN0L	TinyDSP0 MIN0 LSB Side	0x24	0x00
DSP0MIN0H	TinyDSP0 MIN0 MSB Side	0x24	0x00
DSP0MAX0L	TinyDSP0 MAX0 LSB Side	0x25	0x00
DSP0MAX0H	TinyDSP0 MAX0 MSB Side	0x25	0x00
DSP0MIN1L	TinyDSP0 MIN1 LSB Side	0x2C	0x00
DSP0MIN1H	TinyDSP0 MIN1 MSB Side	0x2C	0x00
DSP0MAX1L	TinyDSP0 MAX1 LSB Side	0x2D	0x00
DSP0MAX1H	TinyDSP0 MAX1 MSB Side	0x2D	0x00
DSP0MIN2L	TinyDSP0 MIN2 LSB Side	0x34	0x00
DSP0MIN2H	TinyDSP0 MIN2 MSB Side	0x34	0x00
DSP0MAX2L	TinyDSP0 MAX2 LSB Side	0x35	0x00
DSP0MAX2H	TinyDSP0 MAX2 MSB Side	0x35	0x00
DSP1_R0_L	TinyDSP1 R0 LSB Side	0xD4	0x00
DSP1_R0_H	TinyDSP1 R0 MSB Side	0xD4	0x00
DSP1_R1_L	TinyDSP1 R1 LSB Side	0xD5	0x00
DSP1_R1_H	TinyDSP1 R1 MSB Side	0xD5	0x00
DSP1_R2_L	TinyDSP1 R2 LSB Side	0xD6	0x00
DSP1_R2_H	TinyDSP1 R2 MSB Side	0xD6	0x00
DSP1_R3_L	TinyDSP1 R3 LSB Side	0xD7	0x00
DSP1_R3_H	TinyDSP1 R3 MSB Side	0xD7	0x00

Symbol	Name	Address	Initial Value
DSP1_R4_L	TinyDSP1 R4 LSB Side	0xDC	0x00
DSP1_R4_H	TinyDSP1 R4 MSB Side	0xDC	0x00
DSP1_R5_L	TinyDSP1 R5 LSB Side	0xDD	0x00
DSP1_R5_H	TinyDSP1 R5 MSB Side	0xDD	0x00
DSP1_R6_L	TinyDSP1 R6 LSB Side	0xDE	0x00
DSP1_R6_H	TinyDSP1 R6 MSB Side	0xDE	0x00
DSP1_R7_L	TinyDSP1 R7 LSB Side	0xDF	0x00
DSP1_R7_H	TinyDSP1 R7 MSB Side	0xDF	0x00
DSP1MIN0L	TinyDSP1 MIN LSB Side	0x26	0x00
DSP1MIN0H	TinyDSP1 MIN MSB Side	0x26	0x00
DSP1MAX0L	TinyDSP1 MAX LSB Side	0x27	0x00
DSP1MAX0H	TinyDSP1 MAX MSB Side	0x27	0x00
DSP1MIN1L	TinyDSP1 MIN LSB Side	0x2E	0x00
DSP1MIN1H	TinyDSP1 MIN MSB Side	0x2E	0x00
DSP1MAX1L	TinyDSP1 MAX LSB Side	0x2F	0x00
DSP1MAX1H	TinyDSP1 MAX MSB Side	0x2F	0x00
DSP1MIN2L	TinyDSP1 MIN LSB Side	0x36	0x00
DSP1MIN2H	TinyDSP1 MIN MSB Side	0x36	0x00
DSP1MAX2L	TinyDSP1 MAX LSB Side	0x37	0x00
DSP1MAX2H	TinyDSP1 MAX MSB Side	0x37	0x00

14.11.1. DSPnCTRL (TinyDSP n Control Register) (n = 0 to 1)

Regi	ster	DSP0CT	RL	TinyDSP0	TinyDSP0 Control Register		0xF780
Regi	ster	DSP1CT	RL	TinyDSP1	Control Register	Address	0xF800
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	DSPE R/		R/W	0	TinyDSP enable 0: TinyDSP is disabled 1: TinyDSP is enabled Even while the TinyDSP is being disabled, all the registers are still accessible. However, a start trigger of TinyDSP sequence and such will be ignored. When the TinyDSP is enabled, it enters into a trigger wait state, i.e., waiting for a start trigger such as for writing to the Rn.		
6	DSPIE R/W 0 0: TinyDSP interrupt enable 0: TinyDSP interrupt is disabled 1: TinyDSP interrupt is enabled						
5	Reserved R 0 The read value is 0. The write value must always be 0.		st always be 0.				
4	Reserved		teserved R 0 The read value is 0. The write value must always be 0.				
3	Re	served	R	0	The read value is 0. The write value mu		
2	DS	SP_SS	R/C	Saturation detection on SFT Read 0: Saturation on SFT is not detected Read 1: Saturation on SFT is detected Write 0: No change			
1	DS	SP_SA	R/C	0	Saturation detection on ALU Read 0: Saturation on ALU is not detected. Read 1: Saturation on ALU is detected. Write 0: No change	Read 0: Saturation on ALU is not detected Read 1: Saturation on ALU is detected Write 0: No change	
0	D	SPIF	R/C	Write 1: The bit is cleared TinyDSP interrupt flag (event output) Read 0: No TinyDSP interrupt request is generated Read 1: A TinyDSP interrupt event is generated Write 0: No change Write 1: The bit is cleared If the event conditions are satisfied, an event output pulse occurs even when DSPIE = 0. The interrupt flag will be asserted, regardless of the TinyDSP interrupt signal being enabled or disabled.			

14.11.2. DSPnEXEC (TinyDSP n Execution Register) (n = 0 to 1)

Regi	ster	DSP0EX	EC	TinyDSP(TinyDSP0 Execution Register Address		0xF781
Regi	gister DSP1EXEC		EC	TinyDSP1	TinyDSP1 Execution Register Address		
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	always be 0.	
6	Reserved R		R	0	The read value is 0. The write value must		
5		Reserved		0			
4			R/W	0	TinyDSP program counter		
3	Do	D DC	R/W	0	The management (DC) and if it is	:4:£ 41	
2	טט	P_PC	R/W	0	The program counter (PC) specifies the instructions to be executed next. The C		
1		-	R/W	0	change the PC at any time.		
0				0			

14.11.3. DSPnDBG (TinyDSP n Debug Register) (n = 0 to 1)

Regi	ster	DSP0DE	3G	TinyDSP) Debug Register	Address	0xF784
Regi	ster	DSP1DE	8G	TinyDSP	Debug Register	Address	0xF804
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	7 DSP_DBG R/W 0 The program mode. The s			0: Normal mode 1: Debug mode ne program sequences of the TinyDSP steps in the debug ode. The step execution will be performed only when 1			
6	DSI	P_STP	R/W	0	Step execution Write 0: No effect Write 1: Step execution The read value is always 0. The step execution will be performed written to the DSP_STP bit with DSP_DBG = 1. Even if an instruction trigger, the step execution will forcibly the DSP_DBG and DSP_STP bits are set the step execution will not be performed. When the program counter (PC) specific during the step execution, the value of the to 0x00 after the instruction has been execution.	the condition: is waiting for a be performed. If at the same time, ies address 0x2F e PC will be reset	
5	Res	served	R	0	The read value is 0. The write value must	always be 0.	
4	Res	served	R	0	The read value is 0. The write value must	always be 0.	
3	Res	served	R	0	The read value is 0. The write value must	always be 0.	
2	Res	served	R	0	The read value is 0. The write value must always be 0.		
1	Res	served	R	0	The read value is 0. The write value must always be 0.		
0	Res	served	R	0	The read value is 0. The write value must	always be 0.	

14.11.4. DSPn_Rx_L (TinyDSP n Rx LSB Side) (n = 0 to 1, x = 0 to 7)

Regi	ster	DSP0_R	0_L	TinyDSP0	R0 LSB Side	Address	0xC4
Regi	ster	DSP0_R	DSP0_R1_L		TinyDSP0 R1 LSB Side		0xC5
Regi	ster	DSP0_R	2_L	TinyDSP0	R2 LSB Side	Address	0xC6
Regi	ster	DSP0_R	3_L	TinyDSP0	R3 LSB Side	Address	0xC7
Regi	ster	DSP0_R	4_L	TinyDSP0	R4 LSB Side	Address	0xCC
Regi	ster	DSP0_R	5_L	TinyDSP0	R5 LSB Side	Address	0xCD
Regi	ster	DSP0_R	6_L	TinyDSP0	R6 LSB Side	Address	0xCE
Regi	ster	DSP0_R	7_L	TinyDSP0	R7 LSB Side	Address	0xCF
Regi	ster	DSP1_R	0_L	TinyDSP1	R0 LSB Side	Address	0xD4
Regi	ster	DSP1_R	1_L	TinyDSP1	R1 LSB Side	Address	0xD5
Regi	ster	DSP1_R	2_L	TinyDSP1 R2 LSB Side		Address	0xD6
Regi	ster	DSP1_R	3_L	TinyDSP1 R3 LSB Side		Address	0xD7
Regi	ster	DSP1_R	4_L	TinyDSP1 R4 LSB Side		Address	0xDC
Regi	ster	DSP1_R	5_L	TinyDSP1 R5 LSB Side		Address	0xDD
Regi	ster	DSP1_R	6_L	TinyDSP1 R6 LSB Side		Address	0xDE
Regi	ster	DSP1_R	7_L	TinyDSP1 R7 LSB Side		Address	0xDF
Bit	Bit	Name	R/W	Initial	Description		Remarks
7			R/W	0			
6			R/W	0			
5			R/W	0			
4	Dat	DEC	R/W	0	LSB side of the TinyDSP data regi	ster	
3	DSF	P_REG	R/W	0	For access procedures to the bit, se	e Section 14.6.	
2			R/W	0			
1			R/W	0			
0			R/W	0			

14.11.5. DSPn_Rx_H (TinyDSP n Rx MSB Side) (n = 0 to 1, x = 0 to 7)

Regi	ster	DSP0_R	0_H	TinyDSP0	R0 MSB Side	Address	0xC4
Regi	ster	DSP0_R	1_H	TinyDSP0 R1 MSB Side		Address	0xC5
Regi	ster	DSP0_R	2_H	TinyDSP0	R2 MSB Side	Address	0xC6
Regi	ster	DSP0_R	3_H	TinyDSP0	R3 MSB Side	Address	0xC7
Regi	ster	DSP0_R	4_H	TinyDSP0	R4 MSB Side	Address	0xCC
Regi	ster	DSP0_R	5_H	TinyDSP0	R5 MSB Side	Address	0xCD
Regi	ster	DSP0_R	6_H	TinyDSP0	R6 MSB Side	Address	0xCE
Regi	ster	DSP0_R	7_H	TinyDSP0	R7 MSB Side	Address	0xCF
Regi	ster	DSP1_R	0_H	TinyDSP1	R0 MSB Side	Address	0xD4
Regi	ster	DSP1_R	1_H	TinyDSP1	R1 MSB Side	Address	0xD5
Regi	ster	DSP1_R	2_H	TinyDSP1 R2 MSB Side		Address	0xD6
Regi	ster	DSP1_R3_H		TinyDSP1 R3 MSB Side		Address	0xD7
Regi	ster	DSP1_R	4_H	TinyDSP1 R4 MSB Side		Address	0xDC
Regi	ster	DSP1_R	5_H	TinyDSP1 R5 MSB Side		Address	0xDD
Regi	ster	DSP1_R	6_H	TinyDSP1 R6 MSB Side		Address	0xDE
Regi	ster	DSP1_R	7_H	TinyDSP1	R7 MSB Side	Address	0xDF
Bit	Bit	Name	R/W	Initial	Description		Remarks
7			R/W	0			
6			R/W	0			
5			R/W	0			
4	- ~ -	, DEC	R/W	0	MSB side of the TinyDSP data reg	ister	
3	DSF	P_REG	R/W	0	For access procedures to the bit, se	e Section 14.6.	
2			R/W	0			
1			R/W	0			
0			R/W	0			
					•		

14.11.6. DSPn_Rx_L (TinyDSP n Rx LSB Side) (n = 0 to 1, x = 8 to 15)

Regi	ster	DSP0_I	R8_L	TinyDSP(R8 LSB Side	Address	0xF788	0xF7C0
Regi	ster	DSP0_I	R9_L	TinyDSP(R9 LSB Side	Address	0xF789	0xF7C2
Regi	ster	DSP0_I	R10_L	TinyDSP(R10 LSB Side	Address	0xF78A	0xF7C4
Regi	ster	DSP0_I	R11_L	TinyDSP(R11 LSB Side	Address	0xF78B	0xF7C6
Regi	ster	DSP0_I	R12_L	TinyDSP(R12 LSB Side	Address	0xF78C	0xF7C8
Regi	ster	DSP0_I	R13_L	TinyDSP	R13 LSB Side	Address	0xF78D	0xF7CA
Regi	ster	DSP0_I	R14_L	TinyDSP(R14 LSB Side	Address	0xF78E	0xF7CC
Regi	ster	DSP0_I	R15_L	TinyDSP(R15 LSB Side	Address	0xF78F	0xF7CE
Regi	ster	DSP1_I	R8_L	TinyDSP	1 R8 LSB Side	Address	0xF808	0xF840
Regi	ster	DSP1_I	R9_L	TinyDSP	1 R9 LSB Side	Address	0xF809	0xF842
Regi	ster	DSP1_R10_L		TinyDSP1 R10 LSB Side		Address	0xF80A	0xF844
Regi	ster	DSP1_R11_L		TinyDSP1 R11 LSB Side		Address	0xF80B	0xF846
Regi	ster	DSP1_I	R12_L	TinyDSP1 R12 LSB Side		Address	0xF80C	0xF848
Regi	ster	DSP1_I	R13_L	TinyDSP1 R13 LSB Side		Address	0xF80D	0xF84A
Regi	ster	DSP1_I	R14_L	TinyDSP1 R14 LSB Side		Address	0xF80E	0xF84C
Regi	ster	DSP1_I	R15_L	TinyDSP	1 R15 LSB Side	Address	0xF80F	0xF84E
Bit	Bit	Name	R/W	Initial	Descriptio	n		Remarks
7			R/W	0				
6			R/W	0				
5			R/W	0				
4	Der	DEC	R/W	0	LSB side of the TinyDSP data regis	ster		
3	ואטן	P_REG	R/W	0	For access procedures to the bit, see	e Section 14.6		
2			R/W	0				
1			R/W	0				
0			R/W	0				

14.11.7. DSPn_Rx_H (TinyDSP n Rx MSB Side) (n = 0 to 1, x = 8 to 15)

Regi	ster	DSP0_I	R8_H	TinyDSP(R8 MSB Side	Address	0xF788	0xF7C1
Regi	ster	DSP0_I	R9_H	TinyDSP(R9 MSB Side	Address	0xF789	0xF7C3
Regi	ster	DSP0_I	R10_H	TinyDSP(R10 MSB Side	Address	0xF78A	0xF7C5
Regi	ster	DSP0_I	R11_H	TinyDSP(R11 MSB Side	Address	0xF78B	0xF7C7
Regi	ster	DSP0_I	R12_H	TinyDSP(R12 MSB Side	Address	0xF78C	0xF7C9
Regi	ster	DSP0_I	R13_H	TinyDSP(R13 MSB Side	Address	0xF78D	0xF7CB
Regi	ster	DSP0_I	R14_H	TinyDSP(R14 MSB Side	Address	0xF78E	0xF7CD
Regi	ster	DSP0_I	R15_H	TinyDSP(R15 MSB Side	Address	0xF78F	0xF7CF
Regi	ster	DSP1_I	R8_H	TinyDSP	1 R8 MSB Side	Address	0xF808	0xF841
Regi	ster	DSP1_I	R9_H	TinyDSP	1 R9 MSB Side	Address	0xF809	0xF843
Regi	ster	DSP1_R10_H		TinyDSP1 R10 MSB Side		Address	0xF80A	0xF845
Regi	ster	DSP1_I	R11_H	TinyDSP1 R11 MSB Side		Address	0xF80B	0xF847
Regi	ster	DSP1_I	R12_H	TinyDSP1 R12 MSB Side		Address	0xF80C	0xF849
Regi	ster	DSP1_I	R13_H	TinyDSP1 R13 MSB Side		Address	0xF80D	0xF84B
Regi	ster	DSP1_I	R14_H	TinyDSP1 R14 MSB Side		Address	0xF80E	0xF84D
Regi	ster	DSP1_I	R15_H	TinyDSP	1 R15 MSB Side	Address	0xF80F	0xF84F
Bit	Bit	Name	R/W	Initial	Descriptio	n		Remarks
7			R/W	0				
6			R/W	0				
5			R/W	0				
4	Der	DEC	R/W	0	MSB side of the TinyDSP data regi	ster		
3	ואטן	P_REG	R/W	0	For access procedures to the bit, see	e Section 14.6		
2			R/W	0	_			
1			R/W	0				
0			R/W	0				

14.11.8. DSPn_ACC_x (TinyDSP n ACC) (n = 0 to 1, x = 0 to 4)

Regi	ster	DSP0_A	CC_0	TinyDSP0	ACC[7:0]	Address	0xF790
Regi	ster	DSP0_A	CC_1	TinyDSP0	ACC[15:8]	Address	0xF791
Regi	ster	DSP0_A	CC_2	TinyDSP0	ACC[23:15]	Address	0xF792
Regi	ster	DSP0_A	CC_3	TinyDSP0	ACC[31:24]	Address	0xF793
Regi	ster	DSP0_A	CC_4	TinyDSP0	ACC[36:32]	Address	0xF794
Regi	ster	DSP1_A	CC_0	TinyDSP1	ACC[7:0]	Address	0xF810
Regi	ster	DSP1_A	CC_1	TinyDSP1	ACC[15:8]	Address	0xF811
Regi	ster	ter DSP1_ACC_2		TinyDSP1	TinyDSP1 ACC[23:15] Address		0xF812
Regi	Register DSP1_ACC_3		TinyDSP1 ACC[31:24] Address			0xF813	
Regi	ster	DSP1_A	CC_4	TinyDSP1	TinyDSP1 ACC[36:32] Address		
Bit	Bit	Name	R/W	Initial	Description		Remarks
7			R/W	0			
6			R/W	0			
5			R/W	0	TinyDSP accumulator (ACC)		
4	Dei) ACC	R/W	0	The magistan configuracy the accompulation	tom (ACC) of	
3	DSI	P_ACC	R/W	0	The register configures the accumular each TinyDSP. Each byte lane of the AC		
2		R/W	0	to an independent address.			
1		R/W	0				
0			R/W	0			

14.11.9. DSPn_PRG_DATL/H (TinyDSP n Program Memory LSB/MSB Side) (n = 0 to 1)

Regis	ster	DSP0_PRC	J_DATL	TinyDSI	PO Program Memory LSB Side	Address	0xF7A0
Regis	ster	DSP0_PRC	S_DATH	TinyDSI	PO Program Memory MSB Side	Address	0xF7A1
Regis	ster	DSP1_PRC	J_DATL	TinyDSI	P1 Program Memory LSB Side	Address	0xF820
Regis	Register DSP1_PR		S_DATH	TinyDSF	P1 Program Memory MSB Side	Address	0xF821
Bit	Bit Name		R/W	Initial	Description		Remarks
7			R/W	0			
6			R/W	0	TinyDSP Program/Data Memory win	dow	
5			R/W	0	Dooding from/whiting to the hit is hos	ad on how the	
4	DCE	PRG D	R/W	0	Reading from/writing to the bit is bas DSPn_PRG_ADR register is set.	ed on now the	
3	ואכם	_FKG_D	R/W	0	For instance, when DSPn_PRG_A bits[7:0] of the LSB side of the data,	· ·	
2			R/W	0	in address 0x10 of the Program/Data	Memory, are	
1			R/W	0	read from the DSPn_PRG_DATL reg	ister.	
0			R/W	0			

14.11.10. DSPn_PRG_ADR (TinyDSP n Program/Data Memory Address) (n = 0 to 1)

Regi	ster	DSP0_PRG_A	ADR	TinyDSP0	Program/Data Memory Address	Address	0xF7A2
Regi	ster	DSP1_PRG_A	ADR	TinyDSP1	Program/Data Memory Address	Address	0xF822
Bit	I	Bit Name	R/W	Initial	Description		Remarks
7	Reserved		R	0	The read value is 0. The write value be 0.		
6	Reserved		R	0	The read value is 0. The write value be 0.		
5			R/W	0			
4			R/W	0	TinyDSP Program/Data Memory address		
3	DC	ID DDC A	R/W	0	The DCDs DDC DATI/II seed to		
2	טט	DSP_PRG_A		0	The DSPn_PRG_DATL/H register Program/Data Memory with using		
1			R/W	0	the bits.		
0			R/W	0			

14.11.11. DSPnTRG (TinyDSP n Execution Trigger Status) (n = 0 to 1)

A TinyDSP instruction with the TRIG_WAIT flag will be paused before its execution. During the pause, the SET_R0 to SET_R7 bits are monitored according to the TRIG_WHAT bit. When the corresponding bit of the DSPnTRG register is set (i.e., when an update to the data registers, R0 to R7, is detected), the TinyDSP instruction will be executed and move on to the next sequence. Then, the corresponding bit, SET_Rx, is automatically cleared.

Basically, the DSPnTRG register indicates only a trigger status; therefore, the CPU does not have to access this register. However, the CPU is able to access the register to write to/read from for debugging and re-initializing.

Regi	ster	DSP0TR	.G	TinyDSP0	Execution Trigger Status	Address	0xF782
Regi	ster	DSP1TR	.G	TinyDSP1	Execution Trigger Status	Address	0xF802
Bit	Bit	Name	R/W	Initial	Description	Remarks	
7	SE	SET_R7 R/W		0			
6	SE	T_R6	R/W	0	TinyDSP execution trigger status		
5	SE	SET_R5 R/W		0	Forb his indicates subashes is a second		
4	SE	T_R4	R/W	0	Each bit indicates whether its corres register (R0 to R7) is written or not.		
3	SE	T_R3	R/W	0	If the CPU, DSA, or EPU writes a valu when DSPnCTRL.DSPE = 1, the corres		
2	SE	T_R2	R/W	0	automatically set.	ponumg on is	
1	SET_R1 R/W			0	For more details, see Section 14.5.		
0	SE	T_R0	R/W	0			

14.11.12. DSPnRST (TinyDSP n Access Counter Clear Register) (n = 0 to 1)

Re	egister	DSP0I	RST	TinyDS	SP0 Access Counter Clear Register	Address	0xF783
Re	egister	DSP1F	RST	TinyDS	SP1 Access Counter Clear Register	Address	0xF803
Bit	Bit Na	ame	R/W	Initial	Description		Remarks
7	CPUAC	CCLA	Clearing CPU access counters of SFR BUS and XDATA BUS Write 0: No change Write 1: CPU access counters of SFR BUS and XDATA BUS are cleared The read value is always 0.				
6	Clearing SFR BUS DSAC access counter Write 0: No change						
5	EPUCA	CCLA	R/C	0	Clearing SFR BUS EPU access counter Write 0: No change Write 1: SFR BUS EPU access counter is cl The read value is always 0.	eared	
4	Reser	ved	R	0	The read value is 0. The write value must always	ys be 0.	
3	Reser	ved	R	0	The read value is 0. The write value must alwa	ys be 0.	
2	Reserved R 0 The read value is 0. The write value must always be 0.						
1	Reserved R 0 The read value is 0. The write value must always be 0.						
0	Reser	ved	R	0	The read value is 0. The write value must always	ys be 0.	

14.11.13. DSPnCTRL2 (TinyDSP n Control2 Register) (n = 0 to 1)

Reg	ister	DSP00	CTRL2	TinyDS	SP0 Control2 Register	Address	0xF785	
Reg	ister	DSP10	CTRL2	TinyDS	SP1 Control2 Register	Address	0xF805	
Bit	Bit N	lame	R/W	Initial	Description		Remarks	
7	НРІ	OIV	R/W	DIV mode setting 0: Normal mode 1: High accuracy mode RSF instruction extension				
6	EXRSF R/W 0 Trigger function is enabled; the allowable range for shifting right is from 0 to 15 1: Trigger function is disabled; the allowable range for shifting right is from 0 to 31							
5	Rese	rved	R	0	The read value is 0. The write value must always be 0.			
4	Rese	rved	R	0	The read value is 0. The write value must alwa	ys be 0.		
3	Rese	rved	R	0	The read value is 0. The write value must alwa			
2	Rese	rved	R	0	The read value is 0. The write value must alwa	ys be 0.		
1	LD	EN	R/W	0	Enabling LDR function and LDD instruction 0: LDR function and LDD instruction are dis 1: LDR function and LDD instruction are en			
0	CNST	ΓSEL	R/W	0	Setting CVR range 0: C0 to C7 are assigned to FIELD B = 8 to 1: C0 to C7 are assigned to FIELD B = 0 to Enabling the CVR mode is defined by to register. For more details, see Section 14.9.1.	7		

14.11.14. DSPnCNSTEN (TinyDSP n CVR Enable Register) (n = 0 to 1)

Regis	ster	DSP0CNS	STEN	TinyDSP0	CVR Enable Register	Address	0xF786
Regis	ster	DSP1CNS	STEN	TinyDSP1	CVR Enable Register	Address	0xF806
Bit	Bi	t Name	R/W	Initial	Description		Remarks
7	CNSTEN7 R/W		R/W	0	Enabling C7 of CVR function 0: C7 of CVR function is disabled 1: C7 of CVR function is enabled		
6	CN	ISTEN6	R/W	0	Enabling C6 of CVR function 0: C6 of CVR function is disabled 1: C6 of CVR function is enabled		
5	CN	ISTEN5	R/W	0	Enabling C5 of CVR function 0: C5 of CVR function is disabled 1: C5 of CVR function is enabled		
4	CN	ISTEN4	R/W	0	Enabling C4 of CVR function 0: C4 of CVR function is disabled 1: C4 of CVR function is enabled		
3	CN	ISTEN3	R/W	0	Enabling C3 of CVR function 0: C3 of CVR function is disabled 1: C3 of CVR function is enabled		
2	CN	ISTEN2	R/W	0	Enabling C2 of CVR function 0: C2 of CVR function is disabled 1: C2 of CVR function is enabled		
1	CNSTEN1 R/W		R/W	0	Enabling C1 of CVR function 0: C1 of CVR function is disabled 1: C1 of CVR function is enabled		
0	CN	ISTEN0	R/W	0	Enabling C0 of CVR function 0: C0 of CVR function is disabled 1: C0 of CVR function is enabled		

14.11.15. DSPn_Cx_L (TinyDSP n Cx LSB Side) (n = 0 to 1, x = 0 to 7)

Regi	ster	DSP0_0	C0_L	TinyDSP(CO LSB Side	Address	0xF798	0xF7D0
Regi	ster	DSP0_0	C1_L	TinyDSP(C1 LSB Side	Address	0xF799	0xF7D2
Regi	ster	DSP0_0	C2_L	TinyDSP(C2 LSB Side	Address	0xF79A	0xF7D4
Regi	ster	DSP0_0	C3_L	TinyDSP0 C3 LSB Side		Address	0xF79B	0xF7D6
Regi	ster	DSP0_0	C4_L	TinyDSP0 C4 LSB Side		Address	0xF79C	0xF7D8
Regi	ster	DSP0_C5_L		TinyDSP(C5 LSB Side	Address	0xF79D	0xF7DA
Regi	ster	DSP0_C6_L		TinyDSP(C6 LSB Side	Address	0xF79E	0xF7DC
Regi	ster	DSP0_C7_L		TinyDSP(C7 LSB Side	Address	0xF79F	0xF7DE
Regi	ster	DSP1_C0_L		TinyDSP	1 C0 LSB Side	Address	0xF818	0xF850
Regi	ster	DSP1_C1_L		TinyDSP	1 C1 LSB Side	Address	0xF819	0xF852
Regi	ster	DSP1_C2_L		TinyDSP1 C2 LSB Side		Address	0xF81A	0xF854
Regi	ster	DSP1_C3_L		TinyDSP1 C3 LSB Side		Address	0xF81B	0xF856
Regi	ster	DSP1_0	C4_L	TinyDSP	1 C4 LSB Side	Address	0xF81C	0xF858
Regi	ster	DSP1_0	C5_L	TinyDSP1 C5 LSB Side		Address	0xF81D	0xF85A
Regi	ster	DSP1_0	C6_L	TinyDSP1 C6 LSB Side		Address	0xF81E	0xF85C
Regi	ster	DSP1_0	C7_L	TinyDSP	1 C7 LSB Side	Address	0xF81F	0xF85E
Bit	Bit	Name	R/W	Initial	Descriptio	n		Remarks
7			R/W	0				
6			R/W	0				
5			R/W	0				
4	Dat	DEC	R/W	0	LSB side of the TinyDSP constant	register		
3	DSF	P_REG	R/W	0	For access procedures to the bit, see	e Section 14.6		
2			R/W	0	,			
1			R/W	0				
0			R/W	0				
	•		•	•				

14.11.16. DSPn_Cx_H (TinyDSP n C x MSB Side) (n = 0 to 1, x = 0 to 7)

Regi	ster	DSP0_0	C0_H	TinyDSP(CO MSB Side	Address	0xF798	0xD7D1
Regi	ster	DSP0_0	C1_H	TinyDSP(C1 MSB Side	Address	0xF799	0xD7D3
Regi	ster	DSP0_0	C2_H	TinyDSP(C2 MSB Side	Address	0xF79A	0xD7D5
Regi	ster	DSP0_0	C3_H	TinyDSP0 C3 MSB Side		Address	0xF79B	0xD7D7
Regi	ster	DSP0_C4_H		TinyDSP0 C4 MSB Side		Address	0xF79C	0xD7D9
Regi	ster	DSP0_C5_H		TinyDSP(C5 MSB Side	Address	0xF79D	0xD7DB
Regi	ster	DSP0_0	C6_H	TinyDSP(C6 MSB Side	Address	0xF79E	0xD7DD
Regi	ster	DSP0_0	C7_H	TinyDSP(C7 MSB Side	Address	0xF79F	0xD7DF
Regi	ster	DSP1_C0_H		TinyDSP	1 C0 MSB Side	Address	0xF818	0xD851
Regi	ster	DSP1_C1_H		TinyDSP	1 C1 MSB Side	Address	0xF819	0xD853
Regi	ster	DSP1_0	C2_H	TinyDSP	1 C2 MSB Side	Address	0xF81A	0xD855
Regi	ster	DSP1_0	C3_H	TinyDSP1 C3 MSB Side		Address	0xF81B	0xD857
Regi	ster	DSP1_0	C4_H	TinyDSP	1 C4 MSB Side	Address	0xF81C	0xD859
Regi	ster	DSP1_0	C5_H	TinyDSP1 C5 MSB Side		Address	0xF81D	0xD85B
Regi	ster	DSP1_0	C6_H	TinyDSP1 C6 MSB Side		Address	0xF81E	0xD85D
Regi	ster	DSP1_0	C7_H	TinyDSP	1 C7 MSB Side	Address	0xF81F	0xD85F
Bit	Bit	Name	R/W	Initial	Descriptio	n		Remarks
7			R/W	0				
6			R/W	0				
5			R/W	0				
4	Der	_REG	R/W	0	MSB side of the TinyDSP constant	register		
3	DSF	_KEU	R/W	0	For access procedures to the bit, see	e Section 14.6		
2			R/W	0				
1			R/W	0				
0			R/W	0				

14.11.17. DSPnLDA (TinyDSP n LDR Load Address) (n = 0 to 1)

Regi	ster	DSP0LD	PΑ	TinyDSP0	LDR Load Address	Address	0xF7A3
Regi	ster	DSP1LD	PΑ	TinyDSP1	LDR Load Address	Address	0xF823
Bit	Bit Name R/W		R/W	Initial	Description	Remarks	
7	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
6	Reserved R		R	0	The read value is 0. The write value must	st always be 0.	
5	LDADR5 R		R	1	The read value is 1. The write value must	st always be 1.	
4	LD.	ADR4	R	0	The read value is 0. The write value must		
3			R/W	0			
2	1.0	NA DD	R/W	0	Bits 0 to 3 of the pointer which stores	s the address of	
1	LL	OADR	R/W	0	data to be loaded next in the LDR functi	on.	
0			R/W	0			

14.11.18. DSPnMAXxL (TinyDSP n MAX x LSB Side) (n = 0 to 1, x = 0 to 2)

Regi	ster	DSP0M	IAX0L	TinyDSP() MAX0 LSB Side	Address	0xF7A8	0xF7E0	0x25
Regi	ster	DSP0M	IAX1L	TinyDSP0 MAX1 LSB Side		Address	0xF7AA	0xF7E4	0x2D
Regi	gister DSP0MAX		IAX2L	TinyDSP() MAX2 LSB Side	Address	0xF7AC	0xF7E8	0x35
Regi	gister DSP1MA		IAX0L	TinyDSP1	MAX0 LSB Side	Address	0xF828	0xF860	0x27
Regi	ister DSP1M.		IAX1L	TinyDSP1	MAX1 LSB Side	Address	0xF82A	0xF864	0x2F
Regi	ister DSP1N		IAX2L	TinyDSP1	MAX2 LSB Side	Address	0xF82C	0xF868	0x37
Bit	Bit	Name	R/W	Initial		Descriptio	n		Remarks
7			R/W	0					
6			R/W	0					
5			R/W	0					
4		T A 37	R/W	0	LSB side of the max	imum value of	the MMX ins	truction	
3	IV.	IAX	R/W	0	For access procedure	es to the bit, see	e Section 14.6		
2			R/W	0	_				
1			R/W	0					
0			R/W	0					

14.11.19. DSPnMAXxH (TinyDSP n MAX x MSB Side) (n = 0 to 1, x = 0 to 2)

Regi	ister	DSP0M	IAX0H	TinyDSP() MAX0 MSB Side	Address	0xF7A8	0xF7E1	0x25
Regi	ister	DSP0M	IAX1H	TinyDSP0 MAX1 MSB Side		Address	0xF7AA	0xF7E5	0x2D
Regi			IAX2H	TinyDSP() MAX2 MSB Side	Address	0xF7AC	0xF7E9	0x35
Regi	ister DSP1M		IAX0H	TinyDSP1	MAX0 MSB Side	Address	0xF828	0xF861	0x27
Regi	ster DSP1N		IAX1H	TinyDSP1	MAX1 MSB Side	Address	0xF82A	0xF865	0x2F
Regi	ster DSP1N		IAX2H	TinyDSP1	MAX2 MSB Side	Address	0xF82C	0xF869	0x37
Bit	Bit	Name	R/W	Initial		Descriptio	n		Remarks
7			R/W	0					
6			R/W	0					
5			R/W	0					
4		ſАХ	R/W	0	MSB side of the max	imum value o	f the MMX in	struction	
3		IAA	R/W	0	For access procedure	es to the bit, see	e Section 14.6		
2			R/W	0					
1			R/W	0					
0			R/W	0					

14.11.20. DSPnMINxL (TinyDSP n MIN x LSB Side) (n = 0 to 1, x = 0 to 2)

Regi	ster	DSP0M	IIN0L	TinyDSP() MIN0 LSB Side	Address	0xF7A9	0xF7E2	0x24
Regi	ster	DSP0M	IIN1L	TinyDSP0 MIN1 LSB Side		Address	0xF7AB	0xF7E6	0x2C
Regi	ster	DSP0MIN2L		TinyDSP0 MIN2 LSB Side		Address	0xF7AD	0xF7EA	0x34
Regi	ster	DSP1MIN0L		TinyDSP	MIN0 LSB Side	Address	0xF829	0xF862	0x26
Regi	ster	DSP1M	IIN1L	TinyDSP	MIN1 LSB Side	Address	0xF82B	0xF866	0x2E
Regi	ster	ter DSP1MIN2L		TinyDSP	MIN2 LSB Side	Address	0xF82D	0xF86A	0x36
Bit	Bit	Bit Name R/W		Initial	Description			Remarks	
7		R/V		0					
6			R/W	0					
5			R/W	0					
4	١,	(IN)	R/W	0	LSB side of the minimum value of the MMX instruction		truction		
3	N	ΔIN	R/W	0	For access procedur	es to the bit, see	e Section 14.6		
2			R/W	0	_				
1			R/W	0					
0			R/W	0					

14.11.21. DSPnMINxH (TinyDSP n MIN x MSB Side) (n = 0 to 1, x = 0 to 2)

Regi	ster	ster DSP0MIN0H		TinyDSP0 MIN0 MSB Side		Address	0xF7A9	0xF7E3	0x24
Register DSP0M		IIN1H	TinyDSP(MIN1 MSB Side	Address	0xF7A9	0xF7E7	0x2C	
Register I		DSP0M	IIN2H	TinyDSP0 MIN2 MSB Side		Address	0xF7AB	0xF7EB	0x34
Register		DSP1MIN0H		TinyDSP1 MIN0 MSB Side		Address	0xF82B	0xF863	0x26
Register I		DSP1M	IIN1H	TinyDSP1	MIN1 MSB Side	Address	0xF82D	0xF867	0x2E
Regi	Register DSP1MIN		IIN2H	TinyDSP1	ΓinyDSP1 MIN2 MSB Side		0xF82D	0xF86B	0x36
Bit	Bit Name R/W		R/W	Initial	Description			Remarks	
7	MIN R/W R/W R/W		R/W	0					
6			R/W	0					
5			R/W	0					
4			R/W	0	MSB side of the mir				
3			R/W	0	For access procedure				
2			R/W	0					
1			R/W	0					
0			R/W	0					

14.12. Usage Notes and Restrictions

14.12.1. DSP_SS Bit Asserted by DIV Instruction

In a DIV instruction, the SFT is used for calculating the reciprocals of Rm. Therefore, when a divisor Rm is 1, the DSPnCTRL.DSP_SS bit is asserted.

14.12.2. Restrictions on Rewriting an Argument during DIV Instruction Execution

Do not rewrite the argument of a DIV instruction which is being executed. If such rewriting has occurred, the TinyDSPs cannot compute solutions as expected. When directly using a value written by the CPU or DSAC for the argument of a DIV instruction, execute an MVC instruction before the DIV instruction.

14.12.3. Setting the MMX Instruction

When using an MMX instruction, define the values of the DSPnMAX registers to be higher than the values of the DSPnMIN registers. If the DSPnMIN registers are higher than the DSPnMAX registers, Rn will not be compared with the DSPnMAX and DSPnMIN registers properly in using the MMX instruction.

15. High-resolution PWM

15.1. Overview

Table 15-1 shows the high-resolution PWM functional descriptions. The PWM module generates 8 (4 pairs) high-resolution pulse width modulation (PWM) signals. Each pair can generate PWM signals without high level overlapping. The PWM module receives internal event signals from other modules, and uses them for re-triggering the output signals or counter operation. In addition, the PWM module generates interrupts and LSI internal events according to the internal compare match state.

Table 15-1. High-resolution PWM Functional Descriptions

Item	Description			
Number of Channels	4 channels			
PWM Output	8 outputs (2 output per channel)			
Minimum Resolution	1.04 ns			
Minimum Cycle Resolution	8.32 ns			
Minimum Cycle	16.64 ns			
Duty Setting Range	0% to 100%			
Waveform Generation Counter	Number of bits: 16 bits Counting direction: Up, and up-down Synchronization starts between the counters of different channels.			
Compare Match Register	4 general-purpose registers (A, B, C, and D) 2 cycle setting registers (MIN and MAX)			
Mode	2 modes Compare match or dead-time insertion			
Number of Event Outputs	2 general-purpose events (for each channel) 1 TMR-dedicated event (for each channel)			
Interrupt	2 interrupts (for each channel)			
Event/Interrupt Output Source	Pin change event generated by compare match, or re-trigger generation More than one source can be set for one event.			
Re-trigger Operation	Source events of re-trigger: 29 edge events (such as CMP, CPU, and EPU) 11 level events (CMP, CMPLUT, and GPIO) 5 operations (A, B, C, D, and re-trigger masking operation)			

15.2. Block Diagram

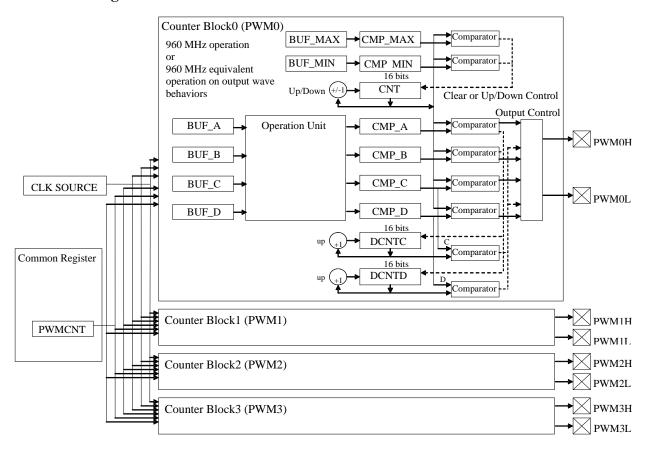


Figure 15-1. High-resolution PWM Block Diagram

15.3. Resources

As shown in Figure 15-1, the PWM module has 4 counter blocks. Each block has the following resources.

• 16-bit up/up-down Counter (CNT)

The maximum frequency of each counter is 960 MHz. More than one counter between the counter blocks can be synchronized with each other. Counter operation has 2 modes (up mode and up-down mode). In the up mode, the counter always counts up. When the counter value reaches the value of the CMP_MAX register, the counter value is reloaded from the CMP_MIN register. In the up-down mode, the counter counts up until it reaches the value of the CMP_MAX register. When the counter value reaches the CMP_MAX value, the counter is counted down until it reaches the value of the CMP_MIN register. When the counter value reaches the CMP_MIN value, the counter is counted up again.

Since the values of the CMP_MIN and CMP_MAX registers exist, a user can regard a counter value not only as an unsigned value but also as a signed value.

The lower 3 bits of the CMP_MIN register must be set to 0b000, and the lower 3 bits of the CMP_MAX register must be set to 0b111. Moreover, the difference between the CMP-MIN and CMP_MAX values of all the channels must be 8 or more (i.e., CMP_MAX – CMP_MIN \geq 8). Therefore, the performances of the PWM module are as follows:

- Minimum PWM cycle: 16.64 ns
- Minimum resolution of PWM cycle: 8.32 ns
- Minimum resolution of PWM duty cycle (edge difference of PWMnL and PWMnH output signals): 1.04 ns

• Compare Match Registers A and B (CMP_A and CMP_B)

The CMP_A and CMP_B registers control the operation of the PWMnH/PWMnL signals. When the CNT matches the value of each compare match register, the output signal of the PWMnH or PWMnL is set/reset in accordance with the setting. The CMP_A and CMP_B registers can be rewritten at any time as needed; however, using the buffer mode is recommended to update the registers.

• Compare Match Registers C and D (CMP_C and CMP_D)

- In PWM mode 0: The CMP_C and CMP_D registers control the operation of the PWMnH/PWMnL signals.
- In PWM mode 1: The CMP_C and CMP_D registers are compared with the dead time counters (DCNTC and DCNTD). These dead time counters are used to insert dead time automatically.

• Compare Match Registers MAX and MIN (CMP_MAX and CMP_MIN)

The CMP_MAX and CMP_MIN registers define the period of the counters and the range of the counter values.

In the up mode, when the counter value matches the value of the CMP_MAX register, the counter value is reloaded from the CMP_MIN register. In the up-down mode, when the counter value reaches the value of the CMP_MAX register, the up mode changes to the down-count mode. When the counter value reaches the value of the CMP_MIN register, the down-count mode changes to the up mode again. Although the CMP_MAX and CMP_MIN registers can be rewritten at any time as needed, it is recommended to use the buffer mode to update the registers.

The lower 3 bits of the CMP_MAX register is fixed to 0b111, and the lower 3 bits of the CMP_MIN register is fixed to 0b000. The PWM cycle is the multiple numbers of 8.

• Buffer Registers A, B, C, D, MAX, and MIN (BUF_A, BUF_B, BUF_C, BUF_D, BUF_MAX, and BUF_MIN)

These registers are for the buffer mode. The value of the each buffer register is transferred to the compare match register at a specific timing (for details of the operation, see Section 15.4).

The lower 3 bits of the BUF_MAX register must be fixed to 0b111, and the lower 3 bits of the BUF_MIN register must be fixed to 0b000. The PWM cycle is the multiple numbers of 8.

• 16-bit dead-time Counters (DCNTC and DCNTD)

The DCNTC and DCNTD counters are prepared to generate the automatic dead-time period when the output of PWMnH or PWMnL changes. The dead-time period is determined by the values of the CMP_C and CMP_D registers.

15.4. Operation

Table 15-2 shows the operation mode of the high-resolution PWM, and Table 15-3 shows the method to determine the next compare match register, CMP_xx, in the buffer mode. In addition, the overview of the operation mode of the high-resolution PWM is as follows:

- The PWM mode has 2 operation modes: PWM mode 0 and PWM mode 1
- Either the direct mode or the buffer mode can be selected by the compare match registers.
- The outline operation of the 2 PWM modes is as follows:
- PWM mode 0: The PWM signals are generated without using any dead-time counters.
- PWM mode 1: The PWM signals with dead time that is automatically inserted by the dead-time counter (DCNTC/DCNTD) are generated.

In the buffer mode, the constant period (3 CPU clock cycles + 40 PWM clock cycles or more) from the setting of the buffer register to the updating of the compare match register must be needed.

Table 15-2. Operation Mode of High-resolution PWM

Mode		Update Timing of	Next	Operation of DCNTC	Operation of DCNTD	Condition to Change Output Level by Setting Value		
			CMP_xx	CMP_xx	1	1	PWMnH	PWMnL
PWM	Direct Mode	Up Mode	When CPU writes	Updated by CPU's writing value	Stop	Stop	VH0 (CNT==CMP_C) or VH1 (CNT==CMP_B)	VL0 (CNT==CMP_A) or VL1 (CNT==CMP_D)
		Up-down Mode			Stop	Stop	VH0 (CNT(UP) == CMP_C) or VH1 (CNT(DN) == CMP_C)	VL0 (CNT (UP) ==CMP_A) or VL1 (CNT (DN) ==CMP_A)
Mode 0	Buffer	Up Mode	When CNT reaches CMP_MAX	See Table 15-3	Stop	Stop	VH0 (CNT==CMP_C) or VH1 (CNT==CMP_B)	VL0 (CNT==CMP_A) or VL1 (CNT==CMP_D)
	Mode	Up-down Mode	When changing counting direction ⁽²⁾		Stop	Stop	VH0 (CNT(UP) ==CMP_C) or VH1 (CNT(DN) ==CMP_C)	VL0 (CNT(UP) ==CMP_A) or VL1 (CNT (DN) ==CMP_A)
	Direct Mode	Up Mode	When CPU	Updated by CPU's	When starting: (CNT==CMP_A) When stopping/clearing: (DCNTC==CMP_C)	When starting: (CNT==CMP_B) When stopping/clearing: (DCNTD==CMP_D)	VH0 (DCNTC==CMP_C) or VH1 (CNT==CMP_B)	VL0 (CNT==CMP_A) or VL1 (DCNTD==CMP_D)
PWM Mode 1		Up-down Mode	writes	writing value	When starting: (CNT (UP) ==CMP_A) When stopping/clearing: (DCNTC==CMP_C)	When starting: (CNT(DN) ==CMP_A) When stopping/clearing: (DCNTD==CMP_D)	VH0 (DCNTC==CMP_C) or VH1 (CNT(DN) ==CMP_A)	VL0 (CNT(UP) ==CMP_A) or VL1 (DCNTD==CMP_D)
	Buffer Mode	Up Mode	When CNT reaches CMP_MAX	ches MP_MAX nen nen anging unting	When starting: (CNT==CMP_A) When stopping/clearing: (DCNTC==CMP_C)	When starting: (CNT==CMP_B) When stopping/clearing: (DCNTD==CMP_D)	VH0 (DCNTC==CMP_C) or VH1 (CNT==CMP_B)	VL0 (CNT==CMP_A) or VL1 (DCNTD==CMP_D)
		Up-down Mode	When changing counting direction ⁽²⁾		When starting: (CNT(UP) ==CMP_A) When stopping/clearing: (DCNTC==CMP_C)	When starting: (CNT(DN) == CMP_A) When stopping/clearing: (DCNTD== CMP_D)	VH0 (DCNTC==CMP_C) or VH1 (CNT(DN) ==CMP_A)	VL0 (CNT(UP) ==CMP_A) or VL1 (DCNTD==CMP_D)

⁽¹⁾ At this timing, the CNT reloads the CMP_MIN register.

⁽²⁾ Both or either of CNT==CMP_MAX or CNT==CMP_MIN can be selected.

Table 15-3. Determination of Next Compare Match Register in Buffer Mode in Each PWM Mode

PWM Mode	Next CMP_MAX/ CMP_MIN	Next CMP_A	Next CMP_B	Next CMP_C	Next CMP_D
0	BUF_MAX/ BUF_MIN	BUF_A	BUF_B	BUF_C	BUF_D
1	BUF_MAX/ BUF_MIN	BUF_A	BUF_B	BUF_C	BUF_D

15.4.1. Direct Mode and Buffer Mode

15.4.1.1. Direct Mode

The values of all the compare match registers must be updated directly by the CPU, EPU, or DSAC. When the compare match register is rewritten by the CPU, etc., the value is immediately compared with the CNT, DCNTC, or DCNTD. Therefore, attention must be paid since unintended operation may occur depending on the timing of rewriting. In the direct mode, the setting of the buffer register does not affect PWM's operation.

15.4.1.2. Buffer Mode

In the up mode, when the CNT matches the value of the CMP_MAX register and reloads the value of the CMP_MIN register, each value of all buffer registers is transferred to the corresponding compare match register.

In the up-down mode, when the CNT matches the value of the CMP_MAX register and starts counting down, or the CNT matches the value of the CMP_MIN register and starts counting up, each value of all buffer registers is transferred to the corresponding compare match register. The value of the buffer register is transferred to compare match register at 2 timings, and a user can select both or either of them.

It is normally recommended to use the buffer mode. The compare match register can be rewritten directly in the buffer mode. The value is immediately compared with the CNT, just as in direct mode.

15.4.2. PWM Mode 0

Set all the change timings of the PWM output waveform.

In the PWM mode 0, the dead-time counter is not used. In addition, the PWM mode 0 can be operated in both the direct mode and buffer mode.

15.4.2.1. PWM Mode 0 (Up Mode)

The CNT is counted up from the CNT's initial value to the CMP_MAX register value. When the CNT matches the CMP_MAX register value, the CNT loads the CMP_MIN register value and counts up from the CMP_MIN register value to the CMP_MAX register value.

The operations when the CNT matches the compare match register are as follows. Select each level (VH0, VH1, VL0, or VL1) from no change, low state, high state, or toggle operation.

- When the CNT matches the CMP_A register value, the PWMnL output is changed to the level determened by the PWMnLCR1.VL0 bits.
- When the CNT matches the CMP_C register value, the PWMnH output is changed to the level determened by the PWMnHCR1.VH0 bits.
- When the CNT matches the CMP_B register value, the PWMnH output is changed to the level determened by the PWMnHCR1.VH1 bits.
- When the CNT matches the CMP_D register value, the PWMnL output is changed to the level determened by the PWMnLCR1.VL1 bits.

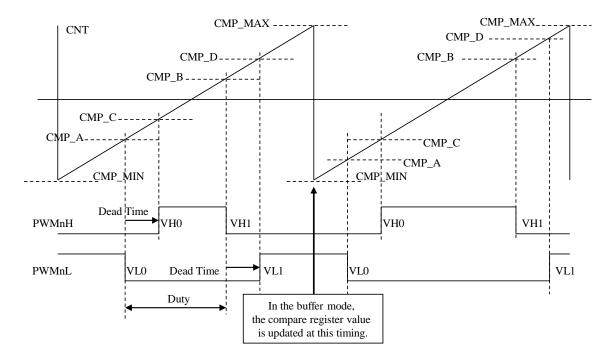


Figure 15-2. PWM Mode 0 (Up Mode)

15.4.2.2. PWM Mode 0 (Up-down Mode)

The CNT is counted up from the CNT's initial value to the CMP_MAX register value. When the CNT matches the CMP_MAX register value, the CNT is counted down to the CMP_MIN register value. When the CNT matches the CMP_MIN register value, the CNT is counted up to the CMP_MAX register value. When the PWMCNTS.PWMCSn bit is cleared to stop counting, the CNT when the counting is restarted counts up regardless of the direction of counting before the counter is stopped.

The operations when the CNT matches the value of the compare match register are shown below. Each level (VH0, VH1, VL0, or VL1) is selected from no change, low state, high state, or toggle operation.

- When the CNT matches the CMP_A register value during counting up, the PWMnL output is changed to the level specified by the PWMnLCR1.VL0 bits.
- When the CNT matches the CMP_C register value during counting up, the PWMnH output is changed to the level specified by the PWMnHCR1.VH0 bits.
- When the CNT matches the CMP_C register value during counting down, the PWMnH output is changed to the level specified by the PWMnHCR1.VH1 bits.
- When the CNT matches the CMP_A register value during counting down, the PWMnL output is changed to the level specified by the PWMnLCR1.VL1 bits.

When using the up-down mode in the buffer mode, the value of the buffer register is transferred to the compare match register at 2 timings. Both or either of those timings can be selected.

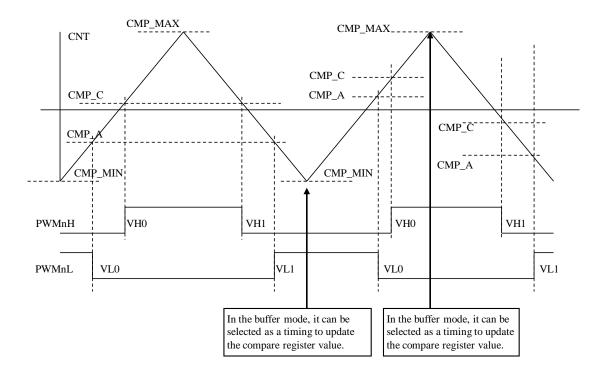


Figure 15-3. PWM Mode 0 (Up-down Mode)

15.4.3. PWM Mode 1 (Automatic Dead Time)

Dead time is set automatically by the dead-time counter (DCNTC and DCNTD). The dead-time value must be defined by both the CMP_C and CMP_D registers. The setting method of the CMP_C and CMP_D registers is different from that of the PWM mode 0.

15.4.3.1. PWM Mode 1 (Up Mode)

The CNT is counted up from the CNT's initial value to the CMP_MAX register value. When the CNT matches the CMP_MAX register value, the CNT loads the CMP_MIN register value and counts up from the CMP_MIN register value to the CMP_MAX register value.

The operations of the PWM mode 1 in the up mode are shown below.

- When the CNT matches the CMP_A register value, the PWMnL output is changed to the level determened by the PWMnLCR1.VL0 bits, and the DCNTC counts up from zero.
- When the DCNTC matches the CMP_C register value, the PWMnH output is changed to the level determened by the PWMnHCR1.VH0 bits. Then, the DCNTC is cleared, and counting is stopped.
- When the CNT matches the CMP_B register value, the PWMnH output is changed to the level determened by the PWMnHCR1.VH1 bits, and the DCNTD counts up from zero.
- When the DCNTD matches the CMP_D register value, the PWMnL output is changed to the level determened by the PWMnLCR1.VL1 bits. Then, the DCNTD is cleared, and counting is stopped.

In the direct mode, the period from the setting of the compare match register to the compare mach generation must be needed for a constant period (3 CPU clock cycles + 40 PWM counting cycles or more). In the buffer mode, each compare match register is changed when the CNT loads the CMP_MIN register value.

When the CNT matches the CMP_A/B register value during counting-up of the DCNTC/D, the DCNTC/D counts up again from zero. As a result, dead time becomes longer than the setting value. When CMP_C = 0 or CMP_D = 0, dead time is one PWM counter cycle.

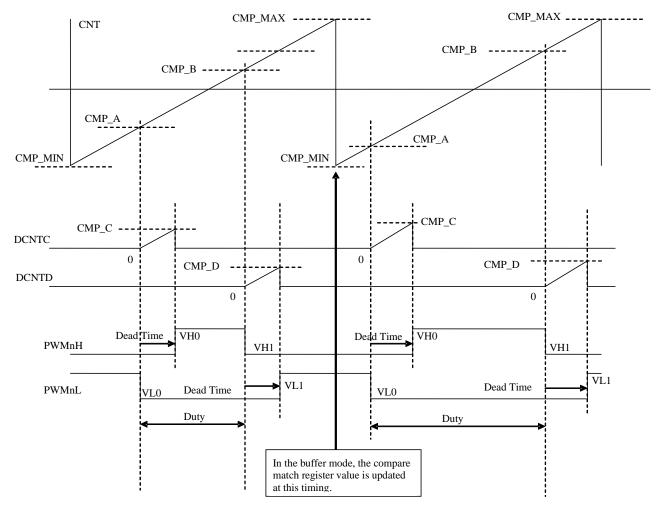


Figure 15-4. PWM Mode 1 (Up Mode)

15.4.3.2. PWM Mode 1 (Up-down Mode)

The CNT is counted up from the CNT's initial value to the CMP_MAX register value. When the CNT matches the CMP_MAX register value, the CNT is counted down to the CMP_MIN register value. When the CNT matches the CMP_MIN register value, the CNT is counted up to the CMP_MAX register value. When the PWMCNTS.PWMCSn bit is cleared to to stop counting, the CNT when the counting is restarted counts up regardless of the direction of counting before the counter is stopped.

The operations of the PWM mode 1 in the up-down mode are shown below. Each level (VH0, VH1, VL0, or VL1) is selected from no change, low state, high state, or toggle operation.

- When the CNT (upward counting) matches the CMP_A register value, the PWMnL output is changed to the level determened by PWMnLCR1.VL0 bits, and the DCNTC counts up from zero.
- When the DCNTC matches the CMP_C register value, the PWMnH output is changed to the level determened by PWMnHCR1.VH0 bits. Then, the DCNTC is cleared, and counting is stopped.
- When the CNT (downward counting) matches the CMP_A, the PWMnH output is changed to the level determened by PWMnHCR1.VH1 bits, and the DCNTD counts up from zero.
- When the DCNTD matches the CMP_D register value, the PWMnL output is changed to the level determened by PWMnLCR1.VL1 bits. Then, the DCNTD is cleared, and counting is stopped.

In the direct mode, the period from the setting of the compare match register to the compare mach generation must be needed for a constant period (3 CPU clock cycles + 40 PWM counting cycles or more). In the buffer mode, the value of the buffer register is transferred to the compare match register at 2 timings. A user can select both or either of them.

When the CNT matches the CMP_A register value during counting-up of the DCNTC/D, the DCNTC/D counts up again from zero. As a result, dead time becomes longer than the set value. When CMP_C = 0 or CMP_D = 0, dead-time is one PWM counter cycle.

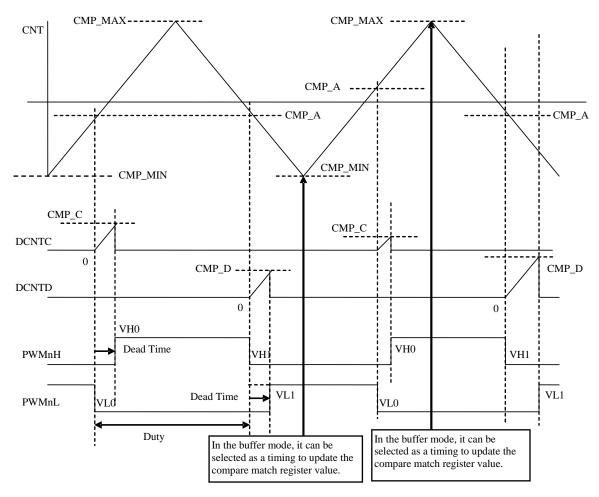


Figure 15-5. PWM Mode 1 (Up-down Mode)

15.5. Conflict or Output Control Condition

Table 15-4 shows the priority when the output control operation and more than one case of compare match is generated simultaneously. When such conflict occurs in each automatic dead-time mode, the DCNTC and DCNTD start according to the defined condition.

Mode	Priority of PWMnH Output Control			Priority of PWMnL Output Control		
	High	VTH event	High	VTL event		
PWM Mode 0	1	VH1 event] ↑ [VL1 event		
(Up Mode)		VH0 event		VL0 event		
	Low	Compare mach event of CMP_MAX	Low	Compare mach event of CMP_MAX		
	High	VTH event	High	VTL event		
PWM Mode 0	Iligii ♠	VH1 event	l Ingn ♠	VL1 event		
(Up-down		VH0 event		VL0 event		
Mode)	Low	Compare mach event of CMP_MAX		Compare mach event of CMP_MAX		
		Compare mach event of CMP_MIN	Low	Compare mach event of CMP_MIN		
	High	VTH event	High	VTL event		
PWM Mode 1	†	VH1 event	│	VL1 event		
(Up Mode)		VH0 event		VL0 event		
	Low	Compare mach event of CMP_MAX	Low	Compare mach event of CMP_MAX		
	High	VTH event	High	VTL event		
PWM Mode 1	Iligii ♠	VH1 event	I iigii ♠	VL1 event		
(Up-down		VH0 event		VL0 event		
Mode)	l Low	Compare mach event of CMP_MAX] [Compare mach event of CMP_MAX		
		Compare mach event of CMP_MIN	Low	Compare mach event of CMP_MIN		

Table 15-4. Priority of Output Control Condition

When the update of the compare match register or the CNT from the BUS conflicts with a compare match, the PWM operates as follows:

- When the compare match register is updated to another value by compare match generation, the PWM executes the operation by the compare match with the value before the update.
- When the compare match is generated with a post-update value by updating the compare match register, the PWM does not execute the operation by the compare match with the value after the update.
- When the CNT is rewritten to another value forcibly by compare match generation, the PWM executes the operation by the compare match with the value before the rewriting.
- When the CNT is rewritten to another value forcibly and the rewritten value matches the compare match register, the PWM does not execute the operation by the compare match with the value after the rewriting.

15.6. Operation Timing

15.6.1. Compare Match Timing

Figure 15-6 shows the timing of compare match. The condition of the example shown in Figure 15-6 is as follows:

- Module system clock: 960 MHz
- Count-up/count-down timing: 960 MHz

The CNT is updated at the count-up/count-down timing of 960 MHz. After the compare match register, CMP_xx, matches the CNT, a compare match is generated at the timing of updating the CNT next time.

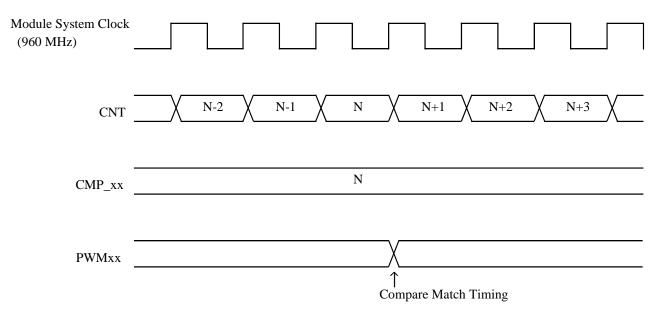


Figure 15-6. Compare Match Timing

15.6.2. CNT Clear Timing in Up Mode

Figure 15-7 shows the CNT clear timing in the up mode. The condition of the example shown in Figure 15-7 is as follows:

- Module system clock: 960 MHz
- Count-up timing: 960 MHz

After the value of the CMP_MAX register matches the CNT, the CNT reloads the value of the CMP_MIN register at the timing of updating the CNT next time.

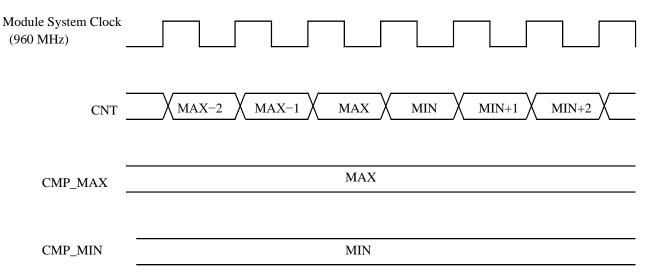


Figure 15-7. Counter Clear Timing (CNT's Reloading of CMP_MIN) in Up Mode

15.6.3. Up-down counter's Change from Count up to Count down in Up-down Mode

Figure 15-8 shows the timing to change from count up to count down. The condition of the example shown in Figure 15-8 is as follows:

- Module system clock: 960 MHz
- Count-up/count-down timing: 960 MHz

The CNT's first value in the count-down operation is the same as the CNT's last value in the count-up operation. This means that the value of the CMP_MAX register is kept for the 2 cycles between the CNT's count up and count down.

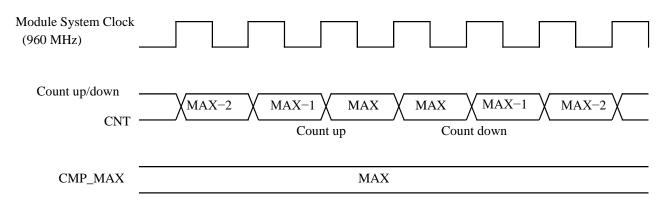


Figure 15-8. Counter Change Timing from Count Up to Count Down in Up-down Mode

15.6.4. Up-down counter's Change from Count down to Count up in the Up -down Mode

Figure 15-9 shows the timing to change from count-down to count-up. The condition of the example shown in Figure 15-9 is as follows:

- Module system clock: 960 MHz
- Count-up/count-down timing: 960 MHz

When the CNT is switched from count down to count up, its first value is the same as the last value in the count-down operation. This means that the value of the CMP_MIN register is kept for 2 cycles between the CNT's count down and count up.

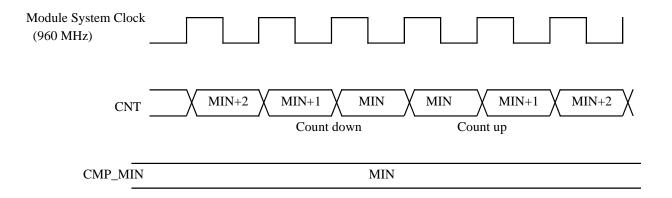


Figure 15-9. Counter Change Timing from Count Down to Count Up in Up-down Mode

The judgment of a compare match is executed every time even immediately after reloading of the CNT.

The minimum pulse width is the counter updating cycle (1.096 ns at 960 MHz). However, when the pulse width is very small, the pulse might be lost due to the rising/falling time of the pin.

There is an internal delay from the generation of a compare match event to the generation of the toggle operation of PWMnH and PWMnL.

15.7. Re-trigger Operation

The re-trigger operation mode can be set on each counter block. Each output signal or counter value can be set again by the specified event. The re-trigger operation has 5 modes (A, B, C, D, and re-trigger masking operation), and both the PWMnH and PWMnL output levels can be controlled in these 5 operation modes.

15.7.1. Re-trigger Events

The re-trigger operation can be specified by the edge event and level event. Table 15-5 shows the overview of the edge event, and Table 15-6 shows that of the level event. To set a re-trigger event of the PWM, write the number corresponding to the event to the PWMnRTRS.PWMRTS bit.

A setting example is as follows:

- When using event0 output from EPU's channel0 as re-trigger event: PWMnRTRS.PWMRTS = 0b010100
- When using the output from LUT0 as re-trigger event: PWMnRTRS.PWMRTS = 0b100110

The edge event of re-trigger is generated when the PWM receives an event pulse from a module or detects the edge of a specific signal. When the re-trigger is set as an edge event, the PWM manages only presence or absence of an event generation. To use the edge event of re-trigger, set the PWMnRTRG.RTRGPLS bits to 0b000.

For the level event of re-trigger, the PWM manages the signal level. The timing of event generation can be selected from one of following signals: rising edge, falling edge, both edges, high level, or low level. For the setting of the generation timing of level events, see the description on the PWMnRTRG register (Section 15.12.15). When the generation timing of the level event is set to low level or high level, the re-trigger operation mode C cannot be selected.

The PWM performs different processes in re-trigger masking operation between the edge event and level event. For details, see Section 15.7.8.

Table 15-5. Edge Events for Re-trigger

No.	Source	Remarks
0	CPU access	
1	Reserved	
2	Trigger pulse from Timer0_CMA	
3	Trigger pulse from Timer1_CMA	
4	Trigger pulse from CMP0	
5	Trigger pulse from CMP1	
6	Trigger pulse from CMP2	
7	Trigger pulse from CMP3	
8	Positive edge signal event form GPIO0	
9	Positive edge signal event form GPIO1	
10	Positive edge signal event form GPIO2	
11	Reserved	
12	Negative edge signal event form GPIO0	
13	Negative edge signal event form GPIO1	
14	Negative edge signal event form GPIO2	
15	Reserved	
16	Trigger pulse from Timer2_CMA	
17	Trigger pulse from Timer3_CMA	
18	Trigger pulse from CMP4	
19	Trigger pulse from CMP5	
20	Channel0 event0 of EPU	
21	Channel0 event1 of EPU	
22	Channel1 event0 of EPU	
23	Channel1 event1 of EPU	
24	Channel2 event0 of EPU	
25	Channel2 event1 of EPU	
26	Channel3 event0 of EPU	
27	Channel3 event1 of EPU	
28	Channel4 event0 of EPU	
29	Channel4 event1 of EPU	
30	Channel5 event0 of EPU	
31	Channel5 event1 of EPU	

Table 15-6. Level Events for Re-trigger

No.	Source	Remarks
32	CMP0 output	
33	CMP1 output	
34	CMP2 output	
35	CMP3 output	
36	CMP4 output	
37	CMP5 output	
38	LUT0 output	
39	LUT1 output	
40	GPIO0 event level	
41	GPIO1 event level	
42	GPIO2 event level	
43 to 63	Reserved	

15.7.2. Operation in Re-trigger Mode A

In re-trigger mode A, when the specified event is detected, each PWM output signal is changed to the specified level (for details of the changing method, see Section 15.7.7). This state is kept until the counter (CNT) is stopped. During this period, the PWM stops outputting events and changing of the PWM output by comparing the CNT with the compare match register. This period is called a non-comparison period.

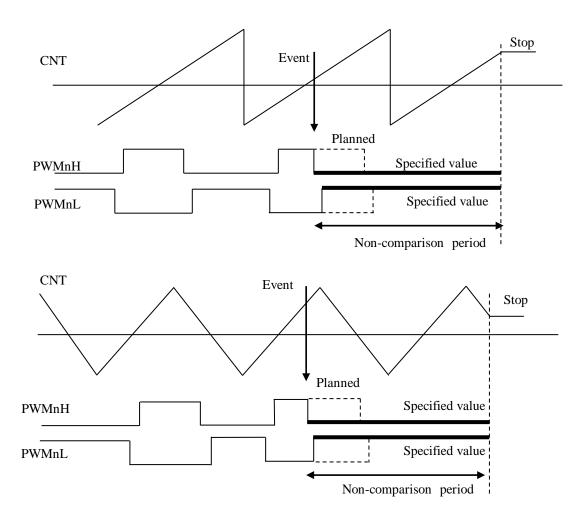


Figure 15-10. Re-trigger Mode A

15.7.3. Operation in Re-trigger Mode B

In re-trigger mode B, when the specified event is detected, each PWM output signal is changed to the specified level (for details of the changing method, see Section 15.7.7). This state is kept until the counter (CNT) loads the value of CMP_MIN register. The period from detection of an event to loading of the CMP_MIN value register is a non-comparison period.

When the CNT value becomes equal to the CMP_MIN value, the PWM starts the normal comparison operation again.

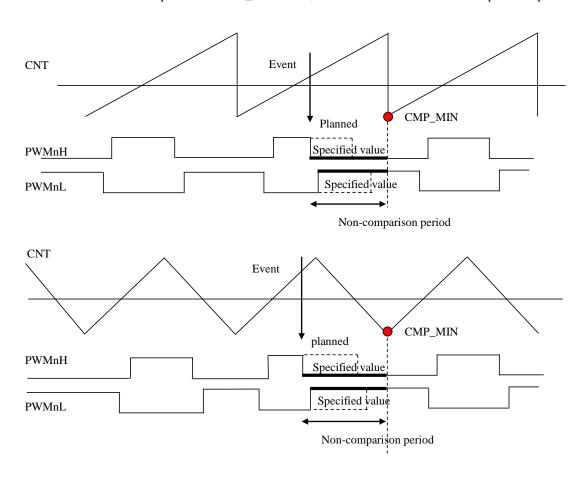


Figure 15-11. Re-trigger Mode B

15.7.4. Operation in Re-trigger Mode C

In re-trigger mode C, when the specified event is detected, each PWM output signal is changed to the specified level. Then, the counter (CNT) operates as follows:

- In the up mode: The CNT loads the value of the CMP MIN register, and counts up from the loaded value.
- During count-up in the up-down mode: The CNT loads the value of the CMP_MAX register, and counts down from the loaded value.
- During count-down in the up-down mode: The CNT loads the value of the CMP_MIN register, and counts up from the loaded value.

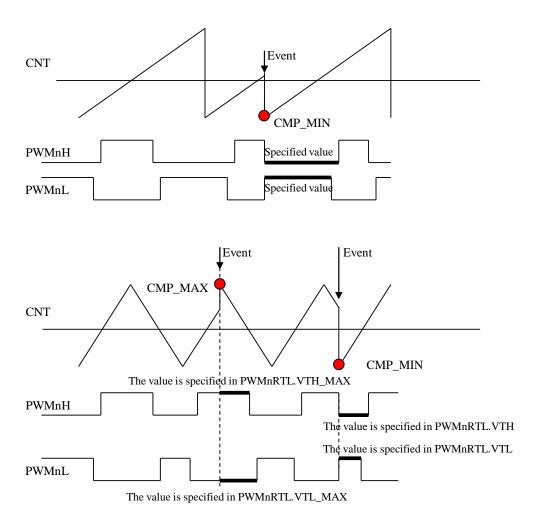


Figure 15-12. Re-trigger Mode C

15.7.5. Buffer Updating when Operation of Re-trigger Mode C Starts

In re-trigger mode C, the compare match register can be updated with the buffer register value using a re-trigger operation starting event as the trigger. The setting method is different depending on the counting direction of the PWM counter. For details, see bits 6 and 7 of the PWMnRTRS register.

15.7.6. Operation in Re-trigger Mode D

In re-trigger mode D, when the specified event is detected, the PWM enters a non-comparison period from the timing that the counter (CNT) loads the value of the CMP_MIN register after the event detection to the timing that the CNT loads the CMP_MIN value next time.

When the specified event is detected again in the non-comparison period, this period is extended to the next PWM cycle.

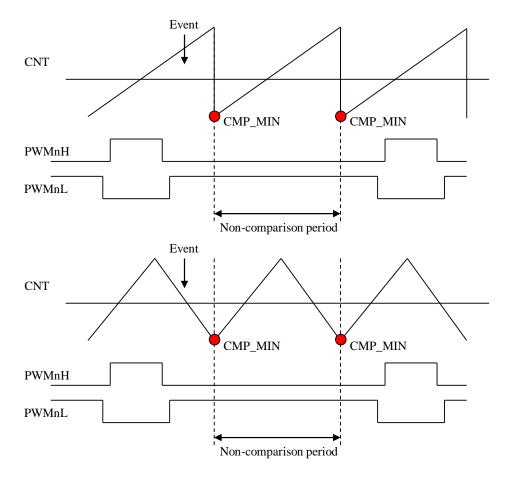


Figure 15-13. Re-trigger Mode D

15.7.7. Re-trigger Masking Operation

By setting to the re-trigger mask, re-trigger events can be masked (ignored). The start timing of the masking period can be selected from each edge of the PWM output signal (rising edge or falling edge of the PWMnH/PWMnL).

The division of the counter to measure a masking period can be selected from Count Clock Frequency/8, Count Clock Frequency/16, or Count Clock Frequency/32.

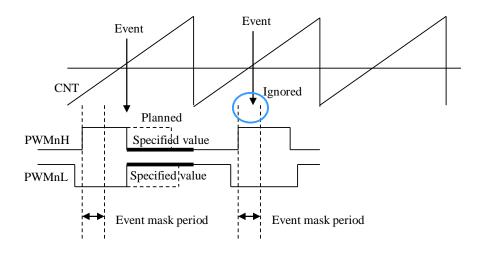


Figure 15-14. Re-trigger Masking Operation

15.7.8. Interpretation of Edge and Level Events at Masking Release

The PWM operation in the re-trigger masking is different according to the re-trigger event setting: edge event or level event.

When the edge event is selected, the PWM receives the event as a pulse. Thus, the edge events are ignored in the masking period.

When a level event is selected, the PWM manages the level of the event signal. When using event masking for level events, the level of the event signal is fixed to the negating side during the event operation. For example, if the falling edge of the level signal is set as the level event of re-trigger, and the level signal is low when the masking period ends: The level signal is fixed to high by the masking process during the masking period. When this period ends, the level signal becomes low. Then, the falling edge is generated. As a result, an event of re-trigger operation is generated, and the PWM performs the re-trigger operation.

Figure 15-15 shows the overview of the re-trigger detection circuit.

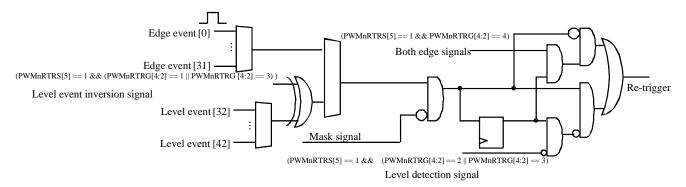


Figure 15-15. Re-trigger Detection Circuit

15.7.9. Method to Change Output Waveform by Re-trigger Operation

When the PWM executes the re-trigger operation, the output waveform is changed as shown in Table 15-7. The content of Table 15-7 is applied to both the up and up-down modes.

The output levels of the PWMnH and PWMnL are determined by the PWMnRTL.VTL bits, respectively.

Mode	Output Level of PWMnH	Output Level of PWMnL
PWM Mode 0	Changes to the specified value by the PWMnRTL.VTH bits immediately.	Changes to the specified value by the PWMnRTL.VTL bits immediately.
PWM Mode 1	Changes to the specified value by the PWMnRTL.VTH bits immediately, and the DCNTD counts up to the value of the CMP_D register simultaneously.	Changes to the specified value by the PWMnRTL.VTL bits at the timing when the compare mach of the DCNTD and DCNTD is generated, and clears the DCNTD elimitation could be supplyed to the compared to the comp

simultaneously

Table 15-7. Output Waveform by Re-trigger Operation

15.8. Event Output

Each counter block has the following 3 types of event output.

- PWMn Event0
- PWMn Event1
- PWMn TIMERSYNC (This event resets the counter value of the timer: see Section 17.)

The generation source of each event can be selected from the following PWM internal events. More than one PWM internal event can be selected per event. When more than one PWM internal event is selected, the PWM event is output when one or more PWM internal event is generated.

- EVT_MIN: Compare match event of CNT and CMP_MIN register value
- EVT_MAX: Compare match event of CNT and CMP_MAX register value
- EVT_VH1: Event to transit the PWMnH pin to pin state VH1.
- EVT_VH0: Event to transit the PWMnH pin to pin state VH0.
- EVT_VL1: Event to transit the PWMnL pin to pin state VL1.
- EVT_VL0: Event to transit the PWMnL pin to pin state VL0.
- EVT_T: Detection of the re-trigger operation starting event

In the up mode, the event of the $\ensuremath{\text{EVT_MIN}}$ is not generated.

The event of the EVT_VH0/1 or the EVT_VL0/1 is generated only when the pin state transits to the VH0/1 or the VL0/1. For example, when the VL0 is set to low level and the PWMnL becomes low level by accessing the PWMnLCR0 register, the event of the EVT_VL0 is not generated. This is because the pin level matches the level specified by the VL0 by chance, so that the PWMnL pin does not transfer to the control state of the VL0. The events of the EVT_VH1, EVT_VH0, EVT_VL1, and EVT_VL0 are generated only when compare match is generated between the counter and the compare match register.

15.9. Interrupt Output

Each counter block has the following 2 types of interrupt output.

- PWMn INTO
- PWMn INT1

The generation source of each interrupt can be selected from the following PWM internal events. More than one PWM internal event can be selected per interrupt. When more than one PWM internal event is selected, the interrupt is generated when one or more PWM internal event is generated.

- INT_MIN: Compare match event of CNT and CMP_MIN register value
- INT_MAX: Compare match event of CNT and CMP_MAX register value
- INT_VH1: Event to transit the PWMnH pin to pin state VH1
- INT VH0: Event to transit the PWMnH pin to pin state VH0
- INT VL1: Event to transit the PWMnL pin to pin state VL1
- INT_VL0: Event to transit the PWMnL pin to pin state VL0
- INT_T: Detection of the re-trigger operation starting event

In the count-up mode, the event of the INT_MIN is not generated.

The event of the INT_VH0/1 or the INT_VL0/1 is generated only when the pin state transits to the VH0/1 or the VL0/1. For example, when the VL0 is set to low level and the PWMnL becomes low level by accessing the PWMnLCR0 register, the event of the INT_VL0 is not generated. This is because the pin level matches the level specified by the VL0 by chance, so that the PWMnL pin does not transfer to the control state of the VL0. The events of the INT_VH1, INT_VH0, INT_VL1, and INT_VL0 are generated only when compare match is generated between the counter and the compare match register.

15.10. Event and Interrupt Output in Re-trigger Operation

When the re-trigger A, B, or D is generated, a period in which compare match is not performed until the re-trigger operation is released occurs. Even in the default setting, any events or interrupts by compare match are not output.

For example, if the PWM is set so that the PWMn Event0 is output if the PWMnH becomes the VH0 in the up mode of PWM mode 0 (PWMnEVO0.EVT_VH0 = 1) when the CNT matches the value of the CMP_C register, the PWMnH changes to the VH0, and the PWMn Event0 is generated. When the PWM starts re-triggering before the CNT matches the CMP_C value, the PWMn Event0 is not generated. This is because the PWMnH pin does not transit to the control state even when the CNT matches the CMP_C value.

To output the event/interrupt generating at the compare mach timing of the CNT and the compare match register value during the re-trigger operation, set PWMnRTRG.RTMSKD = 1. By this setting, even during the re-trigger operation as shown in the example above, the PWMn Event0 is output when the CNT matches the CMP_C value.

15.11. Register Access

The PWM module has 16-bit registers such as the buffer register, compare match register, and counter (CNT). Write the register on the LSB side first when these registers are written from the CPU or the DSAC.

In a write access, the write data is stored in the temporary register on the LSB side by the first access. Then, the data is written to the MSB side by the second access. The data in the temporary register is transferred to the LSB side of the register simultaneously with the second access.

In a read access, the data on the LSB side is obtained by the first access. The data on the MSB side is stored in the temporary register simultaneously. After that, the data on the MSB side is obtained from the temporary register at the second time accessed.

For PWM's 16-bit width register allocated in the SFR area, the LSB side and MSB side registers of 16-bit are assigned to the same address.

For PWM's 16-bit width register allocated in the XDATA BUS area, the LSB side and MSB side registers of 16-bit are assigned to an independent address, respectively. These addresses are allocated by the little endian method (the LSB side is assigned to the lower address and the MSB side is to the higher address).

For the buffer register mapped in the SFR area, the DSAC can read/write 16-bit data at one time by the one-word access mode.

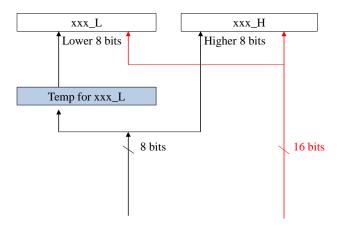


Figure 15-16. 16-bit Register Writing Method

The PWMnACSTS.XREGACS bit is the writing access flag for each block of the register connected with the XDATA BUS. This bit is asserted when writing to either register shown below:

- 8-bit register connected with XDATA BUS (other than PWMCNTS, PWMnEVO0/1/T, PWMnINTS0/1, or PWMnACCLR), or
- The data on the MSB side of the 16-bit width register connected with XDATA BUS.

PWMnACSTS.XREGACS = 1 indicates that writing to the above 8-bit registers connected with XDATA BUS is ongoing. New writing is not received while this writing is ongoing. When the writing operation finishes, the PWMnACSTS.XREGACS bit is negated so that the next writing can be received. Writing is received only when PWMnACSTS.XREGACS = 0.

The PWMnACSTS.SFRACS bit is the writing access flag of the SFR. PWMnACSTS.SFRACS = 1 indicates that the writing operation of the SFR is ongoing. When data is written in the MSB side of the BUF_A, B, C, or D register, the PWMnACSTS.SFRACS bit is set to 1. The BUF_A, B, C, or D register can be written continuously only once during PWMnACSTS.SFRACS = 1. For example, data can be written in order such as BUF_An_L -> BUF_An_H -> BUF_Bn_L -> BUF_Bn_H -> BUF_Cn_L -> BUF_Cn_H -> BUF_Dn_L -> BUF_Dn_H. Before writing to the BUF_A, B, C, or D register again, make sure that PWMnACSTS.SFRACS = 0.

The PWMnACSTS.CNTSACS bit is a flag to manage accessing to the PWMCNTS register. This bit is asserted when the PWMCNTS register is written Before writing to the PWMCNTS register again, make sure that PWMnACSTS.CNTSACS = 0.

When writing to the register whose access is managed by the PWMnACSTS register, 6 CPU clock cycles + 24 PWM count cycles are necessary.

Only writing is valid when accessing from the SFR BUS to the register assigned to x60 to 0x7F of the SFR BUS. When the data of the corresponding register is read from the SFR_BUS, all the read data becomes 0.

15.12. Register Descriptions

Table 15-8. XDATA BUS Common Registers

Symbol	Address	Initial Value
PWMCNTS	0xF903	0x00

Table 15-9. List of XDATA BUS Registers (Each Channel)

Symbol (Channel n)	Address (Channel0)	Address (Channel1)	Address (Channel2)	Address (Channel3)	Initial Value
PWMnEVO0	0xF905	0xF945	0xF985	0xF9C5	0x00
PWMnEVO1	0xF906	0xF946	0xF986	0xF9C6	0x00
PWMnEVOT	0xF907	0xF947	0xF987	0xF9C7	0x00
PWMnINTS0	0xF908	0xF948	0xF988	0xF9C8	0x00
PWMnINTS1	0xF909	0xF949	0xF989	0xF9C9	0x00
PWMnINTF	0xF90A	0xF94A	0xF98A	0xF9CA	0x00
PWMnACCLR	0xF90B	0xF94B	0xF98B	0xF9CB	0x00
PWMnACSTS	0xF90C	0xF94C	0xF98C	0xF9CC	0x00
CNTn_L	0xF910	0xF950	0xF990	0xF9D0	0x00
CNTn_H	0xF911	0xF951	0xF991	0xF9D1	0x00
CMP_An_L	0xF912	0xF952	0xF992	0xF9D2	0x00
CMP_An_H	0xF913	0xF953	0xF993	0xF9D3	0x00
CMP_Bn_L	0xF914	0xF954	0xF994	0xF9D4	0x00
CMP_Bn_H	0xF915	0xF955	0xF995	0xF9D5	0x00
CMP_Cn_L	0xF916	0xF956	0xF996	0xF9D6	0x00
CMP_Cn_H	0xF917	0xF957	0xF997	0xF9D7	0x00
CMP_Dn_L	0xF918	0xF958	0xF998	0xF9D8	0x00
CMP_Dn_H	0xF919	0xF959	0xF999	0xF9D9	0x00
CMP_MINn_L	0xF91A	0xF95A	0xF99A	0xF9DA	0x00
CMP_MINn_H	0xF91B	0xF95B	0xF99B	0xF9DB	0x00
CMP_MAXn_L	0xF91C	0xF95C	0xF99C	0xF9DC	0x00
CMP_MAXn_H	0xF91D	0xF95D	0xF99D	0xF9DD	0x00
PWMnCNTMD	0xF920	0xF960	0xF9A0	0xF9E0	0x00
PWMnHCR0	0xF921	0xF961	0xF9A1	0xF9E1	0x00
PWMnLCR0	0xF922	0xF962	0xF9A2	0xF9E2	0x00
PWMnHCR1	0xF923	0xF963	0xF9A3	0xF9E3	0x00
PWMnLCR1	0xF924	0xF964	0xF9A4	0xF9E4	0x00
PWMnMODE	0xF925	0xF965	0xF9A5	0xF9E5	0x00
PWMnRTRG	0xF926	0xF966	0xF9A6	0xF9E6	0x00
PWMnRTRS	0xF927	0xF967	0xF9A7	0xF9E7	0x00
PWMnRTGC	0xF928	0xF968	0xF9A8	0xF9E8	0x00
PWMnRTL	0xF929	0xF969	0xF9A9	0xF9E9	0x00
PWMnRTMC	0xF92A	0xF96A	0xF9AA	0xF9EA	0x00
PWMnRTMP	0xF92B	0xF96B	0xF9AB	0xF9EB	0x00
BUF_MINn_L	0xF92C	0xF96C	0xF9AC	0xF9EC	0x00
BUF_MINn_H	0xF92D	0xF96D	0xF9AD	0xF9ED	0x00
BUF_MAXn_L	0xF92E	0xF96E	0xF9AE	0xF9EE	0x00
BUF_MAXn_H	0xF92F	0xF96F	0xF9AF	0xF9EF	0x00

Table 15-10. List of SFR Register (Each Channel)

Symbol (Channel n)	Address (Channel0)	Address (Channel1)	Address (Channel2)	Address (Channel3)	Initial Value
BUF_An_L	0xE4	0xEC	0xF4	0xFC	0x00
BUF_An_H	0xE4	0xEC	0xF4	0xFC	0x00
BUF_Bn_L	0xE5	0xED	0xF5	0xFD	0x00
BUF_Bn_H	0xE5	0xED	0xF5	0xFD	0x00
BUF_Cn_L	0xE6	0xEE	0xF6	0xFE	0x00
BUF_Cn_H	0xE6	0xEE	0xF6	0xFE	0x00
BUF_Dn_L	0xE7	0xEF	0xF7	0xFF	0x00
BUF_Dn_H	0xE7	0xEF	0xF7	0xFF	0x00
CMP_An_L	0x64	0x6C	0x74	0x7C	0x00
CMP_An_H	0x64	0x6C	0x74	0x7C	0x00
CMP_Bn_L	0x65	0x6D	0x75	0x7D	0x00
CMP_Bn_H	0x65	0x6D	0x75	0x7D	0x00
CMP_Cn_L	0x66	0x6E	0x76	0x7E	0x00
CMP_Cn_H	0x66	0x6E	0x76	0x7E	0x00
CMP_Dn_L	0x67	0x6F	0x77	0x7F	0x00
CMP_Dn_H	0x67	0x6F	0x77	0x7F	0x00
BUF_MINn_L	0x60	0x68	0x70	0x78	0x00
BUF_MINn_H	0x60	0x68	0x70	0x78	0x00
BUF_MAXn_L	0x61	0x69	0x71	0x79	0x00
BUF_MAXn_H	0x61	0x69	0x71	0x79	0x00
CMP_MINn_L	0x62	0x6A	0x72	0x7A	0x00
CMP_MINn_H	0x62	0x6A	0x72	0x7A	0x00
CMP_MAXn_L	0x63	0x6B	0x73	0x7B	0x00
CMP_MAXn_H	0x63	0x6B	0x73	0x7B	0x00

15.12.1. PWMCNTS (PWM Counter Start)

The counter of each PWM channel can start simultaneously (in synchronization). When writing 1 to the PWMCSn bit, all the counters start counting.

Regi	egister PWMCNTS PWM Counter Start Address		0xF903				
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	always be 0.	
5	Res	served	R/W	0	The read value is 0. The write value must	always be 0.	
4	Res	served	R/W	0	The read value is 0. The write value must	always be 0.	
3	PW	MCS3	R/W	0	PWM3 counter start/stop 0: PWM3 counter stop 1: PWM3 counter start		
2	PW	MCS2	R/W	0	PWM2 counter start/stop 0: PWM2 counter stop 1: PWM2 counter start		
1	PW	MCS1	R/W	0	PWM1 counter start/stop 0: PWM1 counter stop 1: PWM1 counter start		
0	PW	MCS0	R/W	0	PWM0 counter start/stop 0: PWM0 counter stop 1: PWM0 counter start		

15.12.2. PWMnEVO0/1/T (PWM Event0/1 Output/ to Timer for Block n) (n = 0 to 3)

Regi	ster	PWM0E	VO0	PWM Eve	ent0 Output for Block0	Address	0xF905
Regi	ster	PWM1E	VO0	PWM Eve	Event0 Output for Block1 Address		0xF945
Regi	ster	PWM2E	VO0	PWM Eve	ent0 Output for Block2	Address	0xF985
Regi	ster	PWM3E	VO0	PWM Eve	ent0 Output for Block3	Address	0xF9C5
Regi	ster	PWM0E	VO1	PWM Eve	ent1 Output for Block0	Address	0xF906
Regi	ster	PWM1E	VO1	PWM Eve	ent1 Output for Block1	Address	0xF946
Regi	ster	PWM2E	VO1	PWM Eve	ent1 Output for Block2	Address	0xF986
Regi	ster	PWM3E	VO1	PWM Eve	ent1 Output for Block3	Address	0xF9C6
Regi	ster	PWM0E	VOT	PWM Eve	ent to Timer for Block0	Address	
Regi	ster	PWM1E	VOT	PWM Eve	ent to Timer for Block1 Address		0xF947
Regi	ster	PWM2E	VOT	PWM Eve	WM Event to Timer for Block2 Address		
Regi	ster	PWM3E	VOT	PWM Eve	ent to Timer for Block3	Address	0xF9C7
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	always be 0.	
6	EV	/T_T	R/W	0			
5	EVT	Γ_VH1	R/W	0	Event output source		
4	EVT	Г_VH0	R/W	0	To select a PWM internal event,		
3	EV	VT_VL1 R/W		0	corresponding to the event to 1. When represent the PWM internal event is selected, the P		
2	EV	/T_VL0 R/W		0	output when one or more PWM inte		
1	EVT	_MAX	R/W	0	generated. The PWM event signal is one pulse.		
0	EV	Γ_MIN	R/W	0	The 1 mile work signal is one pulse.		

15.12.3. PWMnINTS0/1 (PWM Interrupt0/1 Select for Block n) (n = 0 to 3)

Regi	ster	PWM0IN	NTS0	PWM Inte	errupt0 Select for Block0	Select for Block0 Address	
Regi	ster	PWM1IN	NTS0	PWM Inte	errupt0 Select for Block1	Address	0xF948
Regi	ster	PWM2IN	NTS0	PWM Inte	errupt0 Select for Block2	Address	0xF988
Regi	ster	PWM3IN	NTS0	PWM Inte	errupt0 Select for Block3	Address	0xF9C8
Regi	ster	PWM0IN	NTS1	PWM Inte	errupt1 Select for Block0	Address	0xF909
Regi	ster	PWM1IN	NTS1	PWM Inte	errupt1 Select for Block1	Address	0xF949
Regi	ster	PWM2IN	WM2INTS1 PWM		errupt1 Select for Block2	Address	0xF989
Regi	ster	PWM3INTS1		PWM Inte	errupt1 Select for Block3	Address	0xF9C9
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	always be 0.	
6	IN	T_T	R/W	0			
5	INT	_VH1	R/W	0	Interrupt source		
4	INT	_VH0	R/W	0	-	interrupt source	
3	INT	INT_VL1 R/W		0	To select a PWM internal event, corresponding to the event to 1. When r		
2	INT	INT_VL0 R/W		0	PWM internal event is selected, the internal	rupt flag is set	
1	INT	T_MAX R/W		0	when one or more PWM internal event is	when one or more PWM internal event is generated.	
		T_MAX R/W 0 VT_MIN R/W 0					

15.12.4. PWMnINTF (PWM Interrupt Flag for Block n) (n = 0 to 3)

Regi	ster	PWM0II	NTF	PWM Inte	errupt Flag for Block0	Address	0xF90A
Regi	ster	PWM1II	NTF	PWM Inte	VM Interrupt Flag for Block1 Address 0x		0xF94A
Regi	ster	PWM2IN	NTF	PWM Inte	errupt Flag for Block2	Address	0xF98A
Regi	ster	PWM3I1	NTF	PWM Inte	errupt Flag for Block3	Address	0xF9CA
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	always be 0.	
5	PW	MIE1	R/W	0	PWM interrupt1 enable 0: PWM interrupt1 is disabled 1: PWM interrupt1 is enabled When PWMIE1 = 1 and PEMIF1 = 1 request is generated.	, an interrupt	
4	PW	MIE0	R/W	0	PWM interrupt0 enable 0: PWM interrupt0 is disabled 1: PWM interrupt0 is enabled When PWMIE0 = 1 and PEMIF0 = 1, an interrupt request is generated.		
3	Res	served	R	0	The read value is 0. The write value must	always be 0.	
2	Res	served	R	0	The read value is 0. The write value must	always be 0.	
1	PW	MIF1	R/C	0	PWM interrupt flag1 Read 0: No change Read 1: Interrupt event defined by the PWMnINTS1 register is detected Write 0: No change Write 1: The bit is cleared		
0	PW	MIF0	R/C	0	PWM interrupt flag0 Read 0: No change Read 1: Interrupt event defined by the l register is detected Write 0: No change Write 1: The bit is cleared	PWMnINTS0	

15.12.5. PWMnACCLR (PWM Access Counter Clear Register for Block n) (n = 0 to 3)

Reg	ister	PWM0A	.CCLR	PWM Acc	PWM Access Counter Clear Register for Block0 Address		
Reg	ister	PWM1A	.CCLR	PWM Acc	cess Counter Clear Register for Block1	Address	0xF94B
Reg	ister	PWM2A	CCLR	PWM Ace	cess Counter Clear Register for Block2	Address	0xF98B
Reg	ister	PWM3A	.CCLR	PWM Acc	cess Counter Clear Register for Block3	Address	0xF9CB
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	CLRC	CPUACC	W	0	CPU's SFR access counter clearing Write 0: No change Write 1: CPU access counter register is The read value is always 0.	cleared	
6	CLRE	SAACC	W	0	DSAC's SFR access counter clearing Write 0: No change Write 1: DSAC access counter register The read value is always 0.	is cleared	
5	Res	served	R	0	The read value is 0. The write value must	always be 0.	
4	Res	served	R	0	The read value is 0. The write value must	always be 0.	
3	Res	served	R	0	The read value is 0. The write value must	always be 0.	
2	Res	served	R	0	The read value is 0. The write value must		
1	Res	served	R	0	The read value is 0. The write value must		
0	Res	served	R	0	The read value is 0. The write value must	always be 0.	

15.12.6. PWMnACSTS (PWM Access Status Register for Block n) (n = 0 to 3)

Regi	ster	PWM0A	CSTS	PWM Acc	cess Status Register for Block0	Address	0xF90C
Regi	ster	PWM1A	CSTS	PWM Acc	cess Status Register for Block1	Address	0xF94C
Regi	ster	PWM2A	CSTS	PWM Acc	cess Status Register for Block2	Address	0xF98C
Regi	ster	PWM3A	CSTS	PWM Acc	cess Status Register for Block3	Address	0xF9CC
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	always be 0.	
6	Res	served	R	0	The read value is 0. The write value must	always be 0.	
5	Res	served	R	0	The read value is 0. The write value must	always be 0.	
4	Res	served	R	0	The read value is 0. The write value must	always be 0.	
3	Res	served	R	0	The read value is 0. The write value must	always be 0.	
2	CNTSACS R		R	0	Access status to the PWMCNTS register 0: No access to the PWMCNTS registe 1: Writing to the PWMCNTS register Before writing to the PWMCNTS regist		
1	SF	RACS	R	0	that CNTSACS = 0. Access status to the SFR BUS 0: No access to the SFR BUS register 1: Writing to the SFR BUS register When the same SFR BUS register continuously make sure that SFRACS = next writing.		
0	XRI	EGACS	R	0	Access status to the XDATA BUS registe 0: No access to the XDATA BUS regist 1: Writing to the XDATA BUS register Before writing to the XDATA BUS regist that XREGACS = 0.	ter	

15.12.7. CNTn_L/H (Counter n LSB/MSB Side) (n = 0 to 3)

Regis	ster	CNT0_L		Counter0 L	SB Side Address		0xF910
Regis	ster	CNT1_L		Counter1 L	SB Side	Address	0xF950
Regis	ster	CNT2_L	,	Counter2 L	SB Side	Address	0xF990
Regis	ster	CNT3_L	,	Counter3 L	SB Side	Address	0xF9D0
Bit	Bit Name R/W		Initial	Description		Remarks	
7			R/W	0			
6			R/W	0			
5			R/W	0			
4		יאוידי	R/W	0	LSB side counter		
3	C	CNT	R/W	0	LSB side counter		
2			R/W	0			
1			R/W	0			
0			R/W	0			

Regi	ster	CNT0_H	[Counter0 M	ISB Side	Address	0xF911
Regi	ster	CNT1_H	[Counter1 M	ISB Side	Address	0xF951
Regi	egister CNT2_H		Counter2 M	ISB Side	Address	0xF991	
Regi	Register CNT3_H		[Counter3 M	ISB Side	Address	0xF9D1
Bit	Bit Name R/W		Initial	Description		Remarks	
7			R/W	0			
6			R/W	0			
5			R/W	0			
4		NIT	R/W	0	MCD -: 1t		
3	C	CNT	R/W	0	MSB side counter		
2			R/W	0			
1			R/W	0			
0			R/W	0			

15.12.8. CMP_xxxn_L/H (CMP_xxx for Block n LSB/MSB Side) (n = 0 to 3)

Regi	ster	CMP_MI	N0_L	CMP_MIN	N for Block0 LSB Side	Address	0xF91A
Regi	ster	CMP_MI	N1_L	CMP_MIN for Block1 LSB Side			0xF95A
Regi	ster	CMP_MI	N2_L	CMP_MIN for Block2 LSB Side		Address	0xF99A
Regi	Register CMP_M		N3_L	CMP_MIN for Block3 LSB Side		Address	0xF9DA
Bit	Bit Name R/W		Initial	Description		Remarks	
7			R/W	0			
6			R/W	0			
5			R/W	0	CMP_MIN[7:3]		
4	CM	D MIN	R/W	0			
3	CM	P_MIN	R/W	0			
2			R	0	CMP_MIN[2:0]		
1			R	0			
0			R	0	The read value is 0. The write value must	always be 0.	

Regis	ster	CMP_MIN	0_L	CMP_M	IN for Block0 LSB Side	Address	0x62
Regis	ster	CMP_MIN	1_L	CMP_MIN for Block1 LSB Side		Address	0x6A
Regis	ster	CMP_MIN	2_L	CMP_M	IN for Block2 LSB Side	Address	0x72
Regis	Register CMP_MIN		[3_L	CMP_MIN for Block3 LSB Side		Address	0x7A
Bit	Bit Name R/W		Initial	Description		Remarks	
7			W	0			
6			W	0	CMP MIN[7:3]		
5			W	0			
4	CN	ID MIN	W	0	The read value is always 0.		
3	CIV	IP_MIN	W	0			
2			W	0	CMP_MIN[2:0]		
1			W	0			
0			W	0	The read value is 0. The write value must	always be 0.	

Regis	ster	CMP_MI	N0_H	CMP_MIN	N for Block0 MSB Side	Address	0xF91B
Regis	ster	CMP_MI	N1_H	CMP_MIN for Block1 MSB Side		Address	0xF95B
Regis	Register CMP_MIN2_H		CMP_MIN	N for Block2 MSB Side	Address	0xF99B	
Regis	Register CMP_MIN3_H		N3_H	CMP_MIN for Block3 MSB Side Address		Address	0xF9DB
Bit	Bit Name R/W		Initial	Description		Remarks	
7			R/W	0			
6			R/W	0			
5			R/W	0			
4	CM	D MIN	R/W	0	MSD side of CMD MIN		
3	CM	P_MIN	R/W	0	MSB side of CMP_MIN		
2			R/W	0			
1			R/W	0			
0			R/W	0			

Regi	ster	CMP_MIN	10_H	CMP_M	IN for Block0 MSB Side	Address	0x62
Regi	ster	CMP_MIN	1_H	CMP_M	IN for Block1 MSB Side	Address	0x6A
Regi	Register CMP_MIN		12_H	CMP_M	IN for Block2 MSB Side	Address	0x72
Regi	Register CMP_MIN		[3_H	CMP_MIN for Block3 MSB Side		Address	0x7A
Bit	Bit Name R/W		Initial	Description		Remarks	
7				0			
6				0			
5			W	0			
4	CM	IP_MIN	W	0	MSB side of CMP_MIN		
3	CIV.	IF_IVIIIN	W	0	The read value is always 0.		
2			W	0	The read value is always of		
1			W	0			
0			W	0			

Regis	ster	CMP_M	AX0_L	CMP_MA	X for Block0 LSB Side	Address	0xF91C
Regis	ster	CMP_M	AX1_L	CMP_MAX for Block1 LSB Side Address			0xF95C
Regis	Register CMP_MAX2_L		AX2_L	CMP_MA	CMP_MAX for Block2 LSB Side Address		
Regis	Register CMP_MAX3_L		AX3_L	CMP_MAX for Block3 LSB Side Address		0xF9DC	
Bit	Bit Name R/W		Initial	Description		Remarks	
7			R/W	0			
6			R/W	0			
5			R/W	0	CMP_MAX[7:3]		
4	CM	D MAN	R/W	0			
3	CMI	P_MAX	R/W	0			
2			R	1	CMP_MAX[2:0]		
1			R	1			
0			R	1	The read value is 7. The write value must	t always be 7.	

Regis	ster	CMP_MAX	X0_L	CMP_M	AX for Block0 LSB Side	Address	0x63
Regis	ster	CMP_MAX	X1_L	CMP_MAX for Block1 LSB Side		Address	0x6B
Regis	ster	CMP_MAX	X2_L	CMP_MAX for Block2 LSB Side		Address	0x73
Regis	Register CMP_MA		X3_L	CMP_MAX for Block3 LSB Side		Address	0x7B
Bit	Bit Name R/W		Initial	Description		Remarks	
7			W	0			
6		W	0	CMP MAX[7:3]			
5			W	0	_ , ,		
4	CM	D MAY	W	0	The read value is always 0.		
3	CM	P_MAX	W	0			
2			W	1	CMP MAX[2:0]		
1			W	1			
0			W	1	The read value is 0. The write value must	st always be 7.	

Regis	ster	CMP_M	AX0_H	CMP_MA	X for Block0 MSB Side	Address	0xF91D
Regis	ster	CMP_M	AX1_H	CMP_MAX for Block1 MSB Side		Address	0xF95D
Regis	ster	CMP_MAX2_H		CMP_MA	X for Block2 MSB Side	Address	0xF99D
Regis	Register CMP_MA		AX3_H	CMP_MAX for Block3 MSB Side		Address	0xF9DD
Bit	Bit Name R/W		Initial	Description		Remarks	
7			R/W	0			
6			R/W	0			
5			R/W	0			
4	CMI	D MAY	R/W	0	MCD -: 1f CMD MAY		
3	CIVII	P_MAX	R/W	0	MSB side of CMP_MAX		
2			R/W	1			
1			R/W	1			
0			R/W	1			

Regis	ster	CMP_MAX	K0_H	CMP_M	AX for Block0 MSB Side	Address	0x63
Regis	Register CMP_MAX1_H		X1_H	CMP_MAX for Block1 MSB Side		Address	0x6B
Regis	ster	CMP_MAX	K2_H	CMP_M	AX for Block2 MSB Side	Address	0x73
Regis	Register CMP_MAX		X3_H	CMP_MAX for Block3 MSB Side		Address	0x7B
Bit	Bi	Bit Name R/W		Initial	Description		Remarks
7			W	0			
6				0			
5			W	0			
4	CM	D MAY	W	0	MSB side of CMP_MAX		
3	CM	P_MAX	W	0	The read value is always 0.		
2			W	0			
1			W	0			
0			W	0			

Regi	ster	CMP_A0	_L	CMP_A	for Block0 LSB Side	Address	0xF912	
Regi	ster	CMP_A1_L		CMP_A for Block1 LSB Side		Address	0xF952	
Regi	ster	CMP_A2_L		CMP_A	for Block2 LSB Side	Address	0xF992	
Regi	ster	CMP_A3_L		CMP_A	for Block3 LSB Side	Address	0xF9D2	
Regi	ster	CMP_B0	_L	CMP_B	for Block0 LSB Side	Address	0xF914	
Regi	ster	CMP_B1	_L	CMP_B	for Block1 LSB Side	Address	0xF954	
Regi	ster	CMP_B2	_L	CMP_B	for Block2 LSB Side	Address	0xF994	
Regi	ster	CMP_B3	_L	CMP_B	for Block3 LSB Side	Address	0xF9D4	
Regi	ster	CMP_C0	_L	CMP_C	for Block0 LSB Side	Address	0xF916	
Regi	ster	CMP_C1	_L	CMP_C	for Block1 LSB Side	Address	0xF956	
Regi	ster	CMP_C2	_L	CMP_C	for Block2 LSB Side	Address	0xF996	
Regi	ster	CMP_C3	_L	CMP_C for Block3 LSB Side		Address	0xF9D6	
Regi	ster	CMP_D0	_L	CMP_D	for Block0 LSB Side	Address	0xF918	
Regi	ster	CMP_D1	_L	CMP_D	for Block1 LSB Side	Address	0xF958	
Regi	ster	CMP_D2	_L	CMP_D	for Block2 LSB Side	Address	0xF998	
Regi	ster	CMP_D3	_L	CMP_D	for Block3 LSB Side	Address	0xF9D8	
Bit	Bit	Name	R/W	Initial	Description		Remarks	
7			R/W	0				
6			R/W	0				
5			R/W	0				
4	CMP_xxx		R/W	0	1			
3			R/W	0	LSB side of the compare match register			
2			R/W	0				
1			R/W	0	1			
0			R/W	0				
					•		•	

Regi	ster	CMP_A0_L		CMP_A	for Block0 LSB Side	Address	0x64
Regi	ster	CMP_A1_L		CMP_A for Block1 LSB Side		Address	0x6C
Regi	ster	CMP_A2_L		CMP_A	for Block2 LSB Side	Address	0x74
Regi	ster	CMP_A3_L		CMP_A	for Block3 LSB Side	Address	0x7C
Regi	ster	CMP_B0_I	L	CMP_B	for Block0 LSB Side	Address	0x65
Regi	ster	CMP_B1_I	L	CMP_B	for Block1 LSB Side	Address	0x6D
Regi	ster	CMP_B2_l	L	CMP_B	for Block2 LSB Side	Address	0x75
Regi	ster	CMP_B3_l	L	CMP_B	for Block3 LSB Side	Address	0x7D
Regi	ster	CMP_C0_l	L	CMP_C	for Block0 LSB Side	Address	0x66
Regi	ster	CMP_C1_l	L	CMP_C	for Block1 LSB Side	Address	0x6E
Regi	ster	CMP_C2_l	L	CMP_C	for Block2 LSB Side	Address	0x76
Regi	ster	CMP_C3_l	L	CMP_C for Block3 LSB Side		Address	0x7E
Regi	ster	CMP_D0_	L	CMP_D	for Block0 LSB Side	Address	0x67
Regi	ster	CMP_D1_	L	CMP_D	for Block1 LSB Side	Address	0x6F
Regi	ster	CMP_D2_	L	CMP_D for Block2 LSB Side		Address	0x77
Regi	ster	CMP_D3_	L	CMP_D	for Block3 LSB Side	Address	0x7F
Bit	Bi	t Name	R/W	Initial	Description		Remarks
7			W	0			
6			W	0			
5			W	0			
4	CMP_xxx		W	0	LSB side of the compare match register		
3			W	0	The read value is always 0.		
2			W	0			
1			W	0			
0			W	0			

Regi	ster	CMP_A0_	Н	CMP_A fo	or Block0 MSB Side	Address	0xF	913
Regi	ster	CMP_A1_	Н	CMP_A for Block1 MSB Side		Address	0xF	953
Regi	ster	CMP_A2_	Н	CMP_A for Block2 MSB Side		Address	0xF	993
Regi	ster	CMP_A3_	Н	CMP_A for Block3 MSB Side		Address	0xF9	9D3
Regi	ster	CMP_B0_H		CMP_B fo	or Block0 MSB Side	Address	0xF	915
Regi	ster	CMP_B1_H		CMP_B fo	or Block1 MSB Side	Address	0xF	955
Regi	ster	CMP_B2_	Н	CMP_B fo	or Block2 MSB Side	Address	0xF	995
Regi	ster	CMP_B3_	Н	CMP_B fo	or Block3 MSB Side	Address	0xF9	9D5
Regi	ster	CMP_C0_1	Н	CMP_C fo	or Block0 MSB Side	Address	0xF	917
Regi	ster	CMP_C1_	Н	CMP_C fo	or Block1 MSB Side	Address	0xF	957
Regi	ster	CMP_C2_	Н	CMP_C fo	or Block2 MSB Side	Address	0xF997	
Regi	ster	er CMP_C3_H		CMP_C for Block3 MSB Side		Address	0xF9	9D7
Regi	ster	CMP_D0_	Н	CMP_D for Block0 MSB Side		Address	0xF	919
Regi	ster	CMP_D1_	Н	CMP_D fo	or Block1 MSB Side	Address	0xF	959
Regi	ster	CMP_D2_	Н	CMP_D fo	or Block2 MSB Side	Address	0xF	999
Regi	ster	CMP_D3_	Н	CMP_D fo	or Block3 MSB Side	Address	0xF9	9D9
Bit	Bi	t Name	R/W	Initial	Descript	tion		Remarks
7			R/W	0				
6			R/W	0				
5	CMP_xxx		R/W	0				
4			R/W	0	MCD : 1 Cd	1		
3			R/W	0	MSB side of the compare match register			
2			R/W	0]			
1			R/W	0]			
0			R/W	0]			

Regi	ster	CMP_A0_	Н	CMP A	for Block0 MSB Side	Address	0x64
Regi		CMP_A1_H		CMP_A for Block1 MSB Side		Address	0x6C
Regi	ster	CMP_A2_H		CMP_A	for Block2 MSB Side	Address	0x74
Regi	ster	CMP_A3_	Н	CMP_A	for Block3 MSB Side	Address	0x7C
Regi	ster	CMP_B0_1	Н	CMP_B	for Block0 MSB Side	Address	0x65
Regi	ster	CMP_B1_	Н	CMP_B	for Block1 MSB Side	Address	0x6D
Regi	ster	CMP_B2_l	Н	CMP_B	for Block2 MSB Side	Address	0x75
Regi	ster	CMP_B3_l	Н	CMP_B	for Block3 MSB Side	Address	0x7D
Regi	ster	CMP_C0_1	Н	CMP_C	for Block0 MSB Side	Address	0x66
Regi	ster	CMP_C1_	Н	CMP_C	for Block1 MSB Side	Address	0x6E
Regi	ster	CMP_C2_	Н	CMP_C for Block2 MSB Side		Address	0x76
Regi	ster	CMP_C3_	Н	CMP_C	for Block3 MSB Side	Address	0x7E
Regi	ster	cer CMP_D0_H		CMP_D	for Block0 MSB Side	Address	0x67
Regi	ster	CMP_D1_	Н	CMP_D	for Block1 MSB Side	Address	0x6F
Regi	ster	CMP_D2_	Н	CMP_D for Block2 MSB Side		Address	0x77
Regi	ster	CMP_D3_	Н	CMP_D	for Block3 MSB Side	Address	0x7F
Bit	Bi	t Name	R/W	Initial	Description		Remarks
7			W	0			
6			W	0			
5			W	0			
4	C	/D vvv	W	0	MSB side of the compare match register	•	
3	CMP_xxx		W	0	The read value is always 0.		
2			W	0			
1			W	0			
0			W	0			

15.12.9. PWMnCNTMD (**PWM** Counter Mode for Block n) (n = 0 to 3)

Regi	ster	PWM0C	NTMD	PWM Co	unter Mode for Block0	Address	0xF920
Regi	ster	PWM1CNTMD		PWM Co	PWM Counter Mode for Block1 Address		0xF960
Regi	ster	PWM2C	NTMD	PWM Co	unter Mode for Block2	Address	0xF9A0
Regi	ster	PWM3C	NTMD	PWM Co	unter Mode for Block3	Address	0xF9E0
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	always be 0.	
6	Res	served	R	0	The read value is 0. The write value must always be 0.		
5	Res	Reserved		0	The read value is 0. The write value must	The write value must always be 0.	
4	Res	served	R	0	The read value is 0. The write value must	always be 0.	
3	Res	served	R	0	The read value is 0. The write value must	always be 0.	
2	Reserved R		0	The read value is 0. The write value must always be 0.			
1	Reserved R		0	The read value is 0. The write value must			
0	PWMCM R/W		0	Counter block mode 0/1 0: Counter is set to up mode 1: Counter is set to up-down mode			

15.12.10. PWMnHCR0 (PWMnH Output Control0) (n = 0 to 3)

Regi	ster	PWM0HCR0		PWM0H	Output Control0	Address	0xF921
Regi	ister	PWM1H	CR0	PWM1H	PWM1H Output Control0 Address		0xF961
Regi	ister	PWM2H	CR0	PWM2H	PWM2H Output Control0 Address		
Regi	ister	PWM3H	CR0	PWM3H	Output Control0	Address	0xF9E1
Bit	Bit	Name	R/W	Initial	Description		Remarks
7			R/W	0	Controls output by matching between	PWMnH and	
6	PWM_MAX		R/W	0	CMP_MAX value 00: No change 01: Output is set to low level 10: Output is set to high level 11: Output is toggled		
5			R/W	0	Controls output by matching between	PWMnH and	
4	PWM_MIN		R/W	0	CMP_MIN value 00: No change 01: Output is set to low level 10: Output is set to high level 11: Output is toggled		
3	Res	served	R	0	Effective in the up-down mode. The read value is 0. The write value must	always be 0.	
2		served	R	0	The read value is 0. The write value must	•	
1			W	0	Initializes the output level of PWMnH		
0	PWI	PWM_SET W		0	00: No change 01: Output is set to low level 10: Output is set to high level 11: Setting prohibited Changing of the output level by writing higher priority than other sources such match or re-triggering. The read value is always 0.		

15.12.11. PWMnLCR0 (PWMnL Output Control0) (n = 0 to 3)

Regi	ster	PWM0L	CR0	PWM0L	Output Control0	Address	0xF922
Regi	ster	PWM1L	CR0	PWM1L	PWM1L Output Control0 Address		
Regi	ster	PWM2L	CR0	PWM2L	Output Control0	Address	0xF9A2
Regi	ster	PWM3L	CR0	PWM3L	Output Control0	Address	0xF9E2
Bit	Bit	Name	R/W	Initial	Description		Remarks
7			R/W	0	Controls output by matching between	PWMnL and	
6	PWM_MAX		R/W	0	CMP_MAX value 00: No change 01: Output is set to low level 10: Output is set to high level 11: Output is toggled		
5	PWM_MIN		R/W	0	Controls output by matching between	PWMnH and	
4			R/W	0	CMP_MIN value 00: No change 01: Output is set to low level 10: Output is set to high level 11: Output is toggled Effective in the up-down mode.		
3	Res	served	R	0	The read value is 0. The write value must	always be 0.	
2	Res	served	R	0	The read value is 0. The write value must	always be 0.	
1			W	0	Initializes the output level of PWMnL		
0	PWM_SET W		W	0	00: No change 01: Output is set to low level 10: Output is set to high level 11: Setting prohibited Changing of the output level by writing higher priority than other sources such match or re-triggering. The read value is always 0.		

15.12.12. PWMnHCR1 (PWMnH Output Control1) (n = 0 to 3)

Regi	ster	PWM0H	CR1	PWM0H	Output Control1	Address	0xF923
Regi	ster	PWM1HCR1		PWM1H	PWM1H Output Control1 Address		0xF963
Regi	ster	PWM2H	CR1	PWM2H	Output Control1	Address	0xF9A3
Regi	ster	PWM3H	CR1	PWM3H	Output Control1	Address	0xF9E3
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	always be 0.	
6	Res	Reserved R		0	The read value is 0. The write value must		
5	Res	served	R	0	The read value is 0. The write value must). The write value must always be 0.	
4	Res	served	R	0	The read value is 0. The write value must	always be 0.	
3			R/W	0	Controls the output level of VH1		
2	VH1		R/W	0	00: No change 01: Output is set to low level 10: Output is set to high level 11: Output is toggled		
1	VH0		R/W	0	Controls the output level of VH0		
0			R/W	0	00: No change 01: Output is set to low level 10: Output is set to high level 11: Output is toggled		

15.12.13. PWMnLCR1 (PWMnL Output Control1) (n = 0 to 3)

Regi	ster	PWM0L	PWM0LCR1		Output Control1	Address	0xF924
Regi	ster	PWM1LCR1		PWM1L	PWM1L Output Control1 Address		
Regi	ster	PWM2L	CR1	PWM2L	Output Control1	Address	0xF9A4
Regi	ster	PWM3L	CR1	PWM3L	Output Control1	Address	0xF9E4
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	always be 0.	
6	Reserved R		R	0	The read value is 0. The write value must always be 0.		
5	Res	served	R	0	The read value is 0. The write value must	l value is 0. The write value must always be 0.	
4	Res	served	R	0	The read value is 0. The write value must	0. The write value must always be 0.	
3			R/W	0	Controls the output level of VH1		
2	VL1		R/W	0	O0: No change 01: Output is set to low level 10: Output is set to high level 11: Output is toggled		
1	VL0		R/W	0	Controls the output level of VH0		
0			R/W	0	00: No change 01: Output is set to low level 10: Output is set to high level 11: Output is toggled		

15.12.14. PWMnMODE (PWM n Operation Mode) (n = 0 to 3)

Regi	ster	PWM0MODE		PWM0 O	peration Mode	Address	0xF925
Regi	ster	PWM1M	IODE	PWM1 O	peration Mode	Address	0xF965
Regi	Register PWM2MODE		IODE	PWM2 O	peration Mode	Address	0xF9A5
Regi	ster	PWM3M	IODE	PWM3 O	peration Mode	Address	0xF9E5
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R/W	0	The read value is 0. The write value must	always be 0.	
6	BUFM		R/W	0	Buffer mode 0: Direct mode is set 1: Buffer mode is set		
5			R/W	0	Data transfer timing from buffer register	er to compare	
4	UDBM		R/W	0	match register in the up-down mode 00: Reserved 01: Transferred at CMP_MAX 10: Transferred at CMP_MIN 11: Transferred at both CMP_MAX and The bit is effective only in the up-down buffer mode. In the up mode, when the CNT CMP_MAX register value and the CNT is is transferred from the buffer register to match register.	matches the scleared, data	
3	Res	served	R	0	The read value is 0. The write value must	always be 0.	
2	Res	served	R	0	The read value is 0. The write value must	always be 0.	
1			R/W	0	PWM mode setting		
0	PWMMD		R/W	0	00: PWM mode 0 is set 01: PWM mode 1 is set Other than above: Setting prohibited		

15.12.15. PWMnRTRG (PWM Re-trigger Mode for Block n) (n = 0 to 3)

Regi	ster	PWM0R	TRG	PWM Re	-trigger Mode for Block0	Address	0xF926		
Regi	ster	PWM1R	TRG	PWM Re	-trigger Mode for Block1	Address	0xF966		
Regi	ster	PWM2R	TRG	PWM Re	-trigger Mode for Block2	Address	0xF9A6		
Regi	ster	PWM3R	TRG	PWM Re-trigger Mode for Block3 Address			0xF9E6		
Bit	Bit	Name	R/W	Initial	Description		Remarks		
7	PW.	MRTE	R/W	0	Re-trigger enable 0: Re-trigger is disabled 1: Re-trigger is enabled	Re-trigger enable 0: Re-trigger is disabled			
6	6 RTMSKD R/V		R/W	0	Re-trigger event mask disable 0: Re-trigger event mask is enabled 1: Re-trigger event mask is disabled When RTMSKD = 0, the PWM events are not generated by compare match in the non-comparison period. When RTMSKD = 1, the PWM events are generated by compare match even in the non-comparison period. Control signals do not vary by compare match.				
5	Res	served	R	0	The read value is 0. The write value must always be 0.				
4			R/W	0	Re-trigger detection timing setting				
3			R/W	0	000: Re-trigger event is detected by the of the specified signal	ne rising edge			
2	RTRGPLS		R/W 0		001: Re-trigger event is detected by the of the specified signal 010: Re-trigger event is detected by the the specified signal 011: Re-trigger event is detected by the the specified signal 100: Re-trigger event is detected by the and falling edges of the specified Other: Setting prohibited	e high level of e low level of both the rising			
					The bit can be set only when selecting No for the re-trigger event.	o. 32 to No. 63			
1			R/W	0	Re-trigger mode setting 00: Re-trigger mode A is set				
0	PWMRTM R/W		R/W	0	00: Re-trigger mode A is set 01: Re-trigger mode B is set 10: Re-trigger mode C is set 11: Re-trigger mode D is set				

15.12.16. PWMnRTRS (PWM Re-trigger Select for Block n) (n = 0 to 3)

Regi	ster	PWM0R	TRS	PWM R	e-trigger Select for Block0	Address	0xF927
Regi	ster	PWM1R	TRS	PWM R	PWM Re-trigger Select for Block1 Address		
Regi	Register PWM2RTRS		PWM R	PWM Re-trigger Select for Block2 Address			
Regi	ster	PWM3R	TRS	PWM R	e-trigger Select for Block3	Address	0xF9E7
Bit	Bit	Name	R/W	Initial	Description		Remarks
					Re-trigger C buffer update setting bit 1 (The bit has different meanings depending of PWM count mode.)	on the setting	
	7 RTCBM				- Up mode		
7		CBM[1]	R/W	0	O: Compare match register is not updated C events Compare match register is updated register when receiving the input of event	to the buffer	
					- Up-down mode		
					O: Buffer register is not updated by re-triduring counting down 1: Compare match register is updated to the buffer register when receiving the trigger C event during counting down	o the value of e input of a re-	
6	5 RTCBM[0] R/W		0	Re-trigger C buffer update setting bit 0 (The bit has different meanings depending of PWM count mode.) - Up mode The bit is not related to operation. - Up-down mode 0: Buffer register is not updated by re-triduring counting up 1: Compare match register is updated to	igger C events		
					the buffer register when receiving the trigger C event during counting up		
5			R/W	0	Re-trigger event selection		
4	1		R/W	0	000000: Event No. 0		
3	D117	MDTC	R/W	0	011111: Event No. 31 100000: Event No. 32		
2	PW	MRTS	R/W	0			
1	1		R/W	0	111111: Event No. 63		
0			R/W	0	For details, see Table 15-5.		

15.12.17. PWMnRTGC (PWM Re-trigger by CPU for Block n) (n = 0 to 3)

Regi	ister	PWM0R	TGC	PWM Re-	trigger by CPU for Block0	Address	0xF928
Regi	ister	PWM1R	TGC	PWM Re-trigger by CPU for Block1 Address			0xF968
Regi	ister	PWM2R	TGC	PWM Re-	trigger by CPU for Block2	Address	0xF9A8
Regi	ister	PWM3R	TGC	PWM Re-	PWM Re-trigger by CPU for Block3 Address		
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	always be 0.	
6	Reserved R		R	0	The read value is 0. The write value must	always be 0.	
5	Res	Reserved R		0	The read value is 0. The write value must		
4	Res	Reserved R		0	The read value is 0. The write value must	always be 0.	
3	Res	served	R	0	The read value is 0. The write value must		
2	Res	served	R	0	The read value is 0. The write value must	always be 0.	
1	Res	served	R	0	The read value is 0. The write value must	always be 0.	
0	PWMRTGC R/W		0	CPU re-trigger setting Write 0: No change Write 1: When the CPU is set for the re that is defined by the register, a re-trigger event is good. The read value is always 0.			

15.12.18. PWMnRTL (PWM n Re-trigger Output Control) (n = 0 to 3)

Regi	ster	PWM0R	TL	PWM0 Re-	-trigger Output Control	Address	0xF929
Regi	ster	PWM1R	TL	PWM1 Re-	-trigger Output Control	Address	0xF969
Regi	ster	PWM2R	TL	PWM2 Re-	-trigger Output Control	Address	0xF9A9
Regi	ster	PWM3R	TL	PWM3 Re-	-trigger Output Control	Address	0xF9E9
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	7			0	PWMnH pin setting in re-trigge (CMP_MAX)	er mode C	
6	VTH_MAX		R/W	0	00: No change 01: Output is set to low level 10: Output is set to high level 11: Setting prohibited The PWMnH output is controlled whe loads the CMP_MAX register value mode C.		
5			R/W	0	PWMnL pin setting in re-trigge	r mode C	
4	VTL_MAX		R/W	0	(CMP_MAX) 00: No change 01: Output is set to low level 10: Output is set to high level 11: Setting prohibited		
					The PWMnL output is controlled whe loads the CMP_MAX register value mode C.	in re-trigger	
3			R/W	0	PWMnH pin setting in the re-trigger mo 00: No change	ae	
2	vTH 2	7ТН	R/W	01: Output 10: Output 11: Setting Re-trigger m PWMnH outp Re-trigger me	01: Output is set to low level 10: Output is set to high level 11: Setting prohibited Re-trigger mode A and re-trigger n PWMnH output is controlled. Re-trigger mode C: The PWMnH output when the counter loads the CMP_MIN r	t is controlled	
1			R/W	0	PWMnL pin setting in the re-trigger mod 00: No change	de	
0	V	VTL R		0	01: Output is set to low level 10: Output is set to high level 11: Setting prohibited Re-trigger mode A/B: The PWMn controlled. Re-trigger mode C: The PWMnL outpu when the counter loads CMP_MIN regis		

15.12.19. PWMnRTMC (PWM n Re-trigger Mask Control) (n = 0 to 3)

When PWMnACSTS.XREGACS = 1, do not write to this register.

Regi	ster	PWM0R	TMC	PWM0	Re-trigger Mask Control	Address	0xF92A
Regi	ster	PWM1R	TMC	PWM1	Re-trigger Mask Control	Address	0xF96A
Regi	ster	PWM2R	TMC	PWM2	Re-trigger Mask Control	Address	0xF9AA
Regi	ster	ster PWM3RTMC		PWM3	Re-trigger Mask Control	Address	0xF9EA
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	R'	ГМЕ	R/W	0	Re-trigger mask enable 0: Re-trigger mask is disabled 1: Re-trigger mask is enabled		
6	Res	Reserved R		0	The read value is 0. The write value must always be 0.		
5	Res	Reserved R		0	The read value is 0. The write value must a	lways be 0.	
4	Res	served	R	0	The read value is 0. The write value must a		
3			R/W	0	Clock source for the re-trigger period		
2	2 RTMC R/W		R/W	0	00: Count Clock Frequency/8 is set 01: Count Clock Frequency/16 is set 10: Count Clock Frequency/32 is set 11: Setting prohibited		
1			R/W	0	Start point of re-trigger mask		
0	RTMS		R/W	0	00: Start masking from rising edge of PV 01: Start masking from falling edge of PV 10: Start masking from rising edge of PV 11: Start masking from falling edge of PV	WMnH VMnL	

15.12.20. PWMnRTMP (PWM n Re-trigger Mask Period) (n = 0 to 3)

When PWMnACSTS.XREGACS = 1, do not write to this register.

Regis	ter	PWM0R'	ТМР	PWM0 R	e-trigger Mask Period	Address	0xF92B
Regis	ter	PWM1RTMP		PWM1 R	le-trigger Mask Period	Address	0xF96B
Regis	ter	PWM2R	ТМР	PWM2 R	le-trigger Mask Period	Address	0xF9AB
Regis	ter	PWM3R	ТМР	PWM3 R	le-trigger Mask Period	Address	0xF9EB
Bit	Bit Name R/W		Initial	Description		Remarks	
7			R/W	0			
6			R/W	0			
5			R/W	0	Re-trigger masking period		
4	n	TMD	R/W	0	Period = Clock source cycle x (RTMP + 3	1)	
3	K	TMP	R/W	0			
2			R/W	0	The clock source cycle is define PWMnRTMC.RTMC bits.	ed by the	
1			R/W	0			
0			R/W	0			

15.12.21. BUF_MIN/MAXn (BUF_MIN/MAX for Block n LSB/MSB Side) (n = 0 to 3)

Regis	ster	BUF_MIN	0_L	BUF_M	IN for Block0 LSB Side	Address	0xF92C
Regis	ster	BUF_MIN	1_L	BUF_M	BUF_MIN for Block1 LSB Side		0xF96C
Regis	ster	BUF_MIN2_L		BUF_M	IN for Block2 LSB Side	Address	0xF9AC
Regis	ster	BUF_MIN3_L		BUF_MIN for Block3 LSB Side		Address	0xF9EC
Bit	Bi	Bit Name R/W		Initial	Description		Remarks
7			R/W	0			
6			R/W	0			
5			R/W	0	BUF_MIN[7:3]		
4	DI	IE MINI	R/W	0			
3	ВС	F_MIN	R/W	0			
2			R	0	BUF_MIN[2:0]		
1			R	0			
0			R	0	The read value is 0. The write value mu	st always be 0.	

Regi	ster	BUF_MIN	0_L	BUF_MI	N for Block0 LSB Side	Address	0x60
Regi	ster	BUF_MIN	1_L	BUF_MIN for Block1 LSB Side		Address	0x68
Regi	ster	BUF_MIN2_L		BUF_MI	N for Block2 LSB Side	Address	0x70
Regi	ster	ter BUF_MIN3_L		BUF_MI	N for Block3 LSB Side	Address	0x78
Bit	Bi	Bit Name R/W		Initial	Description		Remarks
7			W	0			
6			W	0	BUF MIN[7:3]		
5			W	0	Bor_imit[n3]		
4	DI.	III MINI	W	0	The read value is always 0.		
3	ВС	F_MIN	W	0			
2			W	0	BUF MIN[2:0]		
1			W	0			
0			W	0	The read value is 0. The write value must	st always be 0.	

Regis	ster	BUF_MIN	0_H	BUF_MI	N for Block0 MSB Side	Address	0xF92D
Regis	ster	BUF_MIN	1_H	BUF_MIN for Block1 MSB Side		Address	0xF96D
Regis	ister BUF_MIN2_H		BUF_MI	N for Block2 MSB Side	Address	0xF9AD	
Regis	ster	BUF_MIN	3_H	BUF_MI	N for Block3 MSB Side	Address	0xF9ED
Bit	Bit Name		R/W	Initial	Description		Remarks
7			R/W	0			
6			R/W	0			
5			R/W	0			
4	DI	IE MIN	R/W	0	Map : I apply May		
3	ьс	F_MIN	R/W	0	MSB side of BUF_MIN		
2			R/W	0			
1			R/W	0			
0			R/W	0			

Regi	ster	BUF_MIN	0_H	BUF_MI	N for Block0 MSB Side	Address	0x60
Regi	ster	BUF_MIN1_H		BUF_MI	N for Block1 MSB Side	Address	0x68
Regi	ster	BUF_MIN2_H		BUF_MI	N for Block2 MSB Side	Address	0x70
Regi	ster	BUF_MIN3_H		BUF_MI	N for Block3 MSB Side	Address	0x78
Bit	Bi	Bit Name R/W		Initial	Description		Remarks
7			W	0			
6			W	0			
5			W	0			
4	DI.	III MINI	W	0	MSB side of BUF_MIN		
3	ВС	F_MIN	W	0	The read value is always 0.		
2			W	0			
1			W	0			
0			W	0			

Regis	ster	BUF_MAX	K0_L	BUF_M	AX for Block0 LSB Side	Address	0xF92E
Regis	ster	BUF_MAX	K1_L	BUF_MAX for Block1 LSB Side		Address	0xF96E
Regis	ster	BUF_MAX2_L		BUF_M	AX for Block2 LSB Side	Address	0xF9AE
Regis	ster	BUF_MAX3_L		BUF_MAX for Block3 LSB Side		Address	0xF9EE
Bit	Bit Name R/V		R/W	Initial	Description		Remarks
7			R/W	0			
6			R/W	0			
5			R/W	0	BUF_MAX[7:3]		
4	DII	E MAY	R/W	0			
3	во	F_MAX	R/W	0			
2			R	1	BUF_MAX[2:0]		
1			R	1			
0			R	1	The read value is 7. The write value mu	st always be 7.	

Regi	ster	BUF_MAX	K0_L	BUF_M	AX for Block0 LSB Side	Address	0x61
Regi	ster	BUF_MAX	K1_L	BUF_MAX for Block1 LSB Side		Address	0x69
Regi	ster	BUF_MAX2_L		BUF_M	AX for Block2 LSB Side	Address	0x71
Regi	ster	BUF_MAX3_L		BUF_MAX for Block3 LSB Side		Address	0x79
Bit	Bi	t Name	R/W	Initial	Description		Remarks
7				0			
6			W	0	BUF MAX[7:3]		
5			W	0			
4	DII	E MAY	W	0	The read value is always 0.		
3	ВО	F_MAX	W	0			
2			W	1	BUF MAX[2:0]		
1			W	1			
0			W	1	The read value is 0. The write value mus	t always be 7.	

Regi	ster	BUF_MAX	K0_H	BUF_M	AX for Block0 MSB Side	Address	0xF92F
Regi	ster	BUF_MAX	K1_H	BUF_M	AX for Block1 MSB Side	Address	0xF96F
Regi	BUF_MAX2_H		K2_H	BUF_M	AX for Block2 MSB Side	Address	0xF9AF
Regi	ster	ter BUF_MAX3_H		BUF_M	AX for Block3 MSB Side	Address	0xF9EF
Bit	Bit Name		R/W	Initial	Description		Remarks
7			R/W	0			
6			R/W	0			
5			R/W	0			
4	DII	F_MAX	R/W	0	MOD 11 CDITE MAN		
3	ъυ	r_MAA	R/W	0	MSB side of BUF_MAX		
2			R/W	0			
1			R/W	0			
0			R/W	0			

Regis	ster	BUF_MAX	K0_H	BUF_MA	AX for Block0 MSB Side	Address	0x61
Regis	ster	BUF_MAX1_H		BUF_MAX for Block1 MSB Side		Address	0x69
Regis	ster	BUF_MAX2_H		BUF_MA	AX for Block2 MSB Side	Address	0x71
Regis	ster	BUF_MAX3_H		BUF_MAX for Block3 MSB Side		Address	0x79
Bit	Bi	Bit Name R/W		Initial	Description		Remarks
7			W	0			
6			W	0			
5			W	0			
4	DII	E MAY	W	0	MAB side of BUF_MAX		
3	ВО	F_MAX	W	0	The read value is always 0.		
2			W	0			
1			W	0			
0			W	0			

15.12.22. BUF_A/B/C/Dn_L/H (BUF_A/B/C/D for Block n LSB/MSB Side) (n = 0 to 3)

The BUF_xn_L/H register is mapped to the same address. To access these addresses, access to the BUF_xn_L register first, and then access the BUF_xn_H register. Before data is written in the same register connected with SFR BUS again, make sure that PWMnACSTS.SFRACS = 0. When writing data to the BUF_xn_H register or the CMP_xn_H register, the PWMnACSTS.SFRACS bit is set to 1.

ъ.		DITE 10 I		DITE 4	C DI 101 CD C'I		0. 17.4	
Regi		BUF_A0_I			for Block0 LSB Side	Address	0xE4	
Regi		BUF_A1_L		BUF_A for Block1 LSB Side		Address	0xEC	
Regi	ster	BUF_A2_L		BUF_A	for Block2 LSB Side	Address	0xF4	
Regi	ster	BUF_A3_L		BUF_A	for Block3 LSB Side	Address	0xFC	
Regi	ster	BUF_B0_L		BUF_B	for Block0 LSB Side	Address	0xE5	
Regi	ster	BUF_B1_L	,	BUF_B f	for Block1 LSB Side	Address	0xED	
Regi	ster	BUF_B2_L	,	BUF_B	for Block2 LSB Side	Address	0xF5	
Regi	ster	BUF_B3_L	4	BUF_B f	for Block3 LSB Side	Address	0xFD	
Regi	ster	BUF_C0_L	4	BUF_C 1	for Block0 LSB Side	Address	0xE6	
Regi	ster	BUF_C1_L	,	BUF_C 1	for Block1 LSB Side	Address	0xEE	
Regi	ster	BUF_C2_L	,	BUF_C 1	for Block2 LSB Side	Address	0xF6	
Regi	ster	BUF_C3_L	,	BUF_C for Block3 LSB Side		Address	0xFE	
Regi	ster	BUF_D0_I	J	BUF_D	for Block0 LSB Side	Address	0xE7	
Regi	ster	BUF_D1_I	J	BUF_D	for Block1 LSB Side	Address	0xEF	
Regi	ster	BUF_D2_I	J	BUF_D	for Block2 LSB Side	Address	0xF7	
Regi	ster	BUF_D3_I	,	BUF_D	for Block3 LSB Side	Address	0xFF	
Bit	Bi	t Name	R/W	Initial	Description		Remarks	
7			R/W	0				
6			R/W	0				
5			R/W	0				
4			R/W	0				
3	BU	JF_xxx	R/W	0	LSB side of buffer register	LSB side of buffer register		
2			R/W	0				
				0	1			
1			R/W	-	-			
0			R/W	0				

Regi	ster	BUF_A0_F	ł	BUF_A	for Block0 MSB Side	Address	0xE4
Regi	ster	BUF_A1_F	ł	BUF_A for Block1 MSB Side		Address	0xEC
Regi	ster	BUF_A2_F	ł	BUF_A for Block2 MSB Side		Address	0xF4
Regi	ster	BUF_A3_H		BUF_A	for Block3 MSB Side	Address	0xFC
Regi	ster	BUF_B0_H		BUF_B f	for Block0 MSB Side	Address	0xE5
Regi	ster	BUF_B1_F	ł	BUF_B f	for Block1 MSB Side	Address	0xED
Regi	ster	BUF_B2_F	H	BUF_B f	for Block2 MSB Side	Address	0xF5
Regi	ster	BUF_B3_F	ł	BUF_B f	for Block3 MSB Side	Address	0xFD
Regi	ster	BUF_C0_F	H	BUF_C f	for Block0 MSB Side	Address	0xE6
Regi	ster	BUF_C1_F	H	BUF_C f	for Block1 MSB Side	Address	0xEE
Regi	ster	BUF_C2_F	H	BUF_C for Block2 MSB Side		Address	0xF6
Regi	ster	BUF_C3_F	H	BUF_C for Block3 MSB Side		Address	0xFE
Regi	ster	BUF_D0_F	ł	BUF_D	for Block0 MSB Side	Address	0xE7
Regi	ster	BUF_D1_F	ł	BUF_D	for Block1 MSB Side	Address	0xEF
Regi	ster	BUF_D2_F	ł	BUF_D for Block2 MSB Side		Address	0xF7
Regi	ster	BUF_D3_F	ł	BUF_D	for Block3 MSB Side	Address	0xFF
Bit	Bi	t Name	R/W	Initial	Description		Remarks
7			R/W	0			
6			R/W	0			
5			R/W	0			
4	Dī	BUF_xxx		0	MSB side of buffer register		
3) 8			0	Wish side of buffer register		
2			R/W	0			
1			R/W	0			
0			R/W	0			

15.13. Example of PWM Setting

Start Clock source selection See Section 4 Operation mode setting PWMnMODE: PWM mode or buffer mode PWMnCNTMD: Counter operation mode PWM cycle setting CMP_MAXn_L/H, CMP_MINn_L/H: Initial value of cycle BUF_MAXn_L/H, BUF_MINn_L/H: Initial value of cycle (additional setting for buffer mode) PWM duty or dead time setting CMP_An_L/H, CMP_Bn_L/H, CMP_Cn_L/H, CMP_Dn_L/H: Initial value of duty or dead time BUF_An, BUF_Bn_L/H, BUF_Cn_L/H, BUF_Dn_L/H: Initial value of duty or dead time (additional setting for buffer mode) **Counter initial value setting** CNTn_L/H: Counter initial value PWM output level setting PWMnHCR0, PWMnLCR0: Initial value of the PWMnL/H output, counter, and output level is changed when matching the CMP_MIN/MAX register's value. PWMnHCR1, PWMnLCR1: This output level is changed when the counter matches CMP_A/B/C/D. **Re-trigger setting** PWMnRTRS: Event selection for re-trigger PWMnRTL: Pin level setting when re-trigger is detected PWMnRTMC, PWMnRTMP: Re-trigger masking setting PWMnRTRG: Re-trigger mode setting **Event output setting** PWMnEVO0: PWM output event0 PWMnEVO1: PWM output event1 PWMnEVOT: Timer counter clearing event **Interrupt setting** PWMnINTS0, PWMnINTS1: Interrupt source selection PWMnINTF: Interrupt enable **PWM** counting start PWMCNTS: PWM counting start End

15.14. Usage Notes and Restrictions

15.14.1. Restrictions on Automatic Dead Time Mode

• Description

When the PWM operates in the automatic dead time mode (PWMnMODE.PWMMD = 0b01) and one of the following conditions is satisfied, the dead time counter does not operate correctly. Therefore, the compare match between the dead time counter and the compare match register is not detected correctly, and the PWM output signal, event, and interrupt are not generated correctly by compare match.

Conditions

- Condition A: When another event which starts counting of dead time again is generated in one to 8 count cycles before the timing at which dead time counting ends (see Figure 15-17 (a)) while the dead time counter is operating.
- Condition B: When, the same dead time counter starts counting twice or more within 8 count cycles (see Figure 15-17 (b)) while the PWM counter is operating in the up mode (i.e., PWMnCNTMD.PWMCM = 0).

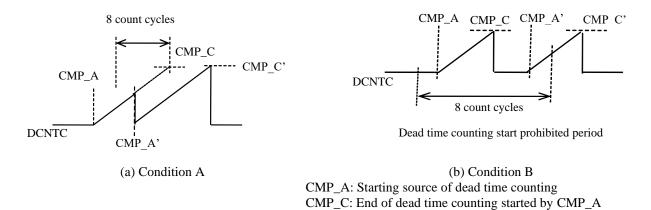


Figure 15-17. Prohibited Waveform of Dead Time Counter (DCNTC)

CMP_A': Starting source of new dead time counting CMP_C': End of dead time counting started by CMP_A'

Workaround

Workaround against condition A:

Apply one of the following 2 methods.

- Not start counting while the dead time counter is operating.
- When counting of dead time should be started again while the dead time counter operates, generate an event to start dead time counting earlier than over 8 count cycles before the end of dead time counting.
- Workaround against condition B:

Ensure 8 or more count cycles of the dead time counter between the first start and second start of dead time counting.

15.14.2. Restrictions on Re-trigger Mode

15.14.2.1. Restrictions on Re-trigger Mode A/B/D in the Non-comparison Period

- Each pin level of the PWMnL/H is not changed by each compare match.
- When PWMnRTRG.RTMSKD = 0, events are not generated by the compare match. When events are used in a non-comparison period, write 1 to the PWMnRTRG.RTMSKD bit.
- When PWMnRTRG.RTMSKD = 0, the interrupt flag generated by compare match (PWMnINTF.PWMIF0/1) is not set.
- Even in the non-comparison period, each dead time counter is started by the normal method.
- In the non-comparison period, each compare match register of the buffer mode is updated correctly.

15.14.2.2. Restrictions on Re-trigger Mode B in the Non-comparison Period

- The end timing of the non-comparison period is delayed by up to 8 count cycles from the timing of the compare match between the CMP_MIN register value and CNT.
- When PWMnRTRG.RTMSKD = 0, the compare match event between the values of the CNT and the CMP_MIN register is not detected in the non-comparison period.

15.14.2.3. Restrictions on Re-trigger Mode D in the Non-comparison Period

- The start timing of the non-comparison period is delayed by up to 8 count cycles from the timing of compare match between the values of the CNT and the CMP_MIN register.
- The end timing of the non-comparison period is delayed by up to 8 count cycles from the timing of compare match between the values of the CNT and the CMP_MIN register.
- When the compare match event between the values of the CNT and the CMP_MIN register is detected at the start timing of the non-comparison period, this compare match event is not detected at the end timing of the non-comparison period.

Figure 15-18 shows the non-comparison periods of re-trigger modes B and D.

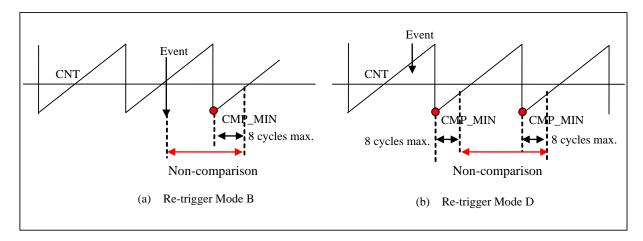
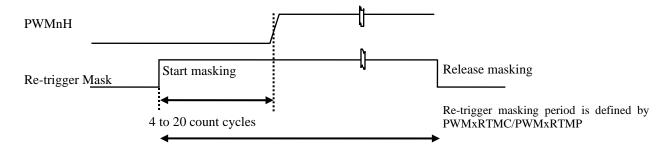



Figure 15-18. Non-comparison Period

15.14.2.4. Restrictions on Re-trigger Masking Operation

The Re-trigger mask starts before 4 to 20 count cycles from the toggle timing of the PWM output pin defined by the PWMxRTMC.RTMS bits.

PWMxRTMC.RTMS = 0b00 (During PWMH rising)

Figure 15-19. Re-trigger Masking Timing

The control logic to judge start of the re-trigger masking monitors the internal state of the PWM module; however, it does not directly monitor the toggling of the PWM output pin.

Internal state of the PWM is reflected to the PWM output pin after 4 count cycles or more.

The delay between the internal state controlling the toggling of the PWM output and the re-trigger masking is about 20 cycles (max.). This value varies depending on the semi-conductor process, power supply voltage, and ambient temperature. When setting re-trigger masking, these sources must be taken into account.

16. Watchdog Timer (WDT)

16.1. Overview

Table 16-1 shows the watchdog timer (WDT) module functional descriptions.

Table 16-1. WDT Functional Descriptions

Item	Description
Count Clock	Clock obtained by dividing CLKFAST 8 division ratios
Counter	8-bit counter × 1 channel Counter rewrite operation protection
Operation Mode	Watchdog timer mode and interval timer mode
Watchdog Timer Mode	Outputs the reset to internal module when the counter timer is overflowed
Interval Timer Mode	Generates the interval timer interrupt when the counter timer is overflowed

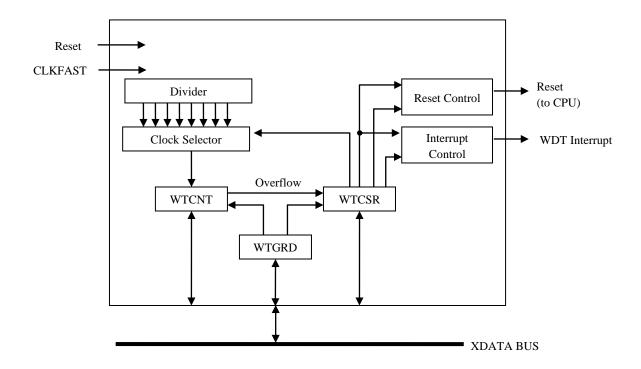


Figure 16-1. WDT Block Diagram

16.2. Register Descriptions

16.2.1. List of Registers

Table 16-2. List of Registers

Symbol	Name	Address	Initial Value
WTCNT	Watchdog Timer Counter	0xFE80	0x00
WTCSR	Watchdog Timer Control/Status	0xFE81	0x00
WTGRD	Watchdog Timer Register Access Guard	0xFE82	0x00

16.2.2. WTCNT (Watchdog Timer Counter)

When WTCSR.TME = 1, the WTCNT register starts a count by the internal clock determined by the WTCSR.CKS bit. When TME = 0, the WTCNT register holds the count value and stops the count.

While the OCD stops the CPU instruction execution, the watchdog timer stops the count.

Regis	Register WTCNT			Watchdog	Watchdog Timer Counter Address					
Bit	Bi	it Name	R/W	Initial	Description					
7			R/W	0						
6			R/W	0	W. d. L. d'annual de					
5		R/W R/W		0	Watchdog time counter					
4	**			0	When an overflow occurs, the watchdog timer operates					
3	"	TCNT	R/W	0	follows:	1.				
2			R/W	0	Generates a reset in watchdog timer modGenerates an iterrupt in the interval time					
1		R/W		0	-					
0			R/W	0						

16.2.3. WTCSR (Watchdog Timer Control/Status)

Before setting the CKS bit, set the TME bit to 0, and stop the WTCNT register count.

When the WTCNT register count overflows, the WOVF and IOVF bits are not initialized by the watchdog timer reset.

Therefore the WOVF and IOVF hits must be cleared after the watchdox timer reset is released

Regi		WTCSR Watchdog Timer Control/Status Address		0xFE81			
Bit	В	it Name	R/W	Initial	Description		Remarks
7	TME R/W		R/W	0	Timer enable 0: The up-count is stopped; the value of the register is held 1: The timer is enabled	WTCNT	
6	TM R/V		R/W	0	Timer mode setting 0: Interval timer mode 1: Watchdog timer mode		
5	R	eserved	R	0	The read value is 0. The write value must alw	ays be 0.	
4	1	WOVF	R/C	0	Watchdog timer overflow Read 0: No overflow Read 1: The WTCNT register count has over watchdog timer mode Write 0: No change Write 1: The bit is cleared	erflowed in	
3		IOVF	R/C	0	Interval timer overflow Read 0: No overflow Read 1: The WTCNT register count has over watchdog timer mode Write 0: No change Write 1: The bit is cleared		
2			R/W	0	WTCNT clock selection		
1			R/W	0	Division ratio Counter period (CLKFAST = 60 MHz)		
0		CKS	R/W	0	$000 : \frac{1^{13}}{2}$ $001 : \frac{1^{14}}{2}$ $010 : \frac{1^{15}}{2}$ $010 : \frac{1^{15}}{2}$ $011 : \frac{1^{16}}{2}$ 1.09 ms $100 : \frac{1^{17}}{2}$ 2.18 ms $101 : \frac{1^{18}}{2}$ 4.37 ms $110 : \frac{1^{19}}{2}$ 8.74 ms $111 : \frac{1^{20}}{2}$ 17.5 ms		

16.2.4. WTGRD (Watchdog Timer Register Access Guard)

Regis	ster	WTGRD		Watchdog	Timer Register Access Guard Address		Timer Register Access Guard Address		0xFE82
Bit	Bi	t Name	R/W	Initial	Description		Remarks		
7	R/W R/W			0					
6				0	Set a key code to this register for writing to the	Set a key code to this register for writing to the			
5	R/W		0	WTCNT/WTCSR register.					
4	W	R/W		0	After writing to the WTCNT/WTCSR register, the WTGRD register is cleared to 0x00.				
3	VV	TGRD	R/W	0	V				
2			R/W	0	Key code: WTCNT: 0x5A				
1		R/W		0	WTCSR: 0xA5				
0			R/W	0					

16.3. Reset Configuration

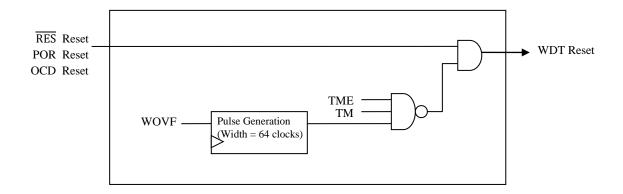


Figure 16-2. Reset Configuration

16.4. Interrupt Configuration

Figure 16-3. Interrupt Configuration

16.5. Prescaler

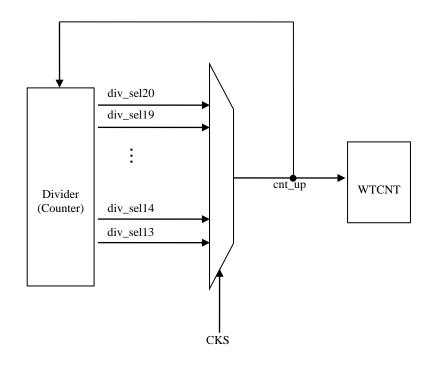


Figure 16-4. Prescaler Configuration

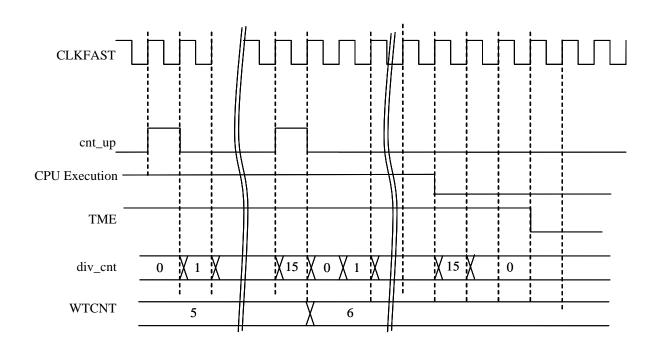


Figure 16-5. Prescaler Timing

16.6. Operation

16.6.1. Writing to WTCNT and WTCSR Registers

The following cares should be taken when writing to the WTCNT and WTCSR registers.

- When the value of the WTGRD register is other than 0x5A and 0xA5, the writing to the WTCNT and WTCSR registers cannot be performed.
- After 0x5A is written to the WTGRD register, write to the WTCNT register. Figure 16-6 shows the operation that is 0x00 is written to the WTCNT register.
- After 0xA5 is written to the WTGRD register, write to the WTCSR register. Figure 16-6 shows the operation that is 1 is written to the WTCSR.TM and WTCSR.TME bits.

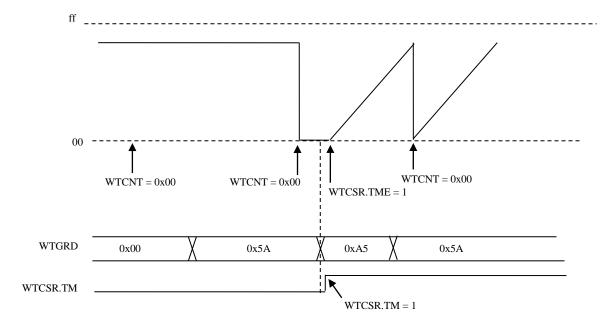


Figure 16-6. Writing to WTCNT and WTCSR Registers

16.6.2. Watchdog Timer Mode

To start the timer up-count operation, set WTCSR.TME = 1. During the normal operation, the value of the WTCNT register must be periodically set again so as not to overflow the WTCNT register count. When the WTCNT register count overflows, the watchdog timer reset is generated. At this point, the WTCNT register continues the count operation. The reset period is 64 clocks (1.07 μ s in CLKFAST = 60 MHz). After the reset, write 1 to the WTCSR.WOVF bit to clear the flag. While the WTCSR.WOVF bit is not cleared, the next watchdog timer reset is not generated. To stop the count, set WTCSR.TME = 0; and then the value is held. To restart the count from the held value, set WTCSR.TME = 1. When the value is written to the WTCNT register during the count, the up-count operation starts from the written value.

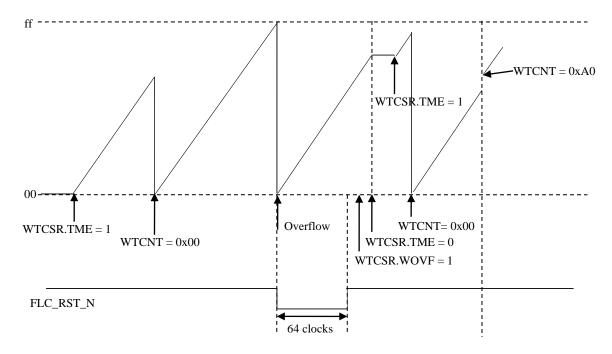


Figure 16-7. Operation in Watchdog Timer Mode

16.6.3. Interval Timer Mode

In the interval timer mode, an interrupt request for the interval interval is generated. The initial interval period is the WTCNT register up-count time from 0x00 to overflow. The initial interval period is determined by the WTCSR.CKS bit. To generate the interrupt in a shorter period than the initial interval period, set the value to the WTCNT register again in the interrupt routine. The writing to the WTCNT register is completed in a much shorter time than the count operation. To start the up-count operation of watchdog timer, set WTCSR.TME = 1. When the WTCNT register count is overflowed, the interrupt is generated. Write 1 to the WTCSR.IOVF bit in the interrupt routine to clear the interrupt flag.

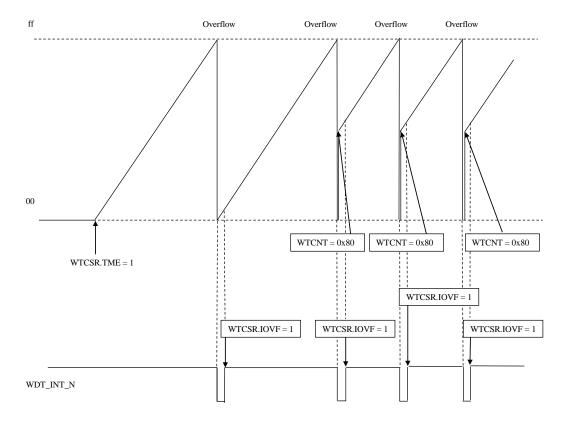


Figure 16-8. Operation in Interval Timer Mode

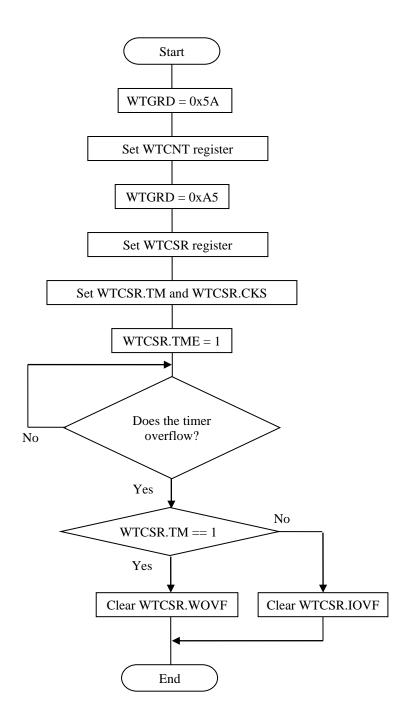


Figure 16-9. Flow Chart of Watchdog Timer Operation

17. 16-bit Timer (TMR)

17.1. Overview

The LSI has four 16-bit timer modules (TMR0, TMR1, TMR2, and TMR3). Table 17-1 shows the timer (TMR) functional descriptions, and Figure 17-1 shows the TMR block diagram.

Table 17-1. TMR Functional Descriptions

Item	Description					
	4 channels					
Number of Channels	Channel0 and Channel1: Operated by the 32-bit timer (cascade mode)					
	Channel2 and Channel3: Operated by the 32-bit timer (cascade mode)					
	TIOAn $(n = 0 \text{ to } 3)$:					
	CMPA input capture/phase A input for phase counting mode/compare match output A					
In 1/0 1	TIOBn (n = 0 to 3):					
Input/Output	CMPB input capture/phase B input for phase counting mode/compare match output B					
	TICn (n = $2/3$):					
	Phase Z input for phase counting mode					
Occupies Made	Normal mode (cascade mode, input capture, and compare match output)					
Operation Mode	Phase counting mode (cascade mode and input capture)					
	Counter clock:					
	CLKFAST is divided by 1, 4, 16, 64, 256, 1024, 4096, and 16384					
	Capture events:					
	CMPA: TIOAn input (rising edge, falling edge, and both edges)					
	Compare match A/B between TMR0 and TMR1					
	Events of Comparator0 to Comparator5					
Normal Mode	CMPB: TIOBn input (rising edge, falling edge, both edges),					
	Compare match A/B between TMR0 and TMR1					
	Events of Comparator0 to Comparator5					
	Counter clearing events:					
	Compare match A/B					
	TIOAn/TIOBn capturing					
	Event clearing from PWM					
	Counter clock: TIOAn/TIOBn input or comparator output phase					
	Capture events:					
	CMPA/B: Compare match A/B between TMR0 and TMR1					
Phase Counting Mode	Outputs of Comparator0 to Comparator5					
	Counter clearing events:					
	TIOAn/TIOBn/TICn input event					
	Event clearing from PWM					
	The TCMPAxn, TCMPBxn, TBUFAxn, and TBUFBxn registers are mapped to both the					
Data Transfer by DSAC	XDATA BUS and SFR BUS areas.					
	The CPU can read from or write to the TCMPAxn/Bxn register by the MOVX instruction.					
	Compare match or input capture A/B					
Interrupt	Counter overflow					
Interrupt	Counter underflow (only in the phase counting mode)					
	TIOAn/TIOBn/TICn input event					

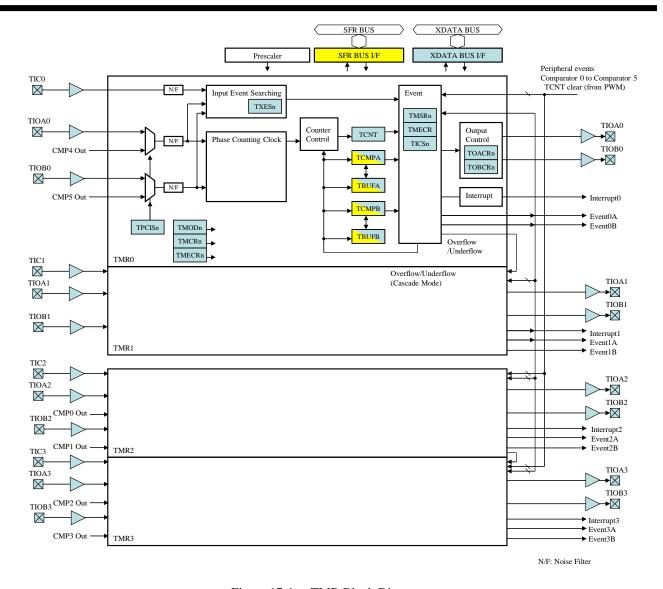


Figure 17-1. TMR Block Diagram

17.2. Register Descriptions

Table 17-2. List of XDATA BUS Registers

Symbol	Name	Address	Initial Value
TMOD0	Timer0 Control Mode Register	0xFA00	0x00
TMOD1	Timer1 Control Mode Register	0xFA01	0x00
TMSR0	Timer0 Status Register	0xFA02	0x00
TMSR1	Timer1 Status Register	0xFA03	0x00
TMCR0	Timer0 Control Register	0xFA04	0x00
TMCR1	Timer0 Control Register	0xFA05	0x00
TMECR0	Timer0 Event Clear Register	0xFA06	0x00
TMECR1	Timer1 Event Clear Register	0xFA07	0x00
TEMOD0	Timer0 Extend Mode Register	0xFA08	0x00
TEMOD1	Timer1 Extend Mode Register	0xFA09	0x00
TICS0	Timer0 Input Capture Select Register	0xFA0A	0x00
TICS1	Timer1 Input Capture Select Register	0xFA0B	0x00
TXES0	Timer0 External Event Select Register	0xFA0C	0x00
TXES1	Timer1 External Event Select Register	0xFA0D	0x00
TPSNF0	Timer0 Prescaler for Noise Filter Register	0xFA0E	0x00
TPSNF1	Timer1 Prescaler for Noise Filter Register	0xFA0F	0x00
TCMPAL0	Timer0 Compare Match A Low	0xFA10	0x00
TCMPAH0	Timer0 Compare Match A High	0xFA11	0x00
TCMPAL1	Timer1 Compare Match A Low	0xFA12	0x00
TCMPAH1	Timer1 Compare Match A High	0xFA13	0x00
TCMPBL0	Timer0 Compare Match B Low	0xFA14	0x00
TCMPBH0	Timer0 Compare Match B High	0xFA15	0x00
TCMPBL1	Timer1 Compare Match B Low	0xFA16	0x00
TCMPBH1	Timer1 Compare Match B High	0xFA17	0x00
TCNTL0	Timer0 Counter Low	0xFA18	0x00
TCNTH0	Timer0 Counter High	0xFA19	0x00
TCNTL1	Timer1 Counter Low	0xFA1A	0x00
TCNTH1	Timer1 Counter High	0xFA1B	0x00
TBUFAL0	Timer0 Buffer A Low	0xFA20	0x00
TBUFAH0	Timer0 Buffer A High	0xFA21	0x00
TBUFAL1	Timer1 Buffer A Low	0xFA22	0x00
TBUFAH1	Timer1 Buffer A High	0xFA23	0x00
TBUFBL0	Timer0 Buffer B Low	0xFA24	0x00
TBUFBH0	Timer0 Buffer B High	0xFA25	0x00
TBUFBL1	Timer1 Buffer B Low	0xFA26	0x00
TBUFBH1	Timer1 Buffer B High	0xFA27	0x00
TOACR0	Timer0 TIOA Output Control Register	0xFA30	0x00
TOACR1	Timer1 TIOA Output Control Register	0xFA31	0x00
TOBCR0	Timer0 TIOB Output Control Register	0xFA32	0x00
TOBCR1	Timer1 TIOB Output Control Register	0xFA33	0x00
TPCIS0	Timer0 Phase Counting Input Select Register	0xFA34	0x00

Symbol	Name	Address	Initial Value
TPCIS1	Timer1 Phase Counting Input Select Register	0xFA35	0x00
TMOD2	Timer2 Control Mode Register	0xFA40	0x00
TMOD3	Timer3 Control Mode Register	0xFA41	0x00
TMSR2	Timer2 Status Register	0xFA42	0x00
TMSR3	Timer3 Status Register	0xFA43	0x00
TMCR2	Timer2 Control Register	0xFA44	0x00
TMCR3	Timer3 Control register	0xFA45	0x00
TMECR2	Timer2 Event Clear Register	0xFA46	0x00
TMECR3	Timer3 Event Clear Register	0xFA47	0x00
TEMOD2	Timer2 Extend Mode Register	0xFA48	0x00
TEMOD3	Timer3 Extend Mode Register	0xFA49	0x00
TICS2	Timer2 Input Capture Select Register	0xFA4A	0x00
TICS3	Timer3 Input Capture Select Register	0xFA4B	0x00
TXES2	Timer2 External Event Select Register	0xFA4C	0x00
TXES3	Timer3 External Event Select Register	0xFA4D	0x00
TPSNF2	Timer2 Prescaler for Noise Filter Register	0xFA4E	0x00
TPSNF3	Timer3 Prescaler for Noise Filter Register	0xFA4F	0x00
TCMPAL2	Timer2 Compare Match A Low	0xFA50	0x00
TCMPAH2	Timer2 Compare Match A High	0xFA51	0x00
TCMPAL3	Timer3 Compare Match A Low	0xFA52	0x00
ТСМРАН3	Timer3 Compare Match A High	0xFA53	0x00
TCMPBL2	Timer2 Compare Match B Low	0xFA54	0x00
ТСМРВН2	Timer2 Compare Match B High	0xFA55	0x00
TCMPBL3	Timer3 Compare Match B Low	0xFA56	0x00
ТСМРВН3	Timer3 Compare Match B High	0xFA57	0x00
TCNTL2	Timer2 Counter Low	0xFA58	0x00
TCNTH2	Timer2 Counter High	0xFA59	0x00
TCNTL3	Timer3 Counter Low	0xFA5A	0x00
TCNTH3	Timer3 Counter High	0xFA5B	0x00
TBUFAL2	Timer2 Buffer A Low	0xFA60	0x00
TBUFAH2	Timer2 Buffer A High	0xFA61	0x00
TBUFAL3	Timer3 Buffer A Low	0xFA62	0x00
TBUFAH3	Timer3 Buffer A High	0xFA63	0x00
TBUFBL2	Timer2 Buffer B Low	0xFA64	0x00
TBUFBH2	Timer2 Buffer B High	0xFA65	0x00
TBUFBL3	Timer3 Buffer B Low	0xFA66	0x00
TBUFBH3	Timer3 Buffer B High	0xFA67	0x00
TOACR2	Timer2 TIOA Output Control Register	0xFA70	0x00
TOACR3	Timer3 TIOA Output Control Register	0xFA71	0x00
TOBCR2	Timer2 TIOB Output Control Register	0xFA72	0x00
TOBCR3	Timer3 TIOB Output Control Register	0xFA73	0x00
TPCIS2	Timer2 Phase Counting Input Select Register	0xFA74	0x00
TPCIS3	Timer3 Phase Counting Input Select Register	0xFA75	0x00

Table 17-3. List of SFR BUS Registers

Symbol	Name	Address	Initial Value
TCMPAL0	Timer0 Compare Match A Low	0x04	0x00
TCMPAL1	Timer1 Compare Match A Low	0x0C	0x00
ТСМРАН0	Timer0 Compare Match A High	0x04	0x00
TCMPAH1	Timer1 Compare Match A High	0x0C	0x00
TCMPBL0	Timer0 Compare Match B Low	0x05	0x00
TCMPBL1	Timer1 Compare Match B Low	0x0D	0x00
ТСМРВН0	Timer0 Compare Match B High	0x05	0x00
TCMPBH1	Timer1 Compare Match B High	0x0D	0x00
TBUFAL0	Timer0 Buffer A Low	0x06	0x00
TBUFAL1	Timer1 Buffer A Low	0x0E	0x00
TBUFAH0	Timer0 Buffer A Low	0x06	0x00
TBUFAH1	Timer1 Buffer A Low	0x0E	0x00
TBUFBL0	Timer0 Buffer B Low	0x07	0x00
TBUFBL1	Timer1 Buffer B Low	0x0F	0x00
TBUFBH0	Timer0 Buffer B High	0x07	0x00
TBUFBH1	Timer1 Buffer B High	0x0F	0x00
TCMPAL2	Timer2 Compare Match A Low	0x14	0x00
TCMPAL3	Timer3 Compare Match A Low	0x1C	0x00
TCMPAH2	Timer2 Compare Match A High	0x14	0x00
ТСМРАН3	Timer3 Compare Match A High	0x1C	0x00
TCMPBL2	Timer2 Compare Match B Low	0x15	0x00
TCMPBL3	Timer3 Compare Match B Low	0x1D	0x00
TCMPBH2	Timer2 Compare Match B High	0x15	0x00
ТСМРВН3	Timer3 Compare Match B High	0x1D	0x00
TBUFAL2	Timer2 Buffer A Low	0x16	0x00
TBUFAL3	Timer3 Buffer A Low	0x1E	0x00
TBUFAH2	Timer2 Buffer A High	0x16	0x00
TBUFAH3	Timer3 Buffer A High	0x1E	0x00
TBUFBL2	Timer2 Buffer B Low	0x17	0x00
TBUFBL3	Timer3 Buffer B Low	0x1F	0x00
TBUFBH2	Timer2 Buffer B High	0x17	0x00
TBUFBH3	Timer3 Buffer B High	0x1F	0x00

17.2.1. TMOD0/2 (Timer0/2 Control Mode Register)

When TMOD1.CASMD = 1, TMR0 and TMR1 operate as a timer of 32 bits \times 1 channel. TMR1 corresponds to the higher 16 bits and TMR0 corresponds to the lower 16 bits. Timer operation in this mode is controlled by the register of TMR0

When TMOD3.CASMD = 1, TMR2 and TMR3 operate as a timer of 32 bits \times 1 channel. TMR3 corresponds to the higher 16 bits and TMR2 corresponds to the lower 16 bits. Timer operation in this mode is controlled by the register of TMR2.

Registe	ter TMOD0		Timer0 Control Mode Register Address		0xFA00				
Registe	r	TMOD2		Timer2 (Control Mode Register	Address	0xFA	40	
Bit	В	it Name	R/W	Initial	Descript	tion		Remarks	
7	Т	MREN	R/W	0	Timer enable 0: Timer is disabled 1: Timer is enabled	0: Timer is disabled			
6	Т	MRIE	R/W	0	Timer interrupt master enable 0: Timer interrupt master is disabled 1: Timer interrupt master is enabled				
5	Cl	MPAEN	R/W	0	Compare match/input capture A of 0: Compare match/input capture 1: Compare match/input capture				
4	Cl	MPBEN	R/W	0	Compare match/input capture B of 0: Compare match/input capture 1: Compare match/input capture				
3	R	eserved	R	0	The read value is 0. The write val	lue must always	be 0.		
2			R/W	0	Prescaler setting				
1			R/W	0	000: 1/1 001: 1/4				
0	F	PRSCL	R/W	0	010: 1/16 011: 1/64 100: 1/256 101: 1/1024 110: 1/4096 111: 1/16384				

17.2.2. TMOD1/3 (Timer1/3 Control Mode Register)

When TMOD1.CASMD = 1, TMR0 and TMR1 operate according to the setting value of the TMOD0 register. The TMOD1 register's setting does not affect the operation.

When TMOD3.CASMD = 1, TMR2 and TMR3 operate according to the setting value of the TMOD2 register. The TMOD3 register's setting does not affect the operation.

Registe	egister TMOD1		Timer1 Control Mode Register		Address	0xFA	.01		
Registe	r	TMOD3		Timer3 (mer3 Control Mode Register Address 0xFA		mer3 Control Mode Register Address 0xFA		.41
Bit	B	it Name	R/W	Initial	Descrip	tion		Remarks	
7	Т	MREN	R/W	0	Timer enable 0: Timer is disabled 1: Timer is enabled	0: Timer is disabled			
6	Т	MRIE	R/W	0	Timer interrupt master enable 0: Timer interrupt master is disabled 1: Timer interrupt master is enabled				
5	CMPAEN R/W 0 Compare match A enable 0: Compare match A is disabled 1: Compare match A is enabled								
4	Cl	MPBEN	R/W	0	Compare match B enable 0: Compare match B is disabled 1: Compare match B is enabled				
3	C	ASMD	R/W	0	Cascade mode enable 0: Cascade mode is disabled 1: Cascade mode is enabled				
2			R/W	0	Prescaler setting				
1			R/W	0	000: 1/1 001: 1/4				
0	F	PRSCL	R/W	0	010: 1/16 011: 1/64 100: 1/256 101: 1/1024 110: 1/4096 111: 1/16384				

17.2.3. TMSRn (Timer n Status Register) (n = 0 to 3)

When TMOD1.CASMD = 1, the internal status is indicated in both the TMSR0 and TMSR1 registers. When TMOD3.CASMD = 1, the internal status is indicated in both the TMSR2 and TMSR3 registers.

Registe	r	TMSR0		Timer0	Timer0 Status Register		0xFA	x 02		
Registe	r	TMSR1		Timer1	Status Register	Address	0xFA	A 03		
Registe	r	TMSR2		Timer2	Status Register	Address	0xFA	A 42		
Registe	r	TMSR3		Timer3	Status Register	Address	0xFA	A 43		
Bit	В	it Name	R/W	Initial	Descripti	ion		Remarks		
7	R	eserved	R	0	The read value is 0. The write value	ie must always b	e 0.			
6	R	eserved	R	0	The read value is 0. The write value	ie must always b	e 0.			
5	R	eserved	R	0	The read value is 0. The write value	ie must always b	e 0.			
4	Т	TICLRF	TIC input interrupt flag Read 0: TIC input event does not occur							
3		UDF	R/C	0	Underflow flag Read 0: Underflow does not occur Read 1: Underflow occurs Write 0: No change					
2		OVF	R/C	0	Overflow flag Read 0: Overflow does not occu Read 1: Overflow occurs Write 0: No change Write 1: The bit is cleared	Read 0: Overflow does not occur Read 1: Overflow occurs Write 0: No change				
1		CMBF	R/C	0	Compare match/input capture B flag Read 0: Compare match B/input capture B does not occur Read 1: Compare match B/input capture B occurs Write 0: No change Write 1: The bit is cleared					
0		CMAF	R/C	0	Compare match/input capture A fl Read 0: Compare match A/inpu Read 1: Compare match A/inpu Write 0: No change Write 1: The bit is cleared	t capture A does				

17.2.4. TMCRn (Timer n Control Register) (n = 0 to 3)

When TMOD1.CASMD = 1, TMR0 and TMR1 operate according to the setting value of the TMCR0 register. The TMCR1 register's setting does not affect the operation.

When TMOD3.CASMD = 1, TMR0 and TMR1 operate according to the setting value of the TMCR2 register. The TMCR3 register's setting does not affect the operation.

0xFA05 0xFA44 0xFA45 Remarks
0xFA45
Remarks
ed
d
<u> </u>
ed
d
ning
ning
e

17.2.5. TMECRn (Timer n Event Clear Register) (n = 0 to 3)

When TMOD1.CASMD = 1, TMR0 and TMR1 operate according to the setting value of the TMECR0 register. The TMECR1 register's setting does not affect the operation.

When TMOD3.CASMD = 1, TMR2 and TMR3 operate according to the setting value of the TMECR2 register. The TMECR3 register's setting does not affect the operation.

Registe	er	TMECR0		Timer0 Event Clear Register		Address	0xFA	.06
Registe	er	TMECR1		Timer1 I	Event Clear Register	Address	0xFA	.07
Registe	er	TMECR2	2	Timer2 I	Event Clear Register	Address	0xFA	.46
Registe	er	TMECR3	3	Timer3 I	Event Clear Register	Address	0xFA	.47
Bit	В	it Name	R/W	Initial	Descrip	tion		Remarks
7	TICCLRS R/W		R/W	0	TIC event counter clearing enable 0: Counter clearing is disabled 1: Counter clearing is enabled			
6	R	Reserved R		0	The read value is 0. The write val			
5	R	Reserved R		0	The read value is 0. The write value must always be 0.			
4	R	Reserved R		0	The read value is 0. The write value must always be 0.			
3	P	P3CLRS R/W		0	PWM3 event counter clearing enable 0: Counter clearing is disabled 1: Counter clearing is enabled			
2	P	P2CLRS R/		0		/M2 event counter clearing enable): Counter clearing is disabled		
1	P	P1CLRS R/W		0	PWM1 event counter clearing enable 0: Counter clearing is disabled 1: Counter clearing is enabled			
0	P	0CLRS	R/W	0	PWM0 event counter clearing en 0: Counter clearing is disabled 1: Counter clearing is enabled			

17.2.6. TEMODn (Timer n Extend Mode Register) (n = 0 to 3)

When TMOD1.CASMD = 1, TMR0 and TMR1 operate according to the setting value of the TEMOD0 register. The TEMOD1 register's setting does not affect the operation.

When TMOD3.CASMD = 1, TMR2 and TMR3 operate according to the setting value of the TEMOD2 register. The TEMOD3 register's setting does not affect in the operation.

Registe	er 7	TEMOD0		Timer0 Extend Mode Register		Address	0xFA	.08
Registe	er T	ГЕМОО	1	Timer1 Extend Mode Register		Address	0xFA09	
Registe	Register TEMOD2		2	Timer2 I	Extend Mode Register	Address	0xFA	48
Registe	er I	TEMOD:	3	Timer3 I	Extend Mode Register	Address	0xFA	49
Bit	Bit 1	Name	R/W	Initial	Descript	ion		Remarks
7	Res	erved	R	0	The read value is 0. The write val	ue must always	be 0.	
6	Res	erved	R	0	The read value is 0. The write val	ue must always	be 0.	
5	BU.	BUFMD R/W		0	Buffer mode enable 0: Buffer mode is disabled 1: Buffer mode is enabled			
4	FILEN R/W		R/W	0	Input filter enable 0: Input filter is disabled (synchronization of 2-stage flip-flop (F/F)) 1: Input filter is enabled (importing by matching of 3 sampling data)			
3	TICIE R/W		R/W	0	TIC input interrupt enable 0: TIC input interrupt is disable 1: TIC input interrupt is enable	ed		
2			R/W	0	Timer extension mode setting			
1		R/W		0	000: Normal mode 001: Phase counting mode 1			
0	0 EMOD		R/W	0	010: Phase counting mode 2 011: Phase counting mode 3 100: Phase counting mode 4 Other than above: Setting proh	ibited		

17.2.7. TICS0 (Timer0 Input Capture Select Register)

Registe	r TICS0		Timer0 Input Capture Select Register		Address	0x	FA0A
Bit	Bit Name	R/W	Initial	Description	1		Remarks
7		R/W	0	TCMPB input capture setting			
6		R/W	0	0000: Compare match register 0001: Reserved			
5		R/W	0	0010: Reserved			
		10/ 11	Ů,	0011: Compare match A of TM			
4	CMPBCS	R/W	0	0100: Compare match B of TM 0101: TIOB input event 0110: Reserved 0111: Reserved 1000: Comparator0 event 1001: Comparator1 event 1010: Comparator2 event 1011: Comparator3 event 1100: Comparator4 event 1101: Comparator5 event 1110: Reserved			
				1111: Reserved			
3		R/W	0	TCMPA input capture setting 0000: Compare match register			
2		R/W	0	0001: Reserved			
1		R/W	0	0010: Reserved			
0	CMPACS	R/W	0	0011: Compare match A of TM 0100: Compare match B of TM 0101: TIOA input event 0110: Reserved 0111: Reserved 1000: Comparator0 event 1001: Comparator1 event 1010: Comparator2 event 1011: Comparator3 event 1100: Comparator4 event 1101: Comparator5 event 1110: Reserved 1111: Reserved			

^{*} Do not select in the cascade mode (TMODn.CASMD = 1).

17.2.8. TICS1 (Timer1 Input Capture Select Register)

When TMOD1.CASMD = 1, TMR0 and TMR1 operate according to the setting value of the TICS0 register. The TICS1 register's setting does not affect the operation.

Registe	r TICS1		Timer1 Inpu	t Capture Select Register	Address	02	kFA0B
Bit	Bit Name	R/W	Initial	Description			Remarks
7		R/W	0	TCMPB input capture setting			
6		R/W	0	0000: Compare match register 0001: Compare match A of TMR0)		
5		R/W	0	0010: Compare match B of TMR0			
4	CMPBCS	R/W	0	0011: Reserved 0100: Reserved 0101: TIOB input event 0110: Reserved 0111: Reserved 1000: Comparator0 event 1001: Comparator1 event 1010: Comparator2 event 1011: Comparator3 event 1100: Comparator4 event 1101: Comparator5 event 1110: Reserved 1111: Reserved			
3		R/W	0	TCMPA input capture setting			
2		R/W	0	0000: Compare match register 0001: Compare match A of TMR()		
1		R/W	0	0010: Compare match B of TMR(
0	CMPACS	R/W	0	0011: Reserved 0100: Reserved 0101: TIOA input event 0110: Reserved 0111: Reserved 1000: Comparator0 event 1001: Comparator1 event 1010: Comparator2 event 1100: Comparator3 event 1100: Comparator4 event 1101: Comparator5 event 1110: Reserved 1111: Reserved			

17.2.9. TICSn (Timer n Input Capture Select Register) (n = 2 to 3)

When TMOD3.CASMD = 1, TMR2 and TMR3 operate according to the setting value of the TICS2 register. The TICS3 register's setting does not affect the operation.

Registe	er	TICS2		Timer2 Input Capture Select Register		Address	0xF	A4A	
Registe	er TICS3			Timer3 Inpu	nt Capture Select Register	Address	0xFA4B		
Bit	Bit	t Name	R/W	Initial	Descripti	on		Remarks	
7			R/W	0	TCMPB input capture setting				
6	CMPBCS		R/W	0	0000: Compare match registe 0001: TMR0 compare match				
5			R/W	0	0010: TMR0 compare match	В			
4			R/W	0	0011: TMR1 compare match 0100: TMR1 compare match 0101: TIOB input event 0110: Reserved 0111: Reserved 1000: Comparator0 event 1001: Comparator1 event 1010: Comparator2 event 1011: Comparator3 event 1100: Comparator4 event 1101: Comparator5 event 1110: Reserved 1111: Reserved				
3			R/W	0	TCMPA input capture setting 0000: Compare match registe	r			
2			R/W	0	0001: TMR0 compare match				
1			R/W	0	0010: TMR0 compare match				
0	CMPACS		R/W	0	O011: TMR1 compare match 0100: TMR1 compare match 0101: TIOA input event 0110: Reserved 0111: Reserved 1000: Comparator0 event 1001: Comparator1 event 1010: Comparator2 event 1011: Comparator3 event 1100: Comparator4 event 1101: Comparator5 event 1110: Reserved 1111: Reserved				

17.2.10. TXESn (Timer n External Event Select Register) (n = 0 to 3)

When TMOD1.CASMD = 1, TMR0 and TMR1 operate according to the setting value of the TXES0 register. The setting of the TXES1 register does not affect the operation.

When TMOD3.CASMD = 1, TMR2 and TMR3 operate according to the setting value of the TXES2 register. The TXES3 register's setting does not affect the operation.

Registe	r	TXES0		Timer0 External Event Select Register		Address	0xFA0C	
Registe	r	TXES1		Timer1 External Event Select Register		Address	0xFA0D	
Registe	ter TXES2		Timer2 Exte	rnal Event Select Register	Address	0xF	FA4C	
Registe	r	TXES3		Timer3 Exte	rnal Event Select Register	Address	0xF	A4D
Bit	Bi	t Name	R/W	Initial	Description	1		Remarks
7	Re	eserved	R	0	The read value is 0. The write value	ue must alway	s be 0.	
6	Re	eserved	R	0	The read value is 0. The write value	ue must alway	s be 0.	
5			R/W	0	TIC input event setting			
4	TICEVS		R/W	0	00: No event is selected 01: Falling edge 10: Rising edge 11: Both edge			
3			R/W	0	TIOB input event setting			
2	TIBEVS		R/W	0	00: No event is selected 01: Falling edge 10: Rising edge 11: Both edge			
1			R/W	0	TIOA input event setting			
0	TIAEVS		R/W	0	00: No event is selected 01: Falling edge 10: Rising edge 11: Both edge			

17.2.11. TPSNFn (Timer n Prescaler for Noise Filter Register) (n = 0 to 3)

When TMOD1.CASMD = 1, TMR0 and TMR1 operate according to the setting value of the TPSNF0 register. The setting of the TPSNF1 register does not affect in the operation.

When TMOD3.CASMD = 1, TMR2 and TMR3 operate according to the setting value of the TPSNF2 register. The TPSNF3 register's setting does not affect in the operation.

Registe	r	TPSNF0		Timer0	imer0 Prescaler for Noise Filter Register Address 0x			FA0E
Registe	r	TPSNF1		Timer1 Prescaler for Noise Filter Register Address 0x			FA0F	
Registe	rister TPSNF2		Timer2	Prescaler for Noise Filter Register	Address	0xl	FA4E	
Registe	r	TPSNF3		Timer3	Prescaler for Noise Filter Register	Address	0x1	FA4F
Bit	Bi	it Name	R/W	Initial	Description		Remarks	
7	R	eserved	R	0	The read value is 0. The write value	must always be	0.	
6	R	eserved	R	0	The read value is 0. The write value	must always be	0.	
5	R	eserved	R	0	The read value is 0. The write value	must always be	0.	
4	R	Reserved R		0	The read value is 0. The write value			
3	R	Reserved R		0	The read value is 0. The write value			
2		R/W (Prescaler setting of noise filter			
1			R/W 0 000: 1/1					
0	NI	FPSCLC	R/W	0	001: 1/16 010: 1/128 011: 1/1024 100: 1/8192 101: 1/65536 110: 1/262144 111: 1/1048576 The sampling frequency of the inproduct of the CLKFAST frequency setting value. For example, if CLI NFPSCLC = 0b111, the sampling 17.5 ms.	multiplied by tl KFAST = 60 M	he above IHz and	

17.2.12. TCMPALn (Timer n Compare Match A Low) (n = 0 to 3)

Registe	r	TCMPA	L0	Timer0 Com	pare Match A Low	Address	0xFA10	0x04
Registe	r	TCMPA	L1	Timer1 Com	pare Match A Low	Address	0xFA12	0x0C
Registe	r	TCMPAL2		Timer2 Com	pare Match A Low	Address	0xFA50	0x14
Registe	r	TCMPAL3		Timer3 Com	pare Match A Low	Address	0xFA52	0x1C
Bit	Bi	t Name	R/W	Initial	Description			Remarks
7			R/W	0				
6		<u>-</u>	R/W	0				
5			R/W	0	Lawar Shita of assessment ma			
4	C	MPAL	R/W	0	Lower 8 bits of compare ma			
3	C	WIPAL	R/W	0	The CPU can read from/v			
2			R/W	0	MOVX instruction only.			
1			R/W	0				
0			R/W	0				

17.2.13. TCMPAHn (Timer n Compare Match A High) (n = 0 to 3)

Registe	r	TCMPA	Н0	Timer0 C	ompare Match A High	Address	0xFA11	0x04
Registe	r	TCMPA	H1	Timer1 C	Timer1 Compare Match A High		0xFA13	0x0C
Registe	r	TCMPA	H2	Timer2 Compare Match A High		Address	0xFA51	0x14
Registe	r	ТСМРАН3		Timer3 C	ompare Match A High	Address	0xFA53	0x1C
Bit	Bi	t Name	R/W	Initial	Descr	ription		Remarks
7			R/W	0				
6			R/W	0				
5			R/W	0	YY 1 011 C	-4-1- A		
4		MPAH	R/W	0	Higher 8 bits of compare ma			
3	C.	MPAH	R/W	0	The CPU can read from/write to these bits using the		its using the	
2			R/W	0	MOVX instruction only.			
1			R/W	0				
0			R/W	0				

17.2.14. TCMPBLn (Timer n Compare Match B Low) (n = 0 to 3)

Registe	r	TCMPBI	L0	Timer0 Com	pare Match B Low	Address	0xFA14	0x05	
Registe	r	TCMPBI	L1	Timer1 Com	pare Match B Low	Address	0xFA16	0x0D	
Registe	r	TCMPBI	L2	Timer2 Com	pare Match B Low	Address	0xFA54	0x15	
Registe	ster TCMPBL3		Timer3 Com	pare Match B Low	Address	0xFA56	0x1D		
Bit	Bi	t Name	R/W	Initial	Desc	ription		Remarks	
7			R/W	0					
6		-	R/W	0					
5			R/W	0	Lower 9 hits of commons me				
4	C	MPBL	R/W	0	Lower 8 bits of compare ma				
3	C	MFBL	R/W	0	The CPU can read from/v MOVX instruction only.	The CPU can read from/write to these bits using the			
2			R/W	0	MOVA instruction only.				
1			R/W	0					
0			R/W	0					

17.2.15. TCMPBHn (Timer n Compare Match B High) (n = 0 to 3)

Registe	r	TCMPBI	Н0	Timer0 Com	pare Match B High	Address	0xFA15	0x05
Registe	r	TCMPBI	H1	Timer1 Com	pare Match B High Address 0xFA17			0x0D
Registe	r	TCMPBH2		Timer2 Com	pare Match B High	Address	0xFA55	0x15
Registe	egister TCMPBH3		Н3	Timer3 Com	pare Match B High	Address	0xFA57	0x1D
Bit	Bi	Bit Name R/W Initial Descri			ription		Remarks	
7			R/W	0				
6		_	R/W	0				
5			R/W	0	H:-h 0 h:tf	adala D		
4	C	MPBH	R/W	0	Higher 8 bits of compare ma	aten B		
3	C.	MPBH	R/W	0	The CPU can read from/v	vrite to these b	its using the	
2			R/W	0	MOVX instruction only.			
1			R/W	0				
0			R/W	0				

17.2.16. TCNTLn (Timer n Counter Low) (n = 0 to 3)

Registe	r	TCNTL0		Timer0 Cou	nter Low	Address	0xF	A 18
Registe	r	TCNTL1		Timer1 Cour	nter Low	Address	0xFA	A1A
Registe	r	TCNTL2		Timer2 Cour	nter Low	Address	0xF	A58
Registe	gister TCNTL3		Timer3 Cou	nter Low	Address 0xFA		A5A	
Bit	Bi	t Name	R/W	Initial	Descrip	otion		Remarks
7			R/W	0				
6			R/W	0				
5			R/W	0				
4	т	CNTL	R/W	0		1,,,,		
3	1	CNIL	R/W	0	Lower 8 bits of the counter va	iue		
2			R/W	0				
1			R/W	0				
0			R/W	0				

17.2.17. TCNTHn (Timer n Counter High) (n = 0 to 3)

Registe	r	TCNTHO)	Timer0 Cour	nter High	Address	0xF	A 19
Registe	r	TCNTH1		Timer1 Counter High		Address	0xFA	A1B
Registe	er TCNTH2		Timer2 Cour	nter High	Address	0xF	A 59	
Registe	r	TCNTH3	3	Timer3 Cour	ter High Address		0xFA	A5B
Bit	Bi	t Name	R/W	Initial	Descrip	otion		Remarks
7			R/W	0				
6			R/W	0				
5			R/W	0	W. L. Oliv. Cd.			
4	т	CNTH	R/W	0		1		
3	1	CNIH	R/W	0	Higher 8 bits of the counter va	uue		
2			R/W	0				
1			R/W	0				
0			R/W	0				

17.2.18. TBUFALn (Timer n Buffer A Low) (n = 0 to 3)

Register	r	TBUFAI	_0	Timer0 Buff	er A Low	Address	0xFA20	0x06
Register	r	TBUFAI	_1	Timer1 Buff	imer1 Buffer A Low		0xFA21	0x0E
Register	r	TBUFAL2		Timer2 Buff	er A Low	Address	0xFA60	0x16
Register	r	TBUFAL3		Timer3 Buff	er A Low	Address	0xFA61	0x1E
Bit	Bi	it Name	R/W	Initial	Descrip	otion		Remarks
7		R/W 0						
6			R/W	0				
5			R/W	0	I 0 h:4f hff A			
4		UFAL	R/W	0	Lower 8 bits of buffer A			
3	Б	UFAL	R/W	0	The CPU can read from/wri			
2			R/W	0	MOVX instruction only.			
1			R/W	0				
0			R/W	0				

17.2.19. TBUFAHn (Timer n Buffer A High) (n = 0 to 3)

Register	r	TBUFAI	10	Timer0 Buff	er A High	Address	0xFA22	0x06
Register	1	TBUFAI	I 1	Timer1 Buff	er A High	Address	0xFA23	0x0E
Register	Register TBUFAH2		H2	Timer2 Buff	er A High	Address	0xFA62	0x16
Register	Register TBUFAH3		1 3	Timer3 Buff	r A High Address 0xFA63			0x1E
Bit	Bit	Name	R/W	Initial	Descrip	otion		Remarks
7		R/W 0						
6			R/W	0				
5			R/W	0	III ah an O hita af haiffan A			
4	DI	TEATI	R/W	0	Higher 8 bits of buffer A			
3	В	JFAH	R/W	0	The CPU can read from/wri	te to these b	its using the	
2			R/W	0	MOVX instruction only.			
1			R/W	0				
0			R/W	0				

17.2.20. TBUFBLn (Timer n Buffer B Low) (n = 0 to 3)

Register	r	TBUFBI	_0	Timer0 Buff	er B Low	Address	0xFA24	0x07
Register	r	TBUFBI	_1	Timer1 Buff	er B Low	Address	0xFA25	0x0F
Register	r	TBUFBL2		Timer2 Buff	er B Low	Address	0xFA64	0x17
Register	r	TBUFBL3		Timer3 Buff	er B Low	Address	0xFA65	0x1F
Bit	B	it Name	R/W	Initial	Descrij	otion		Remarks
7			R/W	0				
6			R/W	0				
5			R/W	0	Lower 8 bits of buffer B			
4	г	BUFBL	R/W	0				
3	Е	OUFBL	R/W	0	The CPU can read from/wr	ite to these b	its using the	
2			R/W	0	MOVX instruction only.			
1			R/W	0				
0		R/W R/W		0				

17.2.21. TBUFBHn (Timer n Buffer B High) (n = 0 to 3)

Register	r	TBUFBI	HO	Timer0 Buff	er B High	Address	0xFA26	0x07
Register	r	TBUFBI	H1	Timer1 Buff	Timer1 Buffer B High		0xFA27	0x0F
Register	r	TBUFBH2		Timer2 Buff	er B High	Address	0xFA66	0x17
Register	tegister TBUFBH3		H3	Timer3 Buff	er B High	0x1F		
Bit	Bit	t Name	R/W	Initial	Descrip	otion		Remarks
7			R/W	0				
6			R/W	0				
5			R/W	0				
4	D	UFBH	R/W	0	Higher 8 bits of buffer B			
3	В	UFBH	R/W	0	The CPU can read from/wr			
2			R/W	0	MOVX instruction only.			
1			R/W	0				
0			R/W	0				

17.2.22. TOACRn (Timer n TIOA Output Control Register) (n = 0 to 3)

When TMOD1.CASMD = 1, TMR0 and TMR1 operate according to the setting value of the TOACR0 register. The setting value of the TOACR1 register does not affect. In addition, TMR2 and TMR3 operate according to the setting value of the TOACR2 register. The setting value of the TOACR3 register does not affect.

Registe	r	TOACRO)	Timer0 T	IOA Output Control Register	Address	0xI	FA30
Registe	r	TOACR	1	Timer1 T	IOA Output Control Register	Address	0xI	FA31
Registe	r	TOACR	2	Timer2 T	IOA Output Control Register	Address	0xI	FA70
Registe	r	TOACR3	3	Timer3 T	IOA Output Control Register	Address	0xI	FA71
Bit	Bit Name R/W			Initial	Description			Remarks
7	R	eserved	R	0	The read value is 0. The write value r	nust always be	e 0.	
6	R	eserved	R	0	The read value is 0. The write value r	nust always be	e 0.	
5			R/W	0	TIOA output level setting when	TCNT is cle	eared or	
4	TOCLR		R/W	0	overflows 00: No change 01: The output level is set to low 10: The output level is set to high 11: Toggle			
3			R/W	0	TIOA output level setting at TCMPA	matching		
2	TC	OCMPA	R/W	0	00: No change 01: The output level is set to low 10: The output level is set to high 11: Toggle			
1			W	0	TIOA initial output level setting			
0	TOINI*		W	0	00: No change 01: The output level is set to low 10: The output level is set to high 11: Setting prohibited The read value is always 0. The setting of the bit has the highes settings of any other events.	st priority over	r the pin	

^{*}When TMR0 and TMR1 are in the cascade mode, the initial output levels of TIOA0 and TIOA1 are determined by the setting of the TOACR0.TOINI bit. In addition, when TMR2 and TMR3 are in the cascade mode, the initial output levels of TIOA2 and TIOA3 are determined by the setting of the TOACR2.TOINI bit.

17.2.23. TOBCRn (Timer n TIOB Output Control Register) (n = 0 to 3)

When TMOD1.CASMD = 1, TMR0 and TMR1 operate according to the setting value of the TOBCR0 register. The setting value of the TOBCR1 register does not affect. In addition, TMR2 and TMR3 operate according to the setting value of the TOBCR2 register. The setting value of the TOBCR3 register does not affect.

Register	r	TOBCRO)	Timer0 TI	OB Output Control Register	Address	0:	xFA32
Register	r	TOBCR1		Timer1 TI	TIOB Output Control Register Address		0:	xFA33
Register	r	TOBCR2	2	Timer2 TI	er2 TIOB Output Control Register Address 0.			xFA72
Register	Register TOBCR3		Timer3 TI	r3 TIOB Output Control Register Address 0			xFA73	
Bit	Bit Bit Name R/W		R/W	Initial	Description			Remarks
7	R	eserved	R	0	The read value is 0. The write value	must always be	e 0.	
6	R	eserved	R	0	The read value is 0. The write value	must always be	e 0.	
5		R/W		0	TIOB output level setting when	TCNT is clea	red or	
4	Т	OCLR	R/W	0	overflows 00: No change 01: The output level is set to low 10: The output level is set to high 11: Toggle			
3			R/W	0	TIOB output level setting at TCMP			
2	TO	ОСМРВ	R/W	0	00: No change 01: The output level is set to low 10: The output level is set to high 11: Toggle			
1			W	0	TIOB initial output level setting			
0	TOINI*		W	0	00: No change 01: The output level is set to low 10: The output level is set to high 11: Setting prohibited The read value is always 0. The writing by change of the TIO higher priority than any other co output level is changed.	o OB output level		

^{*} When TMR0 and TMR1 are in the cascade mode, the initial output levels of TIOB0 and TIOB1 are determined by the setting of the TOBCR0.TOINI bit. In addition, when TMR2 and TMR3 are in the cascade mode, the initial output levels of TIOB2 and TIOB3 are determined by the setting of the TOBCR2.TOINI bit.

17.2.24. TPCISn (Timer n Phase Counting Input Select Register) (n = 0 to 3)

When TMOD1.CASMD = 1, TMR0 and TMR1 operate according to the setting value of the TPCIS0 register. The setting value of the TPCIS1 register is ignored. In addition, TMR2 and TMR3 operate according to the setting value of the TPCIS2 register. The setting value of the TPCIS3 register is ignored.

Registe	r	TPCIS0		Timer0 Phase Counting Input Select Register Address		0xFA34	
Registe	r	TPCIS1		Timer1	er1 Phase Counting Input Select Register Address		0xFA35
Registe	r	TPCIS2		Timer2	Phase Counting Input Select Register	Address	0xFA74
Registe	r	TPCIS3		Timer3	Phase Counting Input Select Register	Address	0xFA75
Bit	В	it Name	R/W	Initial	Description		Remarks
7	R	Reserved	R	0	The read value is 0. The write value must always	ys be 0.	
6	R	Reserved	R	0	The read value is 0. The write value must always	ys be 0.	
5	R	Reserved	R	0	The read value is 0. The write value must alway	ys be 0.	
4	R	Reserved	R	0	The read value is 0. The write value must always be 0.		
3	R	Reserved	R	0	0 The read value is 0. The write value must always be 0.		
2	R	Reserved	R	0	The read value is 0. The write value must alway	ys be 0.	
1	7	ΓIBSEL	R/W	0	TIOB input selection 0: TIOB input pin 1: Comparator output The bit is referred to when the phase counting mode is used (see Table 17-4)		
0	7	ΓIASEL	R/W	0	(see Table 17-4). TIOA input selection 0: TIOA input pin 1: Comparator output The bit is referred to when the phase counting mode is used (see Table 17-4).		

Table 17-4. Correspondence between Channel and Comparator Output in Phase Counting Mode

TMR Channel	TOIA Input (TIASEL = 1)	TIOB Input (TIBSEL = 1)
TMR0	Comparator4 output	Comparator5 output
TMR1	_	_
TMR2	Comparator0 output	Comparator1 output
TMR3	Comparator2 output	Comparator3 output

17.3. Operation

17.3.1. 16-bit Register Access

When reading from or writing to the TCNTxn, TCMPxxn, or TBUFxxn register, read from or write to the lower 8-bit register and the corresponding higher 8-bit register continuously.

• TCNTxn Register

- Writing:

The data written to the TCNTLn register (lower 8 bits) is temporarily buffered. The buffered lower 8 bits is simultaneously written to the counter with writing to the TCNTHn register (higher 8 bits).

- Reading:

When reading the TCNTLn register (lower 8 bits), the value of the TCNTHn register (higher 8 bits) is buffered. When reading the TCNTHn register, the buffered data is read.

• TCMPxxn and TBUFxxn Registers

The TCMPxxn and TBUFxxn registers are mapped to both the XDATA BUS and the SFR BUS areas. The TCMPxxn and TBUFxxn registers are 16-bit width. In the XDATA area, the lower 8-bit and higher 8-bit registers are mapped to continuous addresses. The mapping order is little endian. In the SFR BUS area, the lower 8-bit and higher 8-bit registers are mapped to the same address. These registers can be accessed from the DSAC or the EPU by the 16-bit access method only. The CPU can be read from or written to using the MOVX instruction only. When the CPU accesses to the TCMPxxn and TBUFxxn registers by the 8-bit access method, the following ways are used:

- Writing:

The data written to the TCMPxLn or the TBUFxLn register (lower 8 bits) is temporarily buffered. The buffered lower 8-bit data is simultaneously written to the TCMPxLn or TBUFxLn register with writing to the TCMPxHn or the TBUFxHn register (higher 8 bits).

- Reading:

When reading the TCMPxLn or TBUFxLn register (lower 8 bits), the value of the TCMPxHn or TBUFxHn register (higher 8 bits) is buffered. When reading from the TCMPxLn or the TBUFxHn register (higher 8 bits), the buffered data is read.

17.3.2. Counter Operation

When the TMODn.TMREN bit is set to 1, the 16-bit counter (TCNT) starts counting from the values set in the TCNTLn and TCNTHn registers. The initial value of the TCNT is 0x0000.

When the write access to the TCNT and the overflow of the TCNT simultaneously occur, the write access takes priority. The priority of the counter operation is as follows:

Writing to the TCNT by a program > clearing of the TCNT > counting up/down

17.3.3. Compare Match Operation

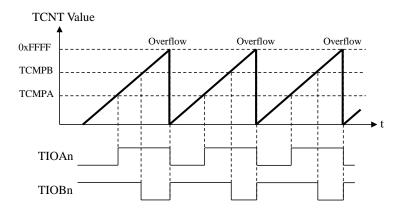
The compare match generates an event when the value of the 16-bit counter (TCNT) matches the setting value of the TCMPA or the TCMPB. The value of TCMPA is set to the TCMPALn and TCMPAHn registers. The value of TCMPB is set to the TCMPBLn and TCMPBHn registers.

When the TMODn.CMPAEN bit is set to 1, the operation of compare match A is enabled. When the TMODn.CMPBEN bit is set to 1, the operation of compare match B is enabled.

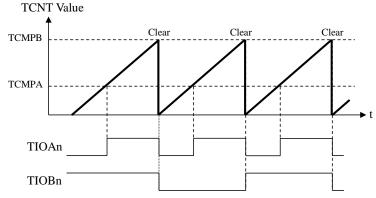
When compare match A is detected, the TMSRn.CMAF bit is set to 1. When compare match B is detected, the TMSRn.CMBF bit is set to 1. An event and an interrupt can be generated at the timing that compare match is detected (For details, see Section 17.3.14). When the writing to the compare match registers and the compare match simultaneously occur, the compare match takes priority.

17.3.4. Compare Match Output

Each channel of the TMR has 2 types of compare match output (TIOAn and TIOBn).


When the TCMPA register (the TCMPALn and TCMPAHn registers) is operated as a register for compare match, the output level of the TIOAn pin can be changed by the following events: The compare match of the TCMPA register, and the overflow or clearing of the 16-bit counter (TCNT). The initial value of the TIOAn pin output is defined by the TOACRn.TOINI bits. The output level of the TIOAn pin after the compare match is defined by the TOACRn.TOCMPA bits. The output level of the TIOAn pin after the overflow or clearing of TCNT is defined by the TOACRn.TOCLR bits.

When the TCMPB register (the TCMPBLn and TCMPBHn registers) is operated as a register for compare match, the output level of the TIOBn pin can be changed by the following events: The compare match of the TCMPB register, and the overflow or clearing of the TCNT. The initial value of the TIOBn pin output is defined by the TOBCRn.TOINI bits. The output level of the TIOBn pin after the compare match is defined by the TOBCRn.TOCMPB bits. The output level of the TIOBn pin after the overflow or clearing of TCNT is defined by the TOBCRn.TOCLR bits.


When a clearing event and a writing 0x0000 to the TCNT simultaneously occur, the TCNT is changed to 0x0000 by writing, and the levels of the TIOAn and TIOBn pins are also changed.

The priority of the output level setting is as follows:

- TIOAn: TOACRn.TOINI bits > overflow or clearing of TCNT > compare match A
- TIOBn: TOBCRn.TOINI bits > overflow or clearing of TCNT > compare match B

a) TMCRn.ACLEN = 0b0, TOACRn.TOCMPA = 0b10, TOACRn.TOCLR = 0b01, TOBCRn.TOCMPB = 0b01, TOBCRn.TOCLR = 0b10

b) TMCRn.ACLEN = 0b1, TMCRn.ACLSEL = 0b1, TOACRn.TOCMPA = 0b01, TOACRn.TOCLR = 0b10, TOBCRn.TOCMPB = 0b11, TOBCRn.TOCLR = 0b11

Figure 17-2. Compare Match Output Operation

17.3.5. Automatic Clearing

The 16-bit counter (TCNT) is cleared by generating compare match. When TMCRn.ACLEN bit is set to 1, the

clearing operation of the TCNT by compare match can be enabled. To automatically clear the TCNT by the compare match A or B, set the TMCRn.ACLSEL bit to 0 or 1, respectively. When automatic clearing is disabled, the TCNT counts up to 0xFFFF, and then it is changed to 0x0000. In addition, the TMSRn.OVF bit that indicates overflowing of the TCNT is set to 1.

17.3.6. PWM Event Clearing

To clear the 16-bit counter (TCNT) by the TMR clearing event of PWM0, PWM1, PWM2, and PWM3, set TMECRn.PxCLRS = 1 (x = 0 to 3: channel numbers of the PWM).

17.3.7. TIC Input Event Clearing

To clear The 16-bit counter (TCNT) by the TICn input event, set TMECRn.TICCLRS = 1. The TICn input event is defined by the TXESn.TICEVS bits. Clearing operation by the TICn input event is synchronized with the CLKFAST. This is not synchronized with the timing of counting up of the prescaler and the timing of counting up or down in the phase counting mode.

17.3.8. 32-bit Counter Mode (Cascade Mode)

In the cascade mode, the 2 counters connected in series operate as a 32-bit counter. The cascade mode can be used in the normal mode and the phase counting mode. When the TMOD1.CASMD bit is set to 1, the 16-bit counter (TCNT) of the TMR0 becomes the lower 16-bit counter, and the TCNT of the TMR1 becomes the higher 16-bit counter. When the TMOD3.CASMD bit is set to 1, the TCNT of the TMR2 becomes the lower 16-bit counter, and the TCNT of TMR3 becomes the higher 16-bit counter.

In the cascade mode, the timer operates according to the register settings of small number channels. The register settings of large number channels are ignored. For the cascade mode of the TMR0 and TMR1, the setting of the TMR0 is effective. For the cascade mode of the TMR2 and TMR3, the setting of the TMR2 is effective.

The TMSRn register that indicates the TMR status is reflected in the cascaded 2 channels. The flag must be cleared for each channel.

For the input pin, the pin of the smaller number channel out of the cascaded pair channels is used. The output pins of both the channels are set by the smaller number channel of the cascaded pair channels. The same signal is output from the output pins of both the channels.

An interrupt and an event are set by the smaller number channel of the cascaded pair channels, and output from both the channels.

17.3.9. Compare Match Timing

Figure 17-3 shows the timing of a compare match.

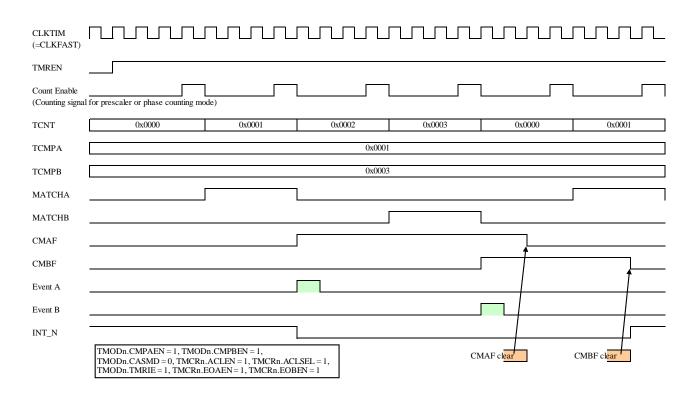


Figure 17-3. Compare Match Timing

When the TMODn.TMREN bit is set to 1, the 16-bit counter (TCNT) is counted up from a preset value. The initial value of the TCNT is 0x0000. The TMODn.PRSCL bits determine the count-up timing of the TCNT or the count-down timing of the TCNT in the phase counting mode.

Figure 17-3 shows an operation when dividing CLKFAST by 4 is selected. This operation is described as follows:

- When the TCNT matches the value of the TCMPA register (the TCMPALn and TCMPAHn registers), the TMSRn.CMAF bit is set at the next update timing of the TCNT.
- When TCNT matches the value of the TCMPB register (the TCMPBLn and TCMPBHn registers), the TMSRn.CMBF bit is set at the next update timing of the TCNT.
- The compare match interrupt (INT_N) occurs at the same time as the TMSRn.CMAF bit or the TMSRn.CMBF bit is set.
- When the TCNT matches the TCMPB register during TMCRn.ACLEN =1 and TMCRn.ACLSEL = 1, the TCNTLn/Hn register is cleared at the next update timing of the TCNT.
- When the TMCRn.EOAEN is set to 1, the Event A is output at the timing that the TMSRn.CMAF bit is set.
- When the TMCRn.EOBEN is set to 1, the Event B is output at the timing that the TMSRn.CMBF bit is set.

17.3.10. Input Capture Mode

In the input capture mode, the 16-bit counter (TCNT) value is imported to the TCMPA register (the TCMPALn and TCMPAHn registers) or TCMPB (the TCMPBLn and TCMPBHn registers) register by the selected event.

The operation mode of the TCMPA register is determined by the TICSn.CMPACS bits. When the TICSn.CMPACS bits are set to other than 0b000, the TCMPA register operates in the input capture mode. When the event selected by the TICSn.CMPACS bits is received, the TCNT value is imported to the TCMPA register. When TICSn.CMPACS = 0b011, the TCMPA register performs an input capture operation by the TIOAn input event. The TIOAn input event is defined by the TXESn.TIAEVS bits.

The operation mode of the TCMPB register is determined by the TICSn.CMPBCS bits. When the TICSn.CMPBCS bits are set to other than 0b000, the TCMPB register operates in the input capture mode. When the event selected by the TICSn.CMPBCS bits is received, the TCNT value is imported to the TCMPB register. When TICSn.CMPBCS = 0b011, the TCMPB register performs an input capture operation by the TIOBn input event. The TIOBn input event is defined by the TXESn.TIBEVS bits.

An interrupt or an event can be output at the input capture operation of the TCMPA/B register. Enabling or disabling of interrupts or events is determined by the TMCRn register.

To clear the TCNT at the input capture operation, set the TMCRn.ACLEN bit = 1. The event to clear TCNT is defined by the TMCRn.ACLSEL bit.

In the input capture function, the value is imported synchronized with the CLKFAST, and is without depending on the prescaler or the phase counting enable. In the same way, data transfers from the TCMPA/B register to the TBUFA/B register (the TBUFALn and TBUFAH registers, or the TBUFBLn and TBUFBHn registers) in the buffer mode is performed in synchronization with the CLKFAST.

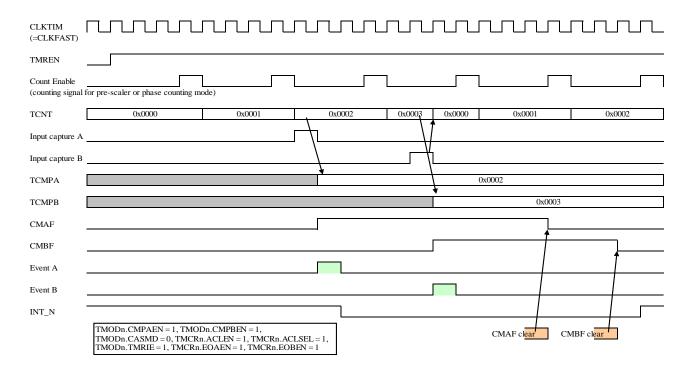


Figure 17-4. Input Capture Timing

17.3.11. Buffer Mode

The TBUFALn/Hn and TBUFBLn/Hn registers operate as a buffer for the TCMPALn/Hn and TCMPBLn/Hn registers, respectively. To operate the buffer mode, set TEMODn.BUFMD = 1. The operation in the buffer mode is as follows:

- When TCMPALn/Hn is the compare match register:
 When TCNTLn/Hn is cleared or overflows, the value of the TBUFAL/Hn register is transferred to the TCMPALn/Hn register.
- When TCMPALn/Hn is the input capture register: When an input capture event of TCMPALn/Hn is generated, the value of the TCMPAL/Hn register is transferred to the TBUFALn/Hn register.
- When TCMPBLn/Hn is the compare match register:
 When TCNTLn/Hn is cleared or overflows, the value of the TBUFBL/Hn register is transferred to the TCMPBLn/Hn register.
- When TCMPBLn/Hn is the input capture register: When an input capture event of TCMPBLn/Hn is generated, the value of the TCMPBLn/Hn register is transferred to the TBUFBLn/Hn register.

17.3.12. Phase Counting Mode

The phase counting mode is a mode to count up/down the 16 bit counter (TCNT) according to the input states of the TIOAn and TIOBn pins. This mode can be selected from the following 4 modes.

- Phase counting mode 1: TEMODn.EMOD = 0b001
- Phase counting mode 2: TEMODn.EMOD = 0b010
- Phase counting mode 3: TEMODn.EMOD = 0b011
- Phase counting mode 4: TEMODn.EMOD = 0b100

The output signal from the comparator can be used in place of the signal of the TIOAn and TIOBn input pins. To use the output of the comparator in place of the signal of the TIOAn input pin, set TPCISn.TIASEL = 1. To use the output of the comparator in place of the signal of the TIOBn input pin, set TPCISn.TIBSEL = 1. For the comparator output corresponding to the TMR channels, see Table 17-4.

Figure 17-5 to Figure 17-8 show the operations in phase counting mode 1 to 4, respectively. Table 17-5 to Table 17-8 shows the conditions for counting-up/down in these modes, respectively.

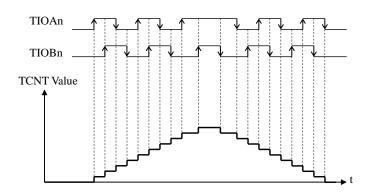


Figure 17-5. Operation in Phase Counting Mode 1

Table 17-5. Condition for Counting-up/down in Phase Counting Mode 1

TIOAn	TIOBn	Counter Operation
High level	Rising edge	
Low level	Falling edge	. 1
Rising edge	Low level	+1
Falling edge	High level	
High level	Falling edge	
Low level	Rising edge	1
Rising edge	High level	-1
Falling edge	Low level	

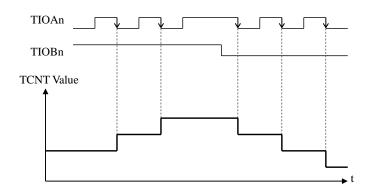


Figure 17-6. Operation of Phase Counting Mode 2

Table 17-6. Condition for Counting-up/down in Phase Counting Mode 2

TIOAn	TIOBn	Counter Operation	
High level	Rising edge		
Low level	Falling edge	No operation	
Rising edge	Low level		
Falling edge	High level	+1	
High level	Falling edge		
Low level	Rising edge	No operation	
Rising edge	High level		
Falling edge	Low level	-1	

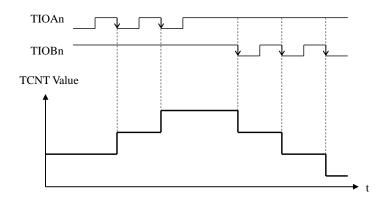


Figure 17-7. Operation in Phase Counting Mode 3

Table 17-7. Condition for Counting-up/down in Phase Counting Mode 3

TIOAn	TIOBn	Counter Operation	
High level	Rising edge		
Low level	Falling edge	No operation	
Rising edge	Low level		
Falling edge	High level	+1	
High level	Falling edge	-1	
Low level	Rising edge		
Rising edge	High level	No operation	
Falling edge	Low level		

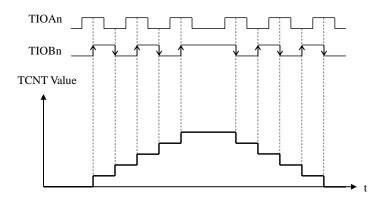


Figure 17-8. Operation in Phase Counting Mode 4

Table 17-8. Condition for Counting-up/down in Phase Counting Mode 4

TIOAn	TIOBn	Counter Operation
High level	Rising edge	
Low level	Falling edge	+1
Rising edge	Low level	No acception
Falling edge	High level	No operation
High level	Falling edge	1
Low level	Rising edge	-1
Rising edge	High level	No acception
Falling edge	Low level	No operation

17.3.13. Noise Filter of Input Pins

Each input pin has a noise filter. To enable the noise filter, set TEMODn.FILEN = 1. The noise filter samples the input signal, and holds recent 3 values. The sampling frequency is determined by the TPSNFn register (see Section 17.2.11). When 3 samples are the same value, the input level is imported to the internal TMR logic. When the noise filter is disabled (TEMODn.FILEN = 0), the input signal is synchronized with the CLKFAST by 2 flip-flop circuits.

17.3.14. Events and Interrupts

The TMRn outputs one interrupt to the CPU and 2 events to the peripheral modules for each channel. When the TMODn.TMRIE bit is set to 1, an interrupt request is output to the CPU at the selected interrupt source generation. There are 5 types of interrupt sources as follows:

- When the TMCRn.CMAIEN bit is set to 1, an interrupt output is allowed at the compare match of the TCMPA or the input capture generation.
- When the TMCRn.CMBIEN bit is set to 1, an interrupt output is allowed at the compare match of the TCMPB or the input capture generation.
- When the TMCRn.OVFIEN bit is set to 1, an interrupt output is allowed at overflow of the TCNT.
- When the TMCRn.UDFIEN bit is set to 1, an interrupt output is allowed at underflow of the TCNT. This occurs only in the phase counting mode.
- When the TEMODn.TICIE bit is set to 1, an interrupt output is allowed at the TIC input event detection.

The TMSRn register is a status register indicating generation of each interrupt source. To clear this status, write 1 to the bit to be cleared.

Table 17-9 shows the conditions to use event outputs or interrupt outputs. The Event A and Event B are independent of each other; so, if the generation condition of the 2 events is simultaneously satisfied, these events are simultaneously output.

Condition	Event A	Event B	Interrupt
TCMPA Compare Match	Usable	_	Usable
TCMPAB Compare Match	_	Usable	Usable
TCMPA Input Capture	Usable	_	Usable
TCMPAB Input Capture	_	Usable	Usable
TCNT Overflow	_	_	Usable
TCNT Underflow	_	_	Usable
TCNT Clearing by Inputting TICn	_	_	Usable

Table 17-9. Condition to Output Event or Interrupt

17.3.15. Basic Setting

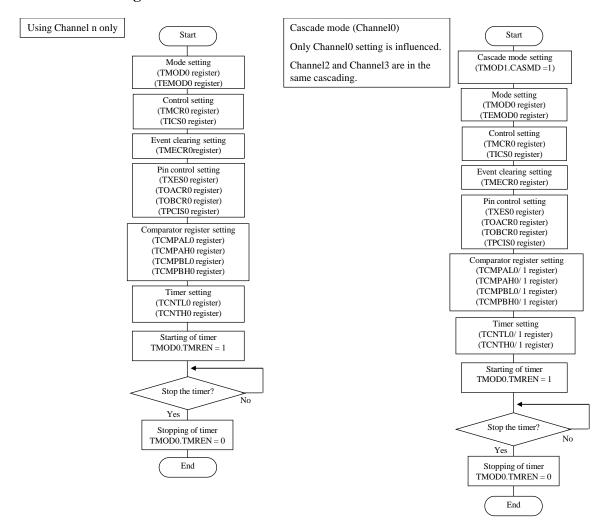


Figure 17-9. Flowchart

18. Serial Peripheral Interface (SPI)

18.1. Overview

The serial peripheral interface (SPI) operates in clock-synchronous and full-duplex serial communications. An external processor and a peripheral system can communicate via the SPI.

Table 18-1. SPI Functional Descriptions

Item	Description
TX and RX Functions	 Serial communications: Master mode or subordinate mode Signal of SPI serial communications: MOSI (master out subordinate in), MISO (master in subordinate out), SCK (SPI clock) Select (SS_N) signal: When the LSI is a subordinate device, the SS_N signal can be processed by a hardware. When the LSI is a master device, the SS_N signal is generated by the CPU. Clocks for the SPI data transmission/reception is enabled for SPI clock edges (both rising edge and falling edge). Selectable clock pin level in SPI idle state. TXFIFO and RXFIFO have 2 stages, respectively. Transmission data buffer: 16 bits × 2 lines Reception data buffer: 16 bits × 2 lines
Data Format	 Order of data transfer bit: MSB first or LSB first Transfer data length: 6 bits to 16 bits
SPI Clock	• SPI clock frequency range: f/4 to f/1024
Error Detection	FIFO overrun error
Interrupt Source	 Independent interrupt for transmission or reception SPI reception interrupts: Reception data exists on buffer. FIFO errors (buffer underflow and buffer overflow) SPI transmission interrupts: Transmission buffer is not full. Transmission completion FIFO errors (buffer underflow and buffer overflow)
Others	 When the SPI is set to a master device, and is disabled to transmit, transmission data is not output (high-Z). When the SPI is set to a subordinate device, the SS_N pin is used for selecting SPI. Transmission data is output only during the SPI selection. In the other status, the SS_N pin is high-Z.

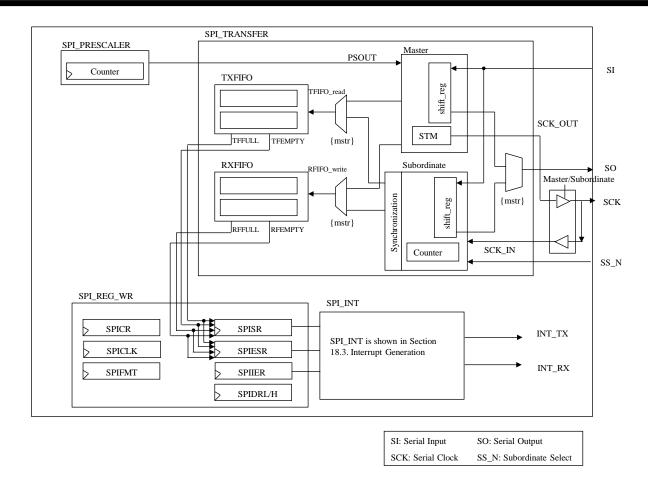


Figure 18-1. SPI Block Diagram

18.2. Register Descriptions

Table 18-2. List of Registers

Symbol	Name	Address	Initial Value
SPICR	SPI Control Register	0xFB80	0x00
SPICLK	SPI Clock Divider Register	0xFB81	0x00
SPIFMT	SPI Data Format Register	0xFB82	0x00
SPISR	SPI Status Register	0xFB84	0x05
SPIESR	SPI Error Status Register	0xFB85	0x00
SPIIER	SPI Interrupt Enable Register	0xFB86	0x00
SPIDRL	SPI Data Register Low	0xFB88	0x00
SPIDRH	SPI Data Register High	0xFB89	0x00

18.2.1. SPICR (SPI Control Register)

Registe	SPICR		SPI Co	ntrol Register Address 0xFB80		ontrol Register Address 0xFB80)
Bit	Bit Name	R/W	Initial	Descr	Description		Remarks	
7	Reserved	R	0	The read value is 0. The write value must always be 0.				
6	Reserved	R	0	The read value is 0. The write v	value must alwa	ays be 0.		
5	SPE	R/W	0	SPI communication enable 0: SPI communication is disabled 1: SPI communication is enabled Data is transferred only when the bit is set to 1 and the SPI core is enabled.				
4	MSTR	R/W	0	Selection of master mode or salve mode 0: Subordinate mode 1: Master mode When the bit is set to 1, the SPI is a master device. When the bit is cleared, the SPI is a subordinate device.				
3	CPOL	R/W	0	Clock polarity	Clock polarity The bit and the CPHA bit determine the transfer mode.			
2	СРНА	R/W	0	Clock phase The bit and the CPOL bit determine the transfer mode. For details, see Table 18-3.				
1	TXEN	R/W	0	TX operation enable setting 0: TX operation is enabled. 1: TX operation is disabled.				
0	RXEN	R/W	0	RX operation is disabled. RX operation enable setting 0: RX operation is enabled. 1: RX operation is disabled.				

18.2.1.1. The TXEN and RXEN Bits

In the master and subordinate modes, the TXEN and RXEN bits operate differently as follows:

• Transmission

- When SPI is Master Mode

When TXEN =1 or RXEN =1, the SPI operates. However, in RXEN = 1, it is required to write a dummy transmission data in the TXFIFO to operate the SPI.

- When SPI is Subordinate Mode

When a transmission starts at TXEN = 1 and TXFIFO = empty, the underflow flag of the TXFIFO is set to 1. If only RXEN bit is set to 1, the underflow flag of the TXFIFO is not set to 1 because the data is not transmitted from the TXFIFO.

• Reception

When the RXEN bit is set to 1 in both master and subordinate modes, a reception data is stored in the RXFIFO. When all transmission/reception to the RXFIFO are completed in RXEN = 1, the RXFIFO overflow flag is set to 1.

18.2.1.2. The CPOL and CPHA Bits

The clock polarity and clock phase are defined by the CPOL and CPHA bits, respectively.

Selectable 4 SPI modes have different combination of a data setup and a data sampling timings. Table 18-3 shows the settings of CPOL and CPHA bits for the SPI mode. Figure 18-2 shows the timing of each SPI mode. In the subordinate mode (SPICR.MSTR = 0), the SPI modes 0 and 2 cannot be used (i.e., only the SPI modes 1 and 3 can be used).

CPOL Bit	CPHA Bit	First Edge in One SCK Cycle	Second Edge in One SCK Cycle	SPI Mode
0	0	Input data sampling at rising edge	Data output at falling edge	0
0	1	Data output at rising edge	Input data sampling at falling edge	1
1	0	Input data sampling at falling edge	Data output at rising edge	2
1	1	Data output at falling edge	Input data sampling at rising edge	3

Table 18-3. Settings of CPOL and CPHA Bits

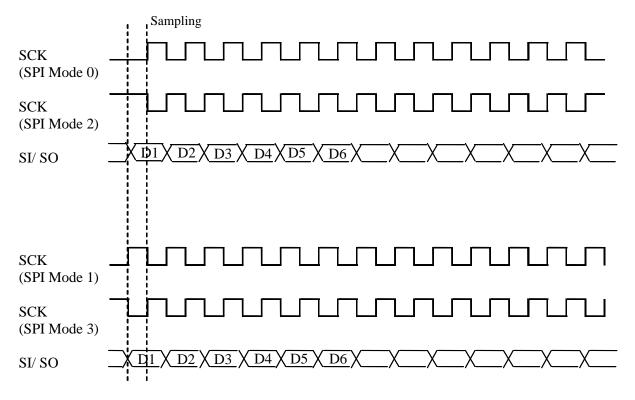


Figure 18-2. Timing of Each SPI Mode.

18.2.2. SPICLK (SPI Clock Divider Register)

Register SPICLK			SPI Clock Divider Register Address		0xFB81				
Bit	Bit Nar	ne	R/W	Initia 1	Description			Remarks	
7	R/W R/W R/W		R/W	0					
6			R/W	0					
5			0						
4	CLVD	13.7	R/W	0	SPI clock rate (only available in master mode)				
3	CLKDIV R/W R/W R/W R/W		R/W	0	SCK = CLK/4 (CLKDIV + 1)				
2			2	R/W	0				
1			R/W	0					
0			R/W	0					

18.2.3. SPIFMT (SPI Data Format Register)

Registe	Register SPIFMT		SPI Data Format Register A		Address	0xFB82	2
Bit	Bit Name R/W Initial Description			Remarks			
7	LSB R/W		0	Order of data transfer bit 0: MSB first 1: LSB first			
6	Reserved R 0 The read value is 0. The write value must al				value must alw	vays be 0.	
5	Reserved R 0 The read value is 0. The write value must always be 0.				vays be 0.		
4	Reserved	R	0	The read value is 0. The write value must always be 0.			
3	Reserved	R	0	The read value is 0. The write value must always be 0.			
2		R/W	0	Transfer word length setting			
1		R/W	0	000: 6 bits 001: 7 bits			
0	WORD	R/W	0	010: 8 bits 011: 9 bits 100: 12 bits 101: 14 bits 110: 16 bits 111: Reserved			

18.2.4. SPISR (SPI Status Register)

	·							
Registe	Register SPISR		SPI Sta	tus Register	Register Address 0xFE		4	
Bit	Bit Name	R/W	Initial	Description		Remarks		
7	TEND	R/C	0	Transfer completion flag Read 0: Transfer is not completed Read 1: Transfer is completed Write 0: No change Write 1: The bit is cleared If TXFIFO = empty, the transfer the transfer block is completed SPIIER.TXENDIE = 1, an integrated bit, write 1 to the bit.				
6	Reserved	R	0	The read value is 0. The write	The read value is 0. The write value must always be 0.			
5	Reserved	R	0	The read value is 0. The write	The read value is 0. The write value must always be 0.			
4	Reserved	R	0	The read value is 0. The write	The read value is 0. The write value must always be 0.			
3	TFFULL	R	0	TXFIFO full status 0: TXFIFO is not full 1: TXFIFO is full				
2	TFEMPTY	R	1	TXFIFO empty status 0: TXFIFO is not empty 1: TXFIFO is empty				
1	RFFULL	R	0	RXFIFO full status 0: RXFIFO is not full 1: RXFIFO is full				
0	RFEMPTY	R	1	RXFIFO empty status 0: RXFIFO is not empty 1: RXFIFO is empty				

18.2.5. SPIESR (SPI Error Status Register)

Registe	ster SPIESR		ESR SPI Error Status Register Address 0xF		0xFB	85			
Bit	Bit Name	R/W	Initia 1	Descrip	Description		Remarks		
7	Reserved R		0	The read value is 0. The write value must always be 0.					
6	Reserved	deserved R 0 The read value is 0. The write value must always be 0.		ys be 0.					
5	Reserved	R	0	The read value is 0. The write va	0. The write value must always be 0.				
4	Reserved	R	0	The read value is 0. The write va	alue must alwa				
3	TOVF R/C 0 Read 0 Read 1 Write 0 Write 1 When the			TXFIFO overflow flag Read 0: Overflow is not detected Read 1: Overflow is detected Write 0: No change Write 1: The bit is cleared When the SPIDR register is write TXFIFO overflow flag is set. To flag, write 1 to the bit.	ten during TXF				
2	TUDF	R/C	0	TXFIFO underflow flag Read 0: Underflow is not dete Read 1: Underflow is detected Write 0: No change Write 1: The bit is cleared When data is transferred duri TXFIFO underflow flag is s underflow flag, write 1 to the bit					
1	ROVF	R/C	0	RXFIFO overflow flag Read 0: Overflow is not detected Read 1: Overflow is detected Write 0: No change Write 1: The bit is cleared When data is received during F	FIFO overflow flag ead 0: Overflow is not detected ead 1: Overflow is detected rite 0: No change rite 1: The bit is cleared en data is received during RXFIFO = full, the RXFIFO flow flag is set. To clear the RXFIFO overflow flag, write				
0	RUDF	R/C	0	RXFIFO underflow flag Read 0: Underflow is not detected Read 1: Underflow is detected Write 0: No change Write 1: The bit is cleared When the SPIDR register is read during RXFIFO = empty, the RXFIFO underflow flag is set. To clear the RXFIFO underflow flag, write 1 to the bit.					

18.2.6. SPIIER (SPI Interrupt Enable Register)

Register SPIIER		SPI Int	errupt Enable Register	Address	0xFB86				
Bit	Bit Name	R/W	Initial	Desc	Description				
7	Reserved	R	0	The read value is 0. The write	The read value is 0. The write value must always be 0.				
6	Reserved	R	0	The read value is 0. The write	he read value is 0. The write value must always be 0.				
5	Reserved	R	0	The read value is 0. The write	The read value is 0. The write value must always be 0.				
4	TXENDIE	R/W	0	1: TXEND interrupt is enabl	0: TXEND interrupt is disabled 1: TXEND interrupt is enabled When the bit is set to 1 and the SPISR.TEND bit is 1, the				
3	TXERRIE	R/W	0	TX ERROR interrupt enable 0: TXERR interrupt is disable 1: TXERR interrupt is enable When the bit is set to 1					
2	RXERRIE	R/W	0	RX ERROR interrupt enable 0: RXERR interrupt is disab 1: RXERR interrupt is enabl When the bit is set to 1 SPIESR.RUDF bit is set, the re-					
1	TXFIFOIE	R/W	0	TXFIFO interrupt enable 0: TXFIFO interrupt is disab 1: TXFIFO interrupt is enab When the bit is set to 1 and th transmission interrupt is genera					
0	RXFIFOIE	R/W	0	RXFIFO interrupt enable 0: RXFIFO interrupt is disabled 1: RXFIFO interrupt is enabled When the bit is set to 1 and the SPISR.RFEMPTY bit is set, the reception interrupt is generated.					

18.2.7. SPIDRL (SPI Data Register Low)

Registe	Register SPIDRL			SPI Dat	a Register Low Add		0xFB88
Bit	Bit Name R/W			Initial	Description		Remarks
7	SPIDRL		R/W 0				
6			R/W	0			
5			R/W	0			
4			R/W	0	The legger byte of the TV/DV date of		
3			R/W	0	The lower byte of the TX/RX data of		
2			R/W	0			
1			R/W	0			
0	R/W			0			

18.2.8. SPIDRH (SPI Data Register High)

When a data length is ≤ 8 bits, the SPI uses the SPIDRL register only, and does not use the SPIDRH register. When a data length is ≥ 9 bits, it is required to read or write in the order of the SPIDRL register to the SPIDRH register. In a data length ≥ 9 bits, the FIFO status changes as follows:

• TXFIFO

When writing to the SPIDRH register, the SPISR.TFEMPTY and SPISR.TFFULL bits are updated.

• RXFIFO

When reading the SPIDRH register, the SPISR.RFFULL and SPISR.RFEMPTY bits are updated.

Register SPID		SPIDRH		SPI Dat	Register High Address			0xFB89	
Bit	Bit Name R/W		Initial	Description			Remarks		
7			R/W	0					
6			R/W	0					
5			R/W	0					
4	CI	OLDDII	R/W	0	THE LOT OF CALLEY ON LANGE CO.				
3	51	PIDRH	R/W	0	The higher byte of the TX/RX data of	the SPI			
2			R/W	0					
1			R/W	0					
0	R/W		0						

18.3. Interrupt Generation

18.3.1. Transmission Interrupt (INT_TX)

Figure 18-3 shows the transmission interrupt (INT_TX) generation logic.

• SPISR.TFFULL Bit:

When TXFIFO = full, the SPISR.TFFULL bit is set to 1. The SPISR.TFFULL bit is cleared at a transmission start.

• SPIESR.TUDF Bit:

When a transmission starts during TXFIFO = empty, the SPIESR.TUDF bit set to 1. To clear the TXFIFO underflow flag, write 1 to the SPIESR.TUDF bit.

• SPIESR.TOVF Bit:

When a writing generates during TXFIFO = full, the SPIESR.TOVF bit set to 1. To clear the TXFIFO overflow flag, write 1 to the SPIESR.TOVF bit.

• SPISR.TEND Bit:

When a transmission is completed during TXFIFO = empty, the SPISR.TEND bit set to 1. To clear the SPISR.TEND bit, write 1 to the SPISR.TEND bit.

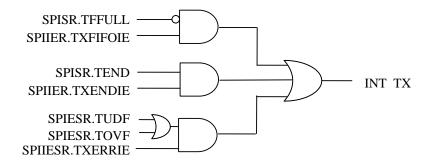


Figure 18-3. INT_TX Generation Logic

18.3.2. Reception Interrupt (INT_RX)

Figure 18-4 shows the reception interrupt (INT_RX) generation logic.

• SPISR.RFEMPTY Bit:

The SPISR.RFEMPTY bit is cleared while a reception data is stored in the RXFIFO. When all data stored in RXFIFO is read, the RXFIFO becomes empty, and the SPISR.RFEMPTY bit is set to 1.

• SPIESR.RUDF Bit:

When the SPIDRL register is more read when RXFIFO = empty, the RXFIFO underflow is generated, and the SPIESR.RUDF bit is set to 1. To clear the RXFIFO underflow flag, write 1 to the SPIESR.RUDF bit.

• SPIESR.ROVF Bit:

When data is more received and stored in the RXFIFO when RXFIFO = full, the RXFIFO overflow is generated, and the SPIESR.ROVF bit is set to 1. To clear the RXFIFO overflow flag, write 1 to the SPIESR.ROVF bit.

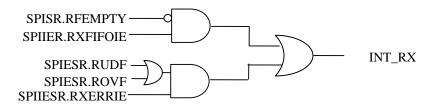


Figure 18-4. INT_RX Generation Logic

18.4. Timing and Connection

18.4.1. Master Mode

Figure 18-5 and Figure 18-6 shows the timing when the SPI mode is 0 and 1, respectively. Conditions for Figure 18-5 and Figure 18-6 are as follows:

- Transfer word length = 8 bits (SPIFMT.WORD = 0b010), and
- SPI clock rate = 1/2 (SPICLK.CLKDIV = 0x00).

Figure 18-7 and Figure 18-8 shows the connection between the master and subordinate devices. The master device is MD6603.

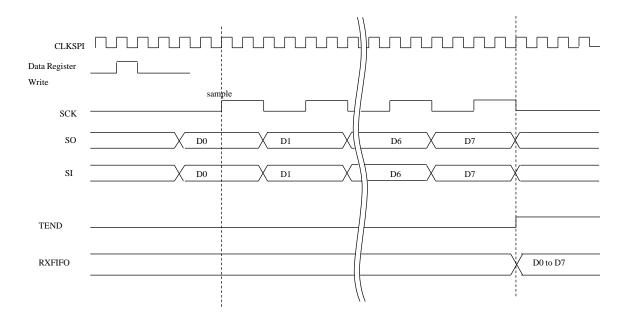


Figure 18-5. Timing in Master Mode (SPI Mode: 0)

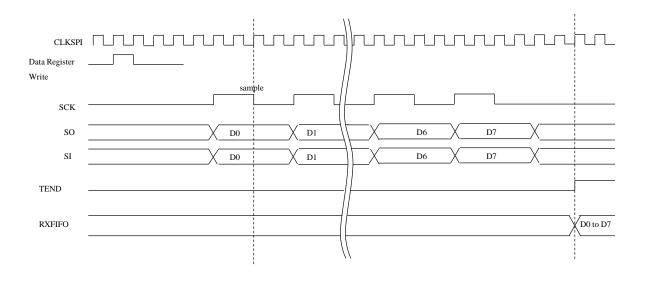


Figure 18-6. Timing in Master Mode (SPI Mode: 1)

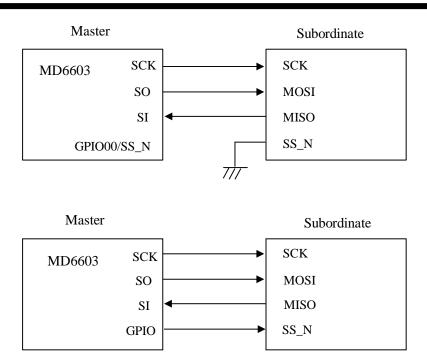


Figure 18-7. Connection between Single Master and Single Subordinate (Master Device: MD6603)

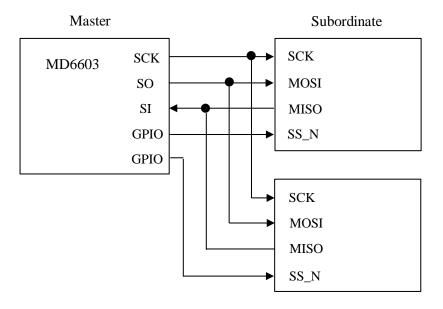


Figure 18-8. Connection between Single Master and Multi-subordinate (Master Device: MD6603)

If a subordinate device has the SS_N pin, the SS_N pin should be controlled by software via the GPIO pin. In multisubordinate control, each SS_N pin of the subordinate device should be connected to the GPIO pin.

The SO and SI pins of the MD6603 should be connected to the MOSI and MISO pins of the subordinate device, respectively.

18.4.2. Subordinate Mode

Figure 18-9 shows the timing when the SPI mode is 1. The condition in Figure 18-9 is transfer word length = 8 bits (i.e., SPIFMT.WORD = 0b010).

Figure 18-10 shows the connection between the master and subordinate devices. The subordinate device is MD6603.

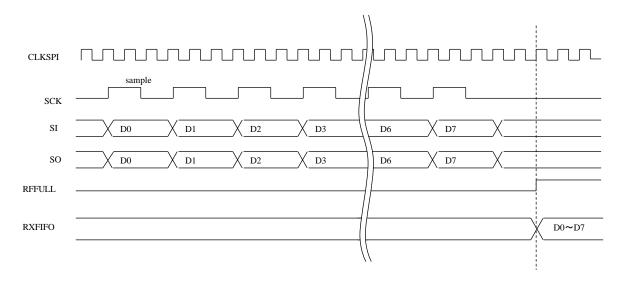


Figure 18-9. Timing in Subordinate Mode (SPI Mode: 1)

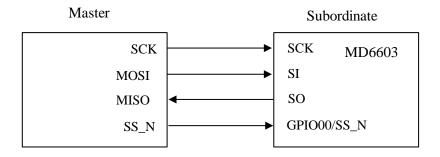


Figure 18-10. Connection in Subordinate Mode (Subordinate Device: MD6603)

The SS_N pin of the master device is connected to the SS_N pin of the MD6603.

The SI and SO pins of MD6603 should be connected to the MOSI and MISO pins of the master device, respectively. The SCK pin of MD6603 is an input pin.

18.5. Operation

18.5.1. Master Mode

• Transmission Start

When the transmission $data^{(1)}$ is written to the SPIDRL/H register while the TXFIFO bit is empty (i.e., SPISR.TFEMPTY = 1), the transmission data is transferred to the shift register via the TXFIFO, and then the transfer as shown in Figure 18-11 starts.

If data is written to the SPIDRL/H register consecutively in order to transmit multiple data, the values of 2 data are stored in the TXFIFO, and the TXFIFO status becomes full (i.e., SPISR.TFFULL = 1).

• Reception Start

When a dummy data is written to the SPIDRL/H register while the RXFIFO bit is empty (i.e., SPISR.RFEMPTY = 1), the SCK is generated to start reception. As shown in Figure 18-12, a reception data is sampled by the SCK, and is latched to the shift register.

• Transmission Completion

The SPI transfer completes at the SCK edge corresponding to the settings of the SPICR.CPHA and SPICR.CPOL bits, and then the SPISR.TEND is set to 1. The final sampling timing depends on a data bit length.

• Reception Completion

When the reception data is stored in the RXFIFO, the RXFIFO status becomes non-empty (i.e., SPISR.REMPTY = 0). To read the data in the RXFIFO, read the SPIDRL/ $H^{(2)}$ register. The RXFIFO status indicates full or empty.

 $^{^{(1)}}$ Data length ≤ 8 bit: To update the TXFIFO status, write to the SPIDRL register.

Data length \geq 9 bit: To update the TXFIFO status, write to the SPIDRH register.

⁽²⁾ Data length \le 8 bit: To update the RXFIFO status, read the SPIDRL register.

Data length \geq 9 bit: To update the RXFIFO status, read the SPIDRH register.

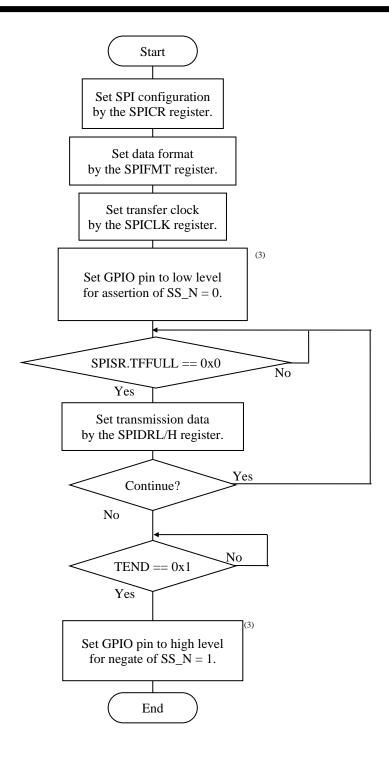


Figure 18-11. Master Mode (Transmission)

⁽³⁾ When the SS_N pin can be asserted or negated, the GPIO pin can be used for any pins.

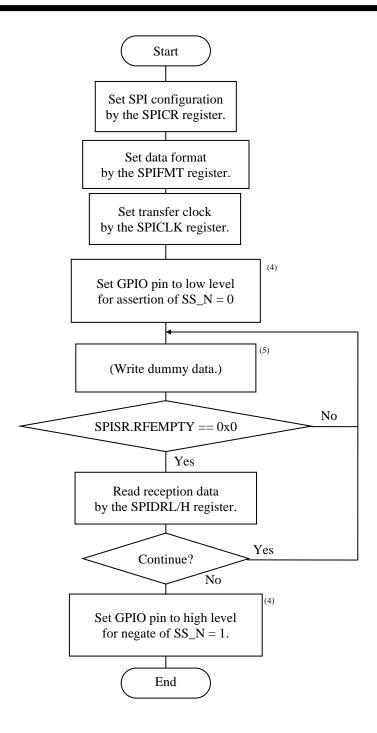


Figure 18-12. Master Mode (Reception)

⁽⁴⁾ When the SS_N pin can be asserted or negated, the GPIO pin can be used for any pins.

⁽⁵⁾ The SCK should be generated by a dummy data transmission in the master mode.

18.5.2. Subordinate Mode

• Transmission Start

The SPI operates with the subordinate mode while the SS_N pin is low level. Data is transferred at the sampling timing of the SCK input. When the data⁽¹⁾ is written to the SPIDRL/H register during TXFIFO = empty, the transmission data is transferred to the shift register via the TXFIFO. If the values of 2 data exist in the TXFIFO when the data is written to the SPIDRL/H register consecutively, the TXFIFO status becomes full (i.e., SPISR.TFFULL = 1).

• Transmission Completion

When the final SCK edge is received, the SPI completes a serial transmission. In addition, the SPISR.TEND bit is set to 1.

• Reception Completion

When the reception data is written to the RXFIFO, the RXFIFO status indicates non-empty (i.e., SPISR.REMPTY = 0). To read the data in the RXFIFO, read the SPIDRL/ $H^{(2)}$ register.

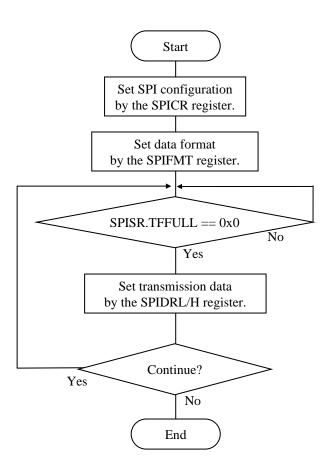


Figure 18-13. Subordinate Mode (Transmission)

 $^{^{(1)}}$ Data length ≤ 8 bit: To update the TXFIFO status, write to the SPIDRL register.

Data length ≥ 9 bit: To update the TXFIFO status, write to the SPIDRH register.

⁽²⁾ Data length ≤ 8 bit: To update the RXFIFO status, read the SPIDRL register. Data length ≥ 9 bit: To update the RXFIFO status, read the SPIDRH register.

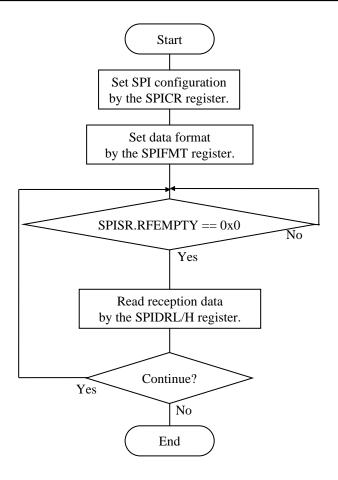


Figure 18-14. Subordinate Mode (Reception)

19. I²C/SMBUS

19.1. Overview

The LSI has the I²C communication module supporting both the master and subordinate modes.

Table 19-1. I²C Functional Descriptions

Item	Description		
Communication Method	 I²C bus method and SMBUS method Master or subordinate mode can be selected 		
Clock	CLKFAST/8 CLKFAST/32 CLKFAST/128 CLKFAST/512		
Supported Function	Clock stretching GCA (General Call Address)		
Interrupt Single source			

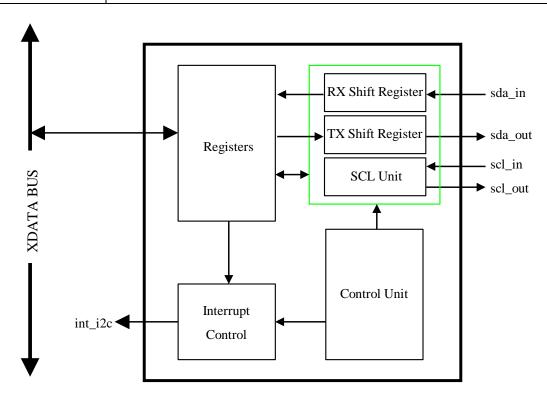


Figure 19-1. I²C Block Diagram

19.2. Register Descriptions

Table 19-2. List of Registers

Symbol	Name	Address	Initial Value
ICCR	I ² C Bus Control Register	0xFC00	0x00
ICSR	I ² C Bus Status Register	0xFC01	0x00
ICRXDR	I ² C Bus Receive Data Register	0xFC02	0x00
ICTXDR	I ² C Bus Transmit Data Register	0xFC03	0x00
ICTSAR	I ² C Transmit Address Register	0xFC04	0x00
ICSAR	I ² C Subordinate Address Register	0xFC05	0x00
ICCLK	I ² C Clock Divide Register	0xFC06	0x03
ICCMD	I ² C Command Register	0xFC07	0x00
ICSSTR	I ² C Bus SDA Setup Time Register	0xFC08	0x01
ICSHTR	I ² C Bus SDA Hold Time Register	0xFC09	0x00
ICHDSR0	I ² C Bus Hardware Status Register0	0xFC0A	0xC0
ICHDSR1	I ² C Bus Hardware Status Register1	0xFC0B	0x00
ICTIMER	I ² C Time Base Register	0xFC10	0xFF
SMBINT	SMBUS INT Status Register	0xFC11	0x00
ICSAA	I ² C Subordinate Alert Address Register	0xFC18	0x00
ICSAIR	I ² C Subordinate Address Identifier Register	0xFC19	0x00

19.2.1. ICCR (I²C Bus Control Register)

Regi	ster ICCR		I ² C Bus Con	ntrol Register	Address	0x	FC00
Bit	Bit Name	R/W	Initial	Descript	ion		Remarks
7	ICE	R/W	0	I ² C Bus interface enable 0: I ² C Bus interface is disa 1: I ² C Bus interface is enable			
6	IEIC0	R/W	0	IRIC0 interrupt enable 0: IRIC0 interrupt is disabl 1: IRIC0 interrupt is enable When the bit is set to 1 and the interrupt is generated.	ed	bit is 1,	
5	IEIC1	R/W	0	IRIC1 interrupt enable 0: IRIC1 interrupt is disabl 1: IRIC1 interrupt is enable When the bit is set to 1 and the interrupt is generated.	ed	bit is 1,	
4	IEIC2	R/W	0	IRIC2 interrupt enable 0: IRIC2 interrupt is disabl 1: IRIC2 interrupt is enable When the bit is set to 1 and the interrupt is generated.	ed	bit is 1,	
3	IEIC3	R/W	0	IRIC3 interrupt enable 0: IRIC3 interrupt is disabl 1: IRIC3 interrupt is enable When the bit is set to 1 and the interrupt is generated.	ed	bit is 1,	
2	IEIC4	R/W	0	IRIC4 interrupt enable 0: IRIC4 interrupt is disabl 1: IRIC4 interrupt is enable When the bit is set to 1 and the interrupt is generated.	ed	bit is 1,	
1	IEIC5	R/W	0	IRIC5 interrupt enable 0: IRIC5 interrupt is disabl 1: IRIC5 interrupt is enable When the bit is set to 1 and the interrupt is generated.	ed	bit is 1,	
0	GCAE	R/W	0	GCA enable 0: GCA response is disable 1: GCA response is enable The bit controls the response Call Address) in the subordin	d se to the GCA	(General	

19.2.2. ICSR (I²C Bus Status Register)

Regi	ster ICSR		I ² C Bus	s Status Register Address 0xFC		CO1	
Bit	Bit Name	R/W	Initial	Descripti	on		Remarks
7	BBSY	R	0	I ² C Bus busy detection flag 0: Bus released state 1: Bus occupied state The bit indicates whether the I ² C bus is occupied (bus busy) or released (bus free). When the start condition is detected, the bit enters the occupied state; when the stop condition is detected, the bit enters the released state.		the occupied	
6	IRIC0	R/C	0	Subordinate access detection interr Read 0: Subordinate access is not Read 1: Subordinate access is de Write 0: No change Write 1: The bit is cleared When the LSI is in the subordinate of by the subordinate address or GCA the bit is set to 1. The bit can be cl from the CPU. For the setup timing of the bit, see I	of detected betected mode, if the GC $\Delta E = 1$ and the appeared by writing	ACK is sent, g 1 to the bit	
5	IRIC1	R/C	0	ACK/NACK reception interrupt 1 Read 0: ACK/NACK is not rece Read 1: ACK/NACK is received Write 0: No change Write 1: The bit is cleared When the LSI completes to transm and receives the ACK or the NAC can be cleared by writing 1 to the b For the setup timing of the bit, so 19-11.	it an address or K, the bit is set bit from the CPU	to 1. The bit J.	
4	IRIC2	R/C	0	ACK/NACK reception interrupt 2 Read 0: ACK/NACK is not rece Read 1: ACK/NACK is received Write 0: No change Write 1: The bit is cleared When the LSI transmits data, if th and the ACK or the NACK is receibit can be cleared by writing 1 to th For the setup timing of the bit, s 19-11.	e transmission in the court of the bit from the Court of	set to 1. The CPU.	

Regi	ster ICSR		I ² C Bus Status Register Address 0xFC			C01	
Bit	Bit Name	R/W	Initial	Descripti	on		Remarks
3	IRIC3	R/C	0	Data reception completion interrupt Read 0: Data reception is not completed Read 1: Data reception is completed Write 0: No change Write 1: The bit is cleared When the data reception is completed, the bit is set to 1 before the ACK or the NACK is transmitted. The bit can be cleared by writing 1 to the bit from the CPU. For the setup timing of the bit, see Figure 19-8 and Figure 19-10.			
2	IRIC4	R	0	SMBUS interrupt 0: SMBUS interrupt is not detec 1: SMBUS interrupt is detected The logical OR of the interrupt sou is displayed on the bit. To clear the of the SMBINT register.	rces of the SMB		
1	IRIC5	R/C	0	Stop condition interrupt Read 0: Stop condition is not detected Read 1: Stop condition is detected Write 0: No change Write 1: The bit is cleared When the stop condition is detected, the bit is set to 1. The bit can be cleared by writing 1 to the bit from the CPU.			
0	RXACK	R	0	Acknowledge bit 0: ACK is received 1: NACK is received In the master mode, information received from the subordinate devi In the subordinate mode, informat received from the master device is	ce is stored in the ion on the ackr	ne bit. nowledge bit	

Master Transmission Data S: Start Condition IRIC2 IRIC2 P: Stop Condition C: Command Master A: ACK Subordinate N: NACK ↑ IRIC3 ↑ IRIC3 ↑ IRIC0 Master Receive Data IRIC3 IRIC3 IRIC1 ŇΡ Master S ADR Subordinate IRIC0 IRIC2 IRIC2

Figure 19-2. Interrupt Timings

19.2.3. ICRXDR (I²C Bus Receive Data Register)

After the data reception is completed, the data of the ICRXDR register must be read. Whether the data reception is completed can be confirmed by the ICSR.IRIC3 bit.

Regi	ster	ICRXDI	₹	I ² C Bus Receive Data Register		Address	(0xFC02
Bit	Bit	Name	R/W	Initial	Descripti	on		Remarks
7				0				
6			R	0				
5		R		0				
4	ICI			0	D			
3	ICI	RXDR	R	0	Reception data			
2			R	0				
1		R		0				
0			R	0				

19.2.4. ICTXDR (I²C Bus Transmit Data Register)

When data is written to the ICTXDR register, the transmission is started.

Writing is prohibited until the data transmission from the ICTXDR register is completed. If data is written during the data transmission, the data will be destroyed.

Regi	ster	ICTXDR	t	I ² C Bus Transmit Data Register		Address	(0xFC03
Bit	Bit	Name	R/W	Initial	Descripti	on		Remarks
7			R/W	0				
6			R/W	0				
5			R/W	0				
4	ICT	ΓXDR	R/W	0	Transmission data			
3	IC)	IADK	R/W	0	Transmission data			
2			R/W	0				
1				0				
0			R/W	0				

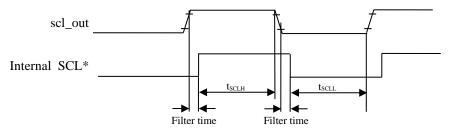
19.2.5. ICTSAR (I²C Transmit Address Register)

After setting the ICTSAR register, set the ICCMD register to start communications.

Regi	ster	ICTSAR		I ² C Transmit Address Register		Address	(0xFC04
Bit	Bit	Name	R/W	Initial	Descripti	on		Remarks
7			R/W	0				
6			R/W	0				
5			R/W	0	Transmission address			
4	Α	DR	R/W	0				
3			R/W	0				
2		F	R/W	0				
1			R/W	0				
0	C	MD	R/W	0	Transmission command 0: Write command 1: Read command			

19.2.6. ICSAR (I²C Subordinate Address Register)

When the received subordinate address matches the ICSAR.SVA bits, the LSI operates as the subordinate device specified by the master device. When the ICSAR.SVA bits = 0, the IC does not judge whether or not the subordinate address matches the ICSAR.SVA bits.


The ICSAR.CMD bit of the reception command is updated when the ICSAR.CMD bit matches with either of the following addresses: with the GCA when GCA = enabled; with the SAA when SAA = enabled.

Regi	ster	ICSAR		I ² C Subordin	nate Address Register	Address	(0xFC05
Bit	Bit	Name	R/W	Initial	Descripti	on		Remarks
7			R/W	0				
6			R/W	0				
5			R/W	0				
4	S	SVA	R/W	0	Subordinate address			
3			R/W	0				
2			R/W	0				
1			R/W	0				
0	C	CMD	R	0	Reception command 0: Write command 1: Read command			

19.2.7. ICCLK (I²C Clock Divider Register)

Regi	ster	ICCLK		I ² C Clo	ck Divider Register	Address	0xF	C06
Bit	Bit	Name	R/W	Initial	Descripti	on		Remarks
7	Re	served	R	0	The read value is 0. The write val	ue must always	be 0.	
6	Re	served	R	0	The read value is 0. The write val	ue must always	be 0.	
5	Re	served	R	0	The read value is 0. The write val	The read value is 0. The write value must always be 0.		
4	Re	served	R	0	The read value is 0. The write value must always be 0.			
3	Re	served	R	0	The read value is 0. The write val	ue must always	be 0.	
2	Re	served	R	0	The read value is 0. The write val	ue must always	be 0.	
1			R/W	1	SCL minimum pulse width	-£CLVEACT		
0	DIV R/W 1 00: t _{SCLH} /t _{SCLL} is set to 9 cycles of CLKFAST 01: t _{SCLH} /t _{SCLL} is set to 32 cycles of CLKFAST 10: t _{SCLH} /t _{SCLL} is set to 128 cycles of CLKFAST 11: t _{SCLH} /t _{SCLL} is set to 512 cycles of CLKFAST		Γ					

Set the minimum pulse width of SCL to the ICCLK.DIV bits. The SCL pulse width on the bus (t_{SCLH}/t_{SCLL}) is 5 cycles wider than the setting of the ICCLK.DIV bits due to synchronization with the noise filter.

*Internal SCL: SCL after noise filter

Figure 19-3. Definition of Timing of t_{SCLH}/t_{SCLL}

Table 19-3. Limitation of Minimum Clock Frequency

Item	Normal Mode	High-speed Mode		
SCL Frequency	0 kHz to 100 kHz	0 kHz to 400 kHz		
CLKFAST Frequency	1.74 MHz or more	6.67 MHz or more		

19.2.8. ICCMD (I²C Command Register)

The ICCMD register is initialized when it is reset or the ICCR.ICE bit is cleared.

Regi	ister ICCMI)	I ² C Comm	and Register	Address	0xFC07	
Bit	Bit Name	R/W	Initial	Description		Remarks	
7	Reserved	R	0	The read value is 0. The write value r	nust always be	0.	
6	Reserved	R	0	The read value is 0. The write value r	nust always be	0.	
5	Reserved	R	0	The read value is 0. The write value r	nust always be	0.	
4	NACK	R/W	0	NACK response 0: NACK response is not returned 1: NACK response is returned In the subordinate mode, the NACK after data is received. When the completed, the bit is cleared. The bit is not set in the following case • When ACK = 1 • When the ACK and NACK bits at • In the master mode	onse is		
3	ACK	R/W	0		0: ACK response is not returned 1: ACK response is returned (In the subordinate mode, the ACK response is returned after data is received. When the ACK response is completed, the bit is cleared. The bit is not set when: • NACK = 1		
2	RDCNT	R/W	0	1: Continuous reading is requested In the master mode, reading of the r while data is being read. The bit is cl of the read data starts.	Read continue 0: Continuous reading is not requested 1: Continuous reading is requested In the master mode, reading of the next data is requested while data is being read. The bit is cleared when receiving		
1	END	R/W	0	Stop condition generation 0: Generating a condition to strequested 1: Generating a condition to stop of the stop condition of the stop condition is requested transits to the subordinate mode. The bit is cleared if the stop condition The bit is not set in the following case when GO = 1 • When the bit is simultaneously stop in the subordinate mode	peration is required for is finished a uested. Then, the is detected.	and the the LSI	

MD6603

Reg	Register ICCMD		I ² C Comm	and Register	Address	02	kFC07	
Bit	Bit I	Name	R/W	Initial	Description		Remarks	
0	C	Ю	R/W	0	Start condition generation 0: No start condition is generated 1: A start condition is generated When the bit is set to 1, the start cond the starting of address or commercequested. Then the LSI transits to the The bit is cleared when the start cond the subordinate mode, do not set the beautiful when the END bit is set to 1, the bit is	and transmis master mode dition is detection it to 1.	sion is	

19.2.9. ICSSTR (I²C Bus SDA Setup Time Register)

Regi	Register ICSSTR		I ² C Bus SI	SDA Setup Time Register Address 0xFG		FC08		
Bit	Bit	Name	R/W	Initial	Description	Description		Remarks
7	Res	erved	R	0	The read value is 0. The write value n	nust always be	e 0.	
6	Res	erved	R	0	The read value is 0. The write value n			
5	R/W R/W		0					
4			R/W	0				
3	ICS	CCTD	R/W	0	SDA cotup time			
2	ICSSTR R/W R/W		R/W	0	SDA setup time			
1			0					
0			R/W	1				

The ICSSTR.ICSSTR bits define the setup time of the SDA output to the SCL rising. The minimum and maximum setup time values of the SDA output are 0 and 0x3F, respectively. The setup time of the SDA output, $t_{SU:DAT}$, can be calculated using the following equation.

 $t_{SU:DAT} = (ICSSTR + 1) \times cycle \text{ of CLKFAST (ns)}$

When CLKFAST is 60 MHz, the setup range of the setup time of the SDA output is 16 ns to 1.07 µs.

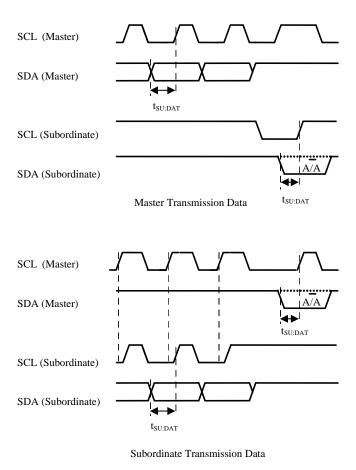


Figure 19-4. Relationship between SDA Output Setup Time and SCL Rising

19.2.10. ICSHTR (I²C Bus SDA Hold Time Register)

Regi	Register ICSHTR		I ² C Bus S	SDA Hold Time Register	Address	0xFC09	
Bit	Bit Name	R/W	Initial	Description		Remarks	
7	ICSHEXP	R/W	0	Extended SDA output holding 0: SDA output holding is not extended 1: SDA output holding is extended When using the LSI with CLKFAST ≤ 12.5 MHz or when not using the I²C as the SMBUS, set the bit to 0. When using the LSI with CLKFAST > 12.5 MHz and the I²C as the SMBUS, set the bit to 1. When the bit is set to 1, the SDA output is delayed by 3 cycles of the CLKFAST compared with setting the bit to 0.			
6	Reserved	R	0	The read value is 0. The write value must	st always be 0.		
5	Reserved	R	0	The read value is 0. The write value must	st always be 0.		
4		R/W	0				
3		R/W	0				
2	ICSHTR R/W R/W		0	Time setting of SDA holding			
1			0				
0		R/W	0				

The ICSHTR.ICSHTR bits define the delay time of the SDA to the SCL when receiving the subordinate address and subordinate data. This delay time is used to ensure holding time internally.

 $t_{HD:DAT} = ICSHTR \times cycle \text{ of CLKFAST (ns)}$

When CLKFAST is 60 MHz, the range of the delay time which can be set to the ICSHTR.ICSHTR bits is 0 ns to 516 ns. The setting time of the ICSSTR.ICSSTR and ICSHTR.ICSHTR bits must be set so as to satisfy the following relation equations.

(ICSSTR. ICSSTR bits setting time) > (ICSHTR. ICSHTR bits setting time) - (Relative delay time of SDA to SCL)

(Relative delay time of SDA to SCL) = (Delay time of SCL) - (Delay time of SDA)

Where, the relative delay time of SDA to SCL is the difference in delay time between the SDA and SCL signals on the I²C bus. Pay attention to this difference in delay time because it depends on the actual operating environment of the I²C bus.

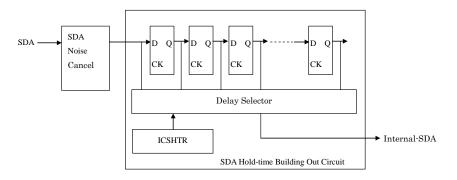


Figure 19-5. Internal SDA Generation Block Diagram

19.2.11. ICHDSR0 (I²C Bus Hardware Status Register0)

Regi	ster	ICHDS	R0	I ² C Bus H	ardware Status Register0	Address	0xF	C0A	
Bit	Bit	Name	R/W	Initial	Descrip	otion		Remarks	
7	SDA	MON	R	1	SDA signal monitor 1 0: SDA signal is low level 1: SDA signal is high level				
6	SCL	MON	R	1	SCL signal monitor 1 0: SCL signal is low level 1: SCL signal is high level	SCL signal monitor 1 0: SCL signal is low level			
5	SDA	ACHG	R/C	0	SDA signal monitor 2 (SDAMON bit variation) Read 0: Variation of the SDAMON bit has not been detected Read 1: Variation of the SDAMON bit has been detected Write 0: No change Write 1: The bit is cleared The bit indicates whether or not the SDA signal has varied. The bit can be cleared by writing 1 to the bit from the CPU.				
4	SCI	.CHG	R/C	0	The bit can be cleared by writing 1 to the bit from the CPU. SCL signal monitor 2 (SCLMON bit variation) Read 0: Variation of the SCLMON bit has not been detected Read 1: Variation of the SCLMON bit has been detected Write 0: No change Write 1: The bit is cleared The bit indicates whether or not the SCL signal has varied. The bit can be cleared by writing 1 to the bit from the CPU.				
3	Res	erved	R	0	The read value is 0. The write	value must alway	s be 0.		
2	Res	erved	R	0	The read value is 0. The write value must always be 0.				
1	Res	erved	R	0	The read value is 0. The write value must always be 0.				
0	Res	erved	R	0	The read value is 0. The write	value must alway	s be 0.	_	

19.2.12. ICHDSR1 (I²C Bus Hardware Status Register1)

Regi	Register ICHDSR1 I²C Bus Hardware Status Register1		ardware Status Register1	Address	0xF	COB			
Bit	Bit	Name	R/W	Initial	Description			Remarks	
7	Res	erved	R	0	The read value is 0. The write val	The read value is 0. The write value must always be 0.			
6	Res	erved	R	0	The read value is 0. The write value must always be 0.				
5	Res	erved	R	0	The read value is 0. The write value must always be 0.				
4	R			0					
3			R	0					
2	I2C_ST R R R		R	0	State of the state machine for controlling bus interface				
1			R	0					
0			R	0					

19.2.13. ICTIMER (I²C Time Base Register)

Regi	ster	ICTIMI	ER	I ² C Time E	e Base Register Address		0xFC10
Bit	Bit	Name	R/W	Initial	Description	Remarks	
7			R/W	1			
6	I		R/W	1			
5			R/W	1	To generate a timing signal of 1 m equation.	owing	
4			R/W	1	•		
3	1.	IIVIE	R/W	1	$ICTIMER = \left(\frac{Frequency of CLKFAST (kHz)}{128}\right) - 1$	L	
2	R/W		R/W	1	(128)		
1			R/W	1			
0			R/W	1			

The ICTIMER.TIME bits define a cycle of the reference timing signal for detecting the violation defined by the SMBUS standards. The setting value is used for the violation detection by the SMBINT register. The ICTIMER.TIME bits should be set so that a timing signal of 1 ms is generated.

The equation below defines the relationship between the timing signal cycle and the ICTIMER.TIME bits.

Timing signal cycle (ms) =
$$\frac{128 \times (TIME + 1)}{CLKFAST \text{ Frequency (kHz)}}$$

Compared to the judgement time when the timing signal cycle = 1 ms, the judgement time becomes half when the timing signal cycle = 0.5 ms, but becomes double when the timing signal cycle = 2 ms.

When the CLKFAST frequency > 32768 kHz, the timing signal cycle cannot be set to 1 ms. Even if the maximum value of 0xFF is set to the ICTIMER.TIME bits, the violation detection time is shorter than the time defined by the SMBUS standards.

19.2.14. SMBINT (SMBUS INT Status Register)

To detect the violation defined by the SMBUS standards using the IRSM0 to IRSM2 bits, the ICTIMER register must be set to 1 ms.

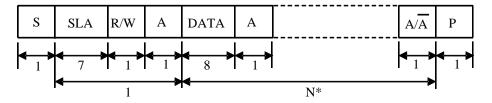
Regi	ister SM	BINT	SMBUS IN	NT Status Register	Address	0xFC11		
Bit	Bit Name	e R/W	Initial	Description		Remarks		
7	Reserved	l R	0	The read value is 0. The write value r	nust always be ().		
6	Reserved	l R	0	The read value is 0. The write value r	nust always be ().		
5	Reserved	l R	0	The read value is 0. The write value r	The read value is 0. The write value must always be 0.			
4	Reserved	l R	0	The read value is 0. The write value r	nust always be ().		
3	Reserved	l R	0	The read value is 0. The write value r	nust always be ().		
2	IRSM2	R/C	0	SMBUS interrupt monitor 2 Read 0: TIMEOUT violation is not detected Read 1: TIMEOUT violation is detected Write 0: No change Write 1: The bit is cleared When the TIMEOUT violation defined by the SMBUS standards is detected, the bit is set to 1. The bit can be		Read 0: TIMEOUT violation is not detected Read 1: TIMEOUT violation is detected Write 0: No change Write 1: The bit is cleared When the TIMEOUT violation defined by the SMBUS		
1	IRSM1	R/C	0	cleared by writing 1 to the bit from the CPU. SMBUS interrupt monitor 1 Read 0: TLOW:SEXT violation is not detected Read 1: TLOW:SEXT violation is detected Write 0: No change Write 1: The bit is cleared When the TLOW:SEXT violation defined by the SMBUS standards is detected, the bit is set to 1. The bit can be cleared by writing 1 to the bit from the CPU.				
0	IRSM0	R/C	0	SMBUS interrupt monitor 0 Read 0: TLOW:MEXT violation is not detected Read 1: TLOW:MEXT violation is detected Write 0: No change Write 1: The bit is cleared When the TLOW:MEXT violation defined by the SMBUS standards is detected, the bit is set to 1. The bit can be cleared by writing 1 to the bit from the CPU.				

19.2.15. ICSAA (I²C Subordinate Alert Address Register)

When the subordinate alert address defined by the ICSAIR.SAAEN bit is enabled and the received subordinate address matches the ICSAA.SAA bits, the LSI operates as the subordinate device specified by the master device. When ICSAA.SAA bits = 0, the IC does not judge whether or not the subordinate address matches the ICSAA.SAA bits.

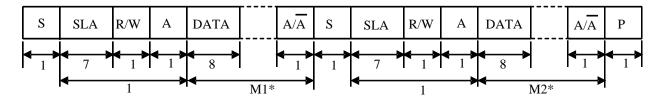
The ICSAA.CMD bit of the reception command is updated when the ICSAR.CMD bit matches with either of the following addresses regardless of enabling/disabling the SAA: with the SVA; with the GCA when GCA = enabled; with the SSA when SSA = enabled.

Regi	Register ICSAA		I ² C Subo	ordinate Alert Address Register Address 0x		0xF	kFC18	
Bit	Bit Na	me R/W	Initial	Description			Remarks	
7		R/W	0					
6		R/W	0					
5		R/W	0					
4	SAA	R/W	0	Subordinate alert address				
3		R/W	0					
2		R/W	0					
1	R/W		0					
0	СМІ) R	0	Reception command 0: Write command 1: Read command				


19.2.16. ICSAIR (I²C Subordinate Address Identifier Register)

Regi	ster ICSAI	R	I ² C Sub	ubordinate Address Identifier Register Address 0xF0		0xF0	FC19	
Bit	Bit Name	R/W	Initial	Description	1		Remarks	
7	SAAEN	R/W	0	Subordinate alert address enable 0: Subordinate alert address is disabled 1: Subordinate alert address is enabled When the bit is set to 0, if I ² C receives the address matching the ICSAA.SAA bits, it responds the NACK and does not reserve the next data. When the bit is set to 1, if I ² C receives the address matching the ICSAA.SAA bits, it responds the ACK and reserves the next data. The read value is 0. The write value must always be 0.				
6	Reserved	R	0	The read value is 0. The write value is	The read value is 0. The write value must always be 0.			
5	Reserved	R	0	The read value is 0. The write value must always be 0.				
4	Reserved	R	0	The read value is 0. The write value must always be 0.				
3	Reserved	R	0	The read value is 0. The write value must always be 0.				
2	SAI2	R	0	Subordinate address indicator 2 0: The last received address does not match the ICSAR.SVA bits 1: The last received address matches the ICSAR.SVA bits In the subordinate mode, the bit indicates whether or not the last				
1	SAII	R	0	received address matches the ICSAR.SVA bits. Subordinate address indicator 1 0: The last received address does not match the ICSAA.SAA bits 1:The last received address matches the ICSAA.SAA bits In the subordinate mode, the bit indicates whether or not the last received address matches the ICSAA.SAA bits.				
0	SAI0	R	0	Subordinate address indicator 0 0: GCA does not match the last received address 1: GCA matches the last received address In the subordinate mode, the bit indicates whether or not GCA (General Call Address) matches the last received address.				

19.3. I²C Bus Data Format


The I^2C bus interface has 2 types of data format (Figure 19-6). The first byte after the start condition is always configured with 8 bits. Figure 19-7 shows the I^2C bus timing.

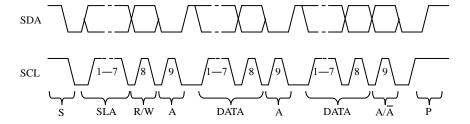
(a) Transfer format

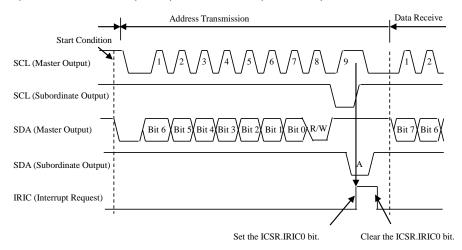
*N: Number of bytes transferred

(b) Transfer format (Retransmitting a start condition)

*M1, M2: Number of bytes transferred

Figure 19-6. I²C Bus Data Format




Figure 19-7. I²C Bus Timing

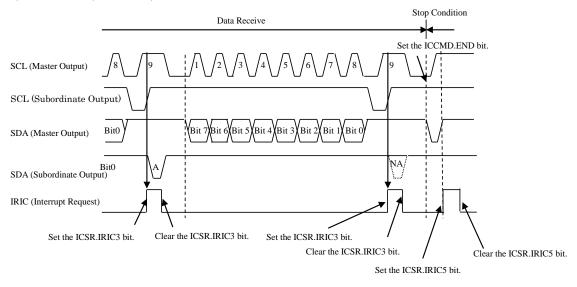
19.4. Subordinate Reception

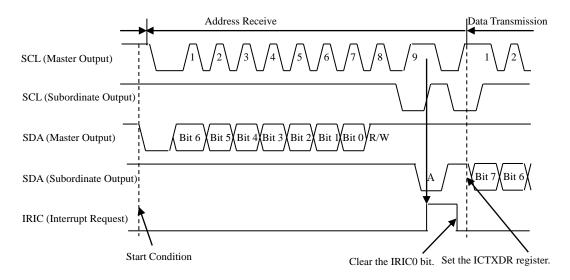
In the subordinate reception, the master device outputs the subordinate address, transmission data, and clock, whereas the subordinate device transmits the acknowledge. This section describes the procedures and operations for subordinate reception.

- (1) Set the following bits to 1: ICCR.ICE, ICCR.ICE0, ICCR.IEIC3, and ICCR.IEIC5. To perform the subordinate transmission, set the ICCR.IEIC2 bit to 1.
- (2) Set the subordinate address to the ICSAR.SVA bits. When using the GCA, set the ICCR.GCAE bit to 1. When using the SAA, set the ICSAIR.SAAEN bit to 1 and the alert address to the ICSAA register. The GCA and SAA are judged in the same way as the ICSAR.SVA bits by enabling the GCA and SAA.
- (3) The master device transmits the subordinate address and the write command after transmitting the start condition.
- (4) The subordinate device compares the received subordinate address with the ICSAR.SVA bits.
- (5) When the subordinate address matches the ICSAR.SVA bits, the subordinate device stores the write command in the ICSAR CMD bit, and automatically transmits the acknowledge to the master device.
- (6) The ICSR.IRIC0 bit is simultaneously set to 1 with the transmission of the acknowledge, and an interrupt is generated.
- (7) Clear the ICSR.IRIC0 bit. When using the GCA or SAA, check the ICSAIR.SAI0 to ICSAIR.SAI2 bits. In addition, check the ICSAR.CMD bit whether the write command or the read command is set. When the read command is set, start from step (8) in Section 19.5.
- (8) The data is received from the master device.
- (9) The subordinate device stores the reception data to the ICRXDR register, and sets the ICSR.IRIC3 bit to 1. Then, the interrupt is generated.
- (10) To continue the reception, set 1 to the ICCMD.ACK bit. Then, an ACK response is output to the I²C bus. Clear the ICSR.IRIC3 bit, and return to step (8).
- (11) Otherwise, set the ICCMD.NACK bit to 1. Then, a NACK response is output to the I²C bus. Clear the ICSR.IRIC3 bit
- (12) When the stop condition is detected, the ICSR.IRIC5 bit is set to 1, and an interrupt is generated. Clear the ICSR.IRIC5 bit in the interrupt service routine.

a) Address Transmission (Master) -> Data Receive (Subordinate)

b) Data Receive (Subordinate)




Figure 19-8. Subordinate Reception Timing

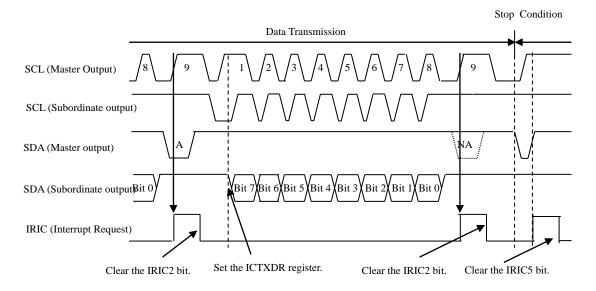
19.5. Subordinate Transmission

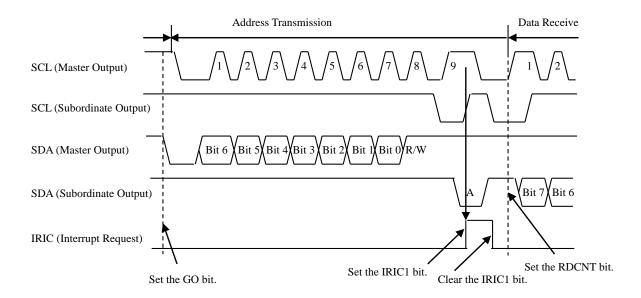
In the subordinate transmission, the subordinate device outputs transmission data, whereas the master device transmits the subordinate address and the acknowledge. This section describes the procedures and operations for subordinate transmission.

- (1) Set the following bits to 1: ICCR.ICE, ICCR.IEIC0, ICCR.IEIC2, and ICCR.IEIC. To perform the subordinate reception, set the ICCR.IEIC3 bit to 1.
- (2) Set the subordinate address to the ICSAR.SVA bits. When using the SAA, set the ICSAIR.SAAEN bit to 1 and the alert address to the ICSAA register.
- (3) The master device transmits the subordinate address and read command after transmitting the start condition.
- (4) The subordinate device compares the received subordinate address with the ICSAR.SVA bits.
- (5) When the subordinate address matches the ICSAR.SVA bits, the subordinate device stores the read command in the ICSAR.CMD bit, and automatically transmits the acknowledge to the master device.
- (6) The ICSR.IRIC0 bit is simultaneously set to 1 with the transmission of the acknowledge, and an interrupt is generated.
- (7) Clear the ICSR.IRIC0 bit. When using the SAA, check the ICSAIR.SAI0 to ICSAIR.SAI2 bits. In addition, check the ICSAR.CMD bit whether the write command or the read command is set. When the write command is set, start from step (8) in Section 19.4.
- (8) When the subordinate device sets the transmission data to the ICTXDR register, the transmission is started.
- (9) When the subordinate device receives the ACK or the NACK from the master device after the transmission completes, the ICSR.IRIC2 bit is set to 1. Then, the interrupt is generated.
- (10) Check the ICSR.RXACK bit whether the received acknowledge bit is the ACK or the NACK.
- (11) Clear the ICSR.IRIC2 bit.
- (12) To continue the transmission, go back to step (8).
- (13) When the stop condition is detected, the ICSR.IRIC5 bit is set to 1, and an interrupt is generated. Clear the ICSR.IRIC5 bit in the interrupt service routine.

a) Address Receive -> Data Transmission

b) Data Transmission




Figure 19-9. Subordinate Transmission Timing

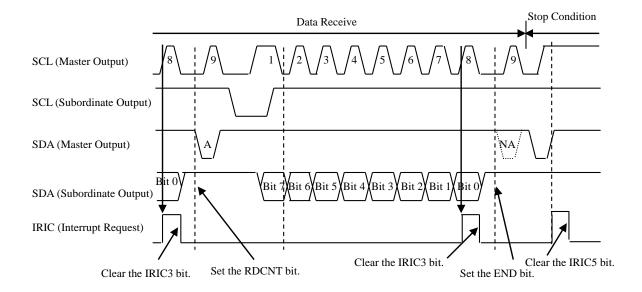
19.6. Master Reception

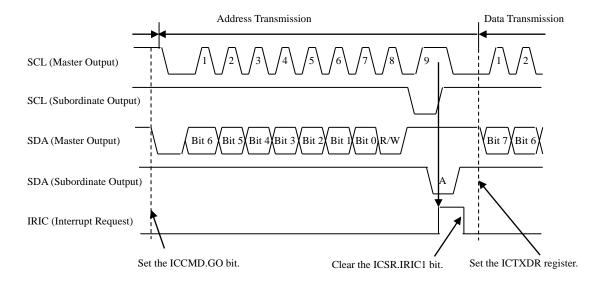
In the master reception, the subordinate device outputs transmission data, whereas the master device transmits the subordinate address and the acknowledge. This section describes the procedures and operations for master reception.

- (1) Set the following bits to 1: ICCR.ICE, ICCR.IEIC1, ICCR.IEIC3, ICCR.IEIC5.
- (2) The master device sets the subordinate address to the ICTSAR.ADR bits, and sets the ICTSAR.CMD bit to 1.
- (3) For the master device to generate the start condition, set the ICCMD.GO bit to 1. When the start condition is detected, the ICCMD.GO bit is automatically cleared.
- (4) The master device transmits the subordinate address and read command after transmitting the start condition.
- (5) At the same time that the master device receives the ACK or the NACK from the subordinate device, the ICSR.IRIC1 bit is set to 1, and an interrupt is generated. Clear the ICSR.IRIC1 bit.
- (6) Whether the ACK or the NACK has been received can be confirmed by the ICSR.RXACK bit. When the ACK is received, the master device keeps the SCL at the low level until 1 is written to one of the ICCMD register bits. When the NACK is received, the master device automatically generates the stop condition. When the stop condition generation is completed, the ICSR.IRIC5 bit is set to 1, and an interrupt is generated. Clear the ICSR.IRIC5 bit in the interrupt service routine, and go to step (12).
- (7) Set the ICCMD.RDCNT bit to 1. The SCL is released, and then the data reception is started.
- (8) When the master device receives the data of the 8th bit, the ICSR.IRIC3 bit is set to 1, and an interrupt is generated. The master device keeps the SCL at the low level until 1 is written to one of the ICCMD register bits.
- (9) Clear the ICSR.IRIC3 bit.
- (10) Read the reception data from the ICRXDR register.
- (11) Make settings as follows according to the next operation executed:
 - When continuing the reception:
 - Set the ICCMD.RDCNT bit to 1. The ACK is automatically transmitted to the subordinate device, and the operations of steps (8) to (11) are repeated.
 - When stopping the reception: Set the ICCMD.END bit to 1. The master device automatically transmits the NACK to the subordinate device, and generates the stop condition. When the stop condition generation is completed, the ICSR.IRIC5 bit is set to 1, and an interrupt is generated. Clear the ICSR.IRIC5 bit in the interrupt service routine.
- (12) When starting the next operation, check that the ICSR.BBSY bit has detected the stop condition. Then, go back to step (2).

a) Address Transmission -> Data Receive

b) Data Receive




Figure 19-10. Master Reception Timing

19.7. Master Transmission

In the master transmission, the master device outputs transmission data and transmission clock, whereas the subordinate device transmits the acknowledge. This section describes the procedures and operations for master transmission.

- (1) Set the following bits to 1: ICCR.ICE, ICCR.IEIC1, ICCR.IEIC2, and ICCR.IEIC5.
- (2) Set the subordinate address to the ICTSAR.ADR bits, and set the ICTSAR.CMD bit to 0.
- (3) To generate the start condition, set the ICCMD.GO bit to 1. When the start condition is detected, the ICCMD.GO bit is automatically cleared.
- (4) The master device transmits the subordinate address and the write command after transmitting the start condition.
- (5) At the same time that the master device receives the ACK or the NACK from the subordinate device, the ICSR.IRIC1 bit is set to 1, and an interrupt is generated. Clear the ICSR.IRIC1 bit.
- (6) Whether the ACK or the NACK has been received can be confirmed by the ICSR.RXACK bit. When the ACK is received, the master device keeps the SCL at the low level until 1 is written to one of the ICCMD register bits or transmission data is set to the ICTXDR register. When the NACK is received, the master device automatically generates the stop condition. When the stop condition generation is completed, the ICSR.IRIC5 bit is set to 1, and an interrupt is generated. Clear the ICSR.IRIC5 bit in the interrupt service routine, and go to step (12).
- (7) Set the transmission data to the ICTXDR register.
- (8) After the master device completes to transmit the data of the 8th bit, the master device waits for a response (ACK or NACK) from the subordinate device.
- (9) At the same time that the master device receives the ACK or the NACK from the subordinate device, the ICSR.IRIC2 bit is set to 1, and an interrupt is generated. Whether the ACK or the NACK has been received can be confirmed by the ICSR.RXACK bit. The master device keeps the SCL at the low level until 1 is written to one of the ICCMD register bits or transmission data is set to the ICTXDR register.
- (10) Clear the ICSR.IRIC2 bit.
- (11) Make settings as follows according to the next operation executed:
 - When continuing the transmission:
 - Set the transmission data to the ICTXDR register. The operations of steps (8) to (11) are repeated.
 - When generating the start condition again to switch to the master reception: When generating the start condition again without generating the stop condition to switch to the master reception, start from step (2) in Section 19.6. Be sure to preset the ICCR.IEIC3 bit to 1.
 - When stopping the transmission:
 For the master device to generate the stop condition, set the ICCMD.END bit to 1. When the stop condition generation is completed, the ICSR.IRIC5 bit is set to 1, and an interrupt is generated. Clear the ICSR.IRIC5 bit in the interrupt service routine.
- (12) When starting the next operation, check that the ICSR.BBSY bit has detected the stop condition. Then, go back to step (2).

a) Address Transmission -> Data Transmission

b) Data Transmission

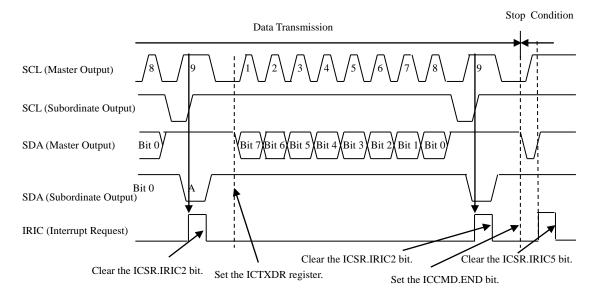


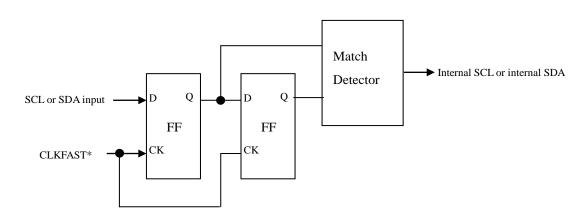
Figure 19-11. Master Transmission Timing

19.8. Subordinate Alert Address (SAA), General Call Address (GCA), and Reception Address Indicator

This I²C device has the following registers to set the subordinate address: the general call address (GCA), which is fixed to 0x00, the ICSAR register, which can set an arbitrary address, and the subordinate alert address (SAA) register.

In the subordinate mode, the following operation when the subordinate address matches the SAA or the GCA is the same as the operation when the subordinate address matches the ICSAR register. When the same subordinate address is set to the ICSAR register and the SAA, the priority is ICSAR > SAA.

When the ICSAR.SVA bits = 0, the IC does not judge whether or not the subordinate address matches the ICSAR.SVA bits. Thus, the GCA and the ICSAR.SVA bits will never match with the subordinate address at the same time as when the GCA is enabled.


When the ICSAA.SAA bits = 0, the IC does not judge whether or not the subordinate address matches the ICSAA.SAA bits. Thus, the SAA and the ICSAA.SAA bits will never match with the subordinate address at the same time as when the SAA is enabled.

When not using the SAA, set the ICSAIR.SAAEN bit to 0. When not using the GCA, set the ICCR.GCAE bit to 0. The lower 3 bits of the ICSAIR register indicate the last address that was accessed as the subordinate device. Whether the command for the subordinate address is writing or reading can be confirmed by the ICSAR.CMD bit.

19.9. Noise Filter

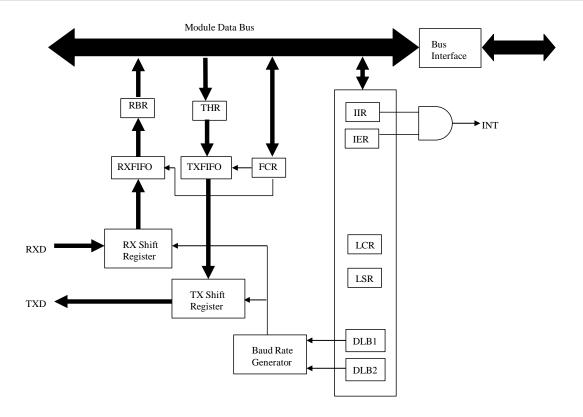
The states of the SCL and SDA pins are stored to inside through the noise filter circuit. Figure 19-12 shows the block diagram of the noise filter circuit.

The noise filter is configured with 2 flip-flop circuits connected in series and a matching detection circuit. The SCL and SDA signals are sampled by the CLKFAST. When the output levels of the 2 flip-flops match, the level is output from the matching detection circuit. Otherwise, the output of the matching detection circuit is kept at the previous value.

*CLKFAST: I2C system clock

Figure 19-12. Noise Filter Block Diagram

20. UART


The LSI does not support a modem pin control.

20.1. Overview

The universal asynchronous receiver transmitter (UART) supports an asynchronous serial input/output mode. The UART generates a transfer clock, and has a timer for a baud rate generation.

Table 20-1. UART Functional Descriptions

Item	Description				
	Data length: 5 bits, 6 bits, 7 bits, or 8 bits Start bit: 1 bit				
Character Format	Parity bit: Odd, even, or none				
	Stop bit: 1 bit or 2 bits				
	The baud rate is determined by the following equation, which is based on a frequency divider register setting.				
Baud Rate	Baud rate (bps) = $\frac{\text{CLKUART}}{16 \times \text{n}}$,				
	where:				
	CLKUART is CLKFAST, and				
	n is setting value in the DLB1 and DLB2 registers.				
FIFO	TX (transmitter) FIFO: 16 bytes				
1110	RX (receiver) FIFO: 16 bytes				
TX Interrupt	Transmission buffer empty				
1X interrupt	Transfer completion				
DV Interrupt	Reception buffer full				
RX Interrupt	Parity error, overrun error, or framing error				

RXFIFO: Receiver FIFO TXFIFO: Transmitter FIFO

RXD: Reception data TXD: Transmission data

Figure 20-1. UART Block Diagram

20.2. External Connection Pins

Pin Name	Input/Output	Description
TXD	Output	Transmission data
RXD	Input	Reception data

20.3. Register Descriptions

The clock frequency divider registers that are listed in Table 20-3 are 16 bits, and are mapped on the same addresses as listed in Table 20-2. While the LCR.DLAB bit is set to 1, the clock frequency divider registers (the DLAB1 and DLAB2 registers) can be accessed. In this state, the RBR, THR, and IER registers that are mapped on the same address cannot be accessed.

Table 20-2. List of Control Registers

Symbol	Name	Address	Initial Value
RBR	Receiver Buffer Register	0xFC80	Undefined
THR	Transmitter Holding Register	0xFC80	Undefined
IER	Interrupt Enable Register	0xFC81	0x00
IIR	Interrupt Identification Register	0xFC82	0xC1
FCR	FIFO Control Register	0xFC82	0xC0
LCR	Line Control Register	0xFC83	0x03
LSR	Line Status Register	0xFC85	0x60

Table 20-3. List of Clock Frequency Divider Registers

Symbol	Name	Address	Initial Value
DLB1	Divisor Latch Byte1	0xFC80	0x00
DLB2	Divisor Latch Byte2	0xFC81	0x00

20.3.1. RBR (Receiver Buffer Register)/THR (Transmitter Holding Register)

Registe	Register RBR		Receiver Buffer Register		Address	0xFC8	0	
Bit	Bit 1	Bit Name R/W		Initial	Description			Remarks
7			R	Undefined				
6		R		Undefined				
5	R R R		R	Undefined	Receiver FIFO output			
4			R	Undefined				
3	K	.DK	R Undefined		Receiver FIFO 0	output		
2	R		R	Undefined				
1			R	Undefined				
0			R	Undefined				

Register THR		Transmitter Holding Register		Address	0xFC8	0		
Bit	Bit Name	R/W	Initial		Description		Remarks	
7		W	Undefined					
6	W W W		Undefined	Transmitter FIFO input				
5			Undefined					
4			Undefined					
3	ITK	THR W Undefin		Transmuer FIF) input			
2	W		Undefined					
1		W	Undefined					
0		W	Undefined					

20.3.2. IER (Interrupt Enable Register)

The UART interrupt is enabled or disabled by the IER register setting.

Registe	Register IER		Interrupt Enable Register		Address	0xFC8	1
Bit	Bit Name	R/W	Initial	Desc	ription		Remarks
7	Reserved	R/W	0	The read value is 0. The write	value must alw	ays be 0.	
6	Reserved	R/W	0	The read value is 0. The write	value must alw	ays be 0.	
5	Reserved	R/W	0	The read value is 0. The write	The read value is 0. The write value must always be 0.		
4	Reserved	R/W	0	The read value is 0. The write			
3	Reserved	R/W	0	The read value is 0. The write			
2	IER2	R/W	0	Reception status interrupt enal 0: Reception status interrupt 1: Reception status interrupt			
1	IER1	R/W	0	Empty interrupt enable of the transmitter holding register 0: Transmitter holding register empty interrupt is disabled 1:Transmitter holding register empty interrupt is enabled			
0	IER0	R/W	0	Reception data interrupt enable 0: Reception data interrupt i 1: Reception data interrupt i	_		

20.3.3. IIR (Interrupt Identification Register)

The IIR register indicates the interrupt source with the highest priority in interrupts currently waiting for processing. When the waiting interrupt processing exists, the NOPEND bit is 0. When the waiting interrupt processing does not exist, the NOPEND bit is 1.

Registe	Register IIR		Interrupt Identification Register Address 0xFC8		282			
Bit	Bit N	Vame	R/W	Initial	Desc	ription		Remarks
7	Rese	erved	R	1	The read value is 1. The write	The read value is 1. The write value must always be 1.		
6	Rese	erved	R	1	The read value is 1. The write	The read value is 1. The write value must always be 1.		
5	Rese	erved	R	0	The read value is 0. The write	The read value is 0. The write value must always be 0.		
4	4 Reserved R 1 The read value is 0. The write value			value must alw	ays be 0.			
3	III	R3	R	0	Setting of Interrupt type (3) For the interrupt type, see Table 20-4.			
2	III	IIR2 R 0 Setting of Interrupt type (2) For the interrupt type, see Table 20-4.						
1	III	IIR1 R 0 Setting of Interrupt type (1) For the interrupt type, see Table 20-4.						
0	NOP	PEND	R	1	The bit indicates whether a pending interrupt exists or not exist 0: Pending interrupt exists 1: No pending interrupt			

The following table shows the relationship between each bit and interrupt, and the priority.

Table 20-4. Relationship between Each Bit and Interrupt, and the Priority

IIR3	IIR2	IIR1	Priority	Interrupt Type	Interrupt Source	Interrupt Reset Control
0	1	1	1 (Highest)	Reception communication status	Break interrupt, or parity, overrun, and framing errors.	Communication status register is read.
0	1	0	2	Completion of reception data acquisition	Reaches the FIFO trigger level.	The data in the FIFO is less than the trigger level.
1	1	0	2	Time out	One of the following state: - Data is not received to the FIFO although one or more data exist in the FIFO. - The FIFO is not read during 4 data transmission.	The data is read from the FIFO (reception buffer register).
0	0	1	3 (Lowest)	Transmission buffer empty	Transmission buffer empty	Writing in the transmission buffer or reading the IIR register.

20.3.4. FCR (FIFO Control Register)

The number of bytes of the receiver FIFO that generates a reception data interrupt is defined by the FCR register. The

FIFO can be cleared by the FCR register.

Registe	r FCR FIFO C		FIFO Co	ontrol Register	Address	0xFC82		
Bit	Bit Name	R/W	Initial	Desc	Description			
7	7 W				Setting of the number of bytes of the receiver FIFO that			
6	FTL	W	1	generates a reception data inter 00: 1 byte 01: 4 bytes 10: 8 bytes 11: 14 bytes				
5	Reserved	W	0	The read value is 0. The write				
4	Reserved	W	0	The read value is 0. The write				
3	Reserved	W	0	The read value is 0. The write value must always be 0.				
2	TFCLR	С	0	When 1 is written to the bit, the transmitter FIFO is cleared (TXFIFO = 0).				
1	RFCLR	С	0	When 1 is written to the bit, the receiver FIFO is cleared (RXFIFO = 0).				
0	Reserved	W	0	The read value is 0. The write value must always be 0.				

20.3.5. LCR (Line Control Register)

The asynchronous data communication method is determined by the LCR register. The LCR register accesses the frequency divider register to define a baud rate.

Registe	er LCR			ntrol Register	Address	0xFC8	3
Bit	Bit Name	R/W	Initial	Desc	ription		Remarks
7	DLAB	R/W	0	The transmission/reception register for the baud rate se address (0xFC80). The bit accessed. 0: Access the transmission/r 1: Access the frequency div	etting are map determines we reception regist	ped in the same which address is	
6	BRK	R/W	0	Break state setting 0: Break state is disabled 1: TXD pin is fixed to 0 (brown)	E .		
5	STICK	R/W	0	Stick parity setting 0: Stick parity is disabled 1: The operation in STICK PARE and EVPAR bits, - When PARE = 1 and E The parity bit is cleared The parity bit is interpring - When PARE = 1 and E The parity bit is set to The parity bit is interpring	ck parity setting D: Stick parity is disabled The operation in STICK = 1 depends on the states of the PARE and EVPAR bits, and is as follows: When PARE = 1 and EVPAR = 1: The parity bit is cleared in a transmission. The parity bit is interpreted as 0 in a reception. When PARE = 1 and EVPAR = 0: The parity bit is set to 1 in a transmission. The parity bit is interpreted as 1 in a reception.		
4	EVPAR	R/W	0	Even parity setting 0: Odd parity The parity bit is transmit among the data and parity reception data is checked odd. If the number of "1" in parity is set to 1. 1: Even parity The parity bit is transmit among the data and par The reception data is ch bits is even.	y bits becomes I whether the n the reception tted so that the ity bits become	odd number. The umber of 1 bits is data is even, the number of 1 bits is even number.	
3	PARE	R/W	0	Parity enable 0: Parity is disabled 1: Parity is enabled			
2	NSTP	R/W	0	Setting of the number of stop to 0: 1 stop bit 1: 2 stop bits when the charbits, or 8 bits 1.5 stop bits when the charbits top bits when the charbits top bit is always che	racter length is	s selected 5 bits.	
1		R/W	1	Setting of the number of bits for			
0	NBCHAR	R/W	1	00: 5 bits 01: 6 bits 10: 7 bits 11: 8 bits			

20.3.6. LSR (Line Status Register)

Re	gister	LS	SR	Line St	atus Register	Address	0xFC8	5	
Bit	Bit Nan	ne	R/W	Initial	Descrip	otion		Remarks	
7	RXERI	R	R	0	interrupt exist in RXFIFO	0: No RXFIFO error 1: One or more parity error, overrun error, framing error, brake			
6	TXEM	Р	R	1		0: Not empty 1: TXFIFO and TX shift register are empty nen data is written to the TXFIFO, the bit is cleared.			
5	TFEM	P	R	1		TIFO empty TXFIFO is not empty TXFIFO is empty en the TXFIFO is empty, the TXFIFO empty interrupt is erated. When data is written to the TXFIFO, the bit is cleared.			
4	BRKI		R	0	Break interrupt (BI) indicator 0: The latest reception data is not in the latest reception data is not in the latest reception data is in both the latest received dustring (sum of start bit, data, parit UART interprets as a break state receives the break state, the Uprocessing. - Stores 0x00 in the RXFIFO - Generates the reception communication. - Waits for the next start bit	reak state uring receiving y, and stop bi is received. JART execute cation status interests	it) is all zero, the When the UART es the following		
3	FERI		R	0	Framing error (FE) indicator 0: No framing error in the latest reception data 1: A framing error exists in the latest reception data When a stop bit is not detected, the UART interprets as a framing error is received. When the UART receives the framing error, the UART generates the reception communication status interrupt. The bit is cleared by reading the LSR register.				
2	PERI		R	0	Parity error (PE) indicator 0: No parity error in the latest rece 1: A parity error exists in the lates When the parity error is detected, the communication status interrupt. The bit is cleared by reading the LSF	t reception data			

Re	gister	LSR	Line St	Line Status Register Address 0xFC85		tus Register Address 0xFC85	
Bit	Bit Name	e R/W	Initial	Description		Remarks	
1	OERI	R	0	Overrun error (OE) indicator 0: RXFIFO is not in overrun state 1: An overrun error occurs in RXF When the next data is received ever UART interprets as the RXFIFO is the overrun error is detected, the communication status interrupt. The bit is cleared by reading the LSF	FIFO though the R in an overrun UART genera	error state. When	
0	DRDYI	R	0	Data ready (DR) indicator 0: No character in RXFIFO 1: One or more data are received, The bit is cleared by reading all the or			

20.3.7. DLB1/2 (Divisor Latch Byte1/2)

Registe	Register DLB1		Divisor Latch Byte1		Address	0xFC8	0
Bit	Bit Name	R/W	Initial	Description		Remarks	
7		R/W	0				
6	R/W 0						
5		R/W	0		LSB of the frequency divider register		
4	DLB1	R/W	0	TOP 64 6 11 11			
3	DLDI	R/W	0	LSB of the frequency divide	er register		
2		R/W	0				
1		R/W	0				
0		R/W	0				

Registe	er	DLB2		Divisor Lat	ch Byte2	Address	0xFC8	1
Bit	Bit	Name	R/W	Initial	Description		Remarks	
7	R/W R/W		0					
6			0					
5			R/W	0				
4		DLB2	R/W	0	MCD of the Common of the contract			
3	_ L)Lb2	R/W	0	MSB of the frequency divider register			
2			R/W	0				
1			R/W	0				
0			R/W	0				

To access a frequency divider register, set 1 to the LCR.DLAB bit. In the initial setting of the UART, the frequency divider value is set to the DLB1 and DLB2 registers after 1 is written to the LCR.DLAB bit. The frequency divider value is 16 bits (2 bytes). When the DLB1 register is written, the internal counter in the baud rate generator operates. Thus, it is required to write the DLB2 and DLB1 registers in that order when setting the frequency divider.

The initial values of the DLB1 and DLB2 registers are 0, which disable all serial input/output operations. After the frequency divider value is set, to access the RBR and THR registers, set the LCR.DLAB bit to 0.

The baud rate is determined by the following equation based on a frequency divider value.

Baud rate (bps) =
$$\frac{\text{CLKUART}}{16 \times \text{n}}$$
,

where

CLKUART is CLKFAST, and

n is setting value in the DLB1 and DLB2 registers.

Table 20-5 shows a relationship between a baud rate and a frequency divider value as an example.

20.3.8. Baud Rate

Table 20-5 shows the example of the frequency divider values in decimal to the baud rate when some crystals are used. The baud rate is calculated by equation in Section 20.3.7. The baud rate accuracy depends on the characteristics of an oscillator. Note that the error values shown in Table 20-5 are the result obtained by the calculation and are not guaranteed.

Table 20-5. Example of Frequency Divider Values (CLKFAST = 60MHz, 30 MHz, and 12 MHz) for Baud Rate

	CLKFAST	CLKFAST = 60 MHz		CLKFAST = 30 MHz		CLKFAST = 12 MHz	
Baud Rate (bps)	Frequency Divider Value in Decimal	Error (%)	Frequency Divider Value in Decimal	Error (%)	Frequency Divider Value in Decimal	Error (%)	
2400	1563	0.03	781	0.03	313	0.16	
4800	781	0.03	391	0.10	156	0.16	
9600	391	0.10	195	0.16	78	0.16	
19200	195	0.16	98	0.35	39	0.16	
38400	98	0.35	49	0.35	20	2.40	
76800	49	0.35	24	1.70	10	2.40	
96000	39	0.16	20	2.40	8	2.40	
115200	33	1.38	16	1.70	7	7.52	
128000	29	1.01	15	2.40	6	2.40	
256000	15	2.40	7	4.43	3	2.40	
384000	10	2.40	5	2.40	2	2.40	
512000	7	4.43	4	9.23	1	31.73	
768000	5	2.40	2	18.08	1	2.40	
1152000	3	7.84	2	22.88	1	53.60	
1536000	2	18.08	1	18.08	-	-	

20.4. Operation

The UART is based on the 16550 UART standard chips except a modem pin control.

21. Analog Interconnect

21.1. Overview

Figure 21-1 shows the analog interconnect. The LSI configures the analog interconnect that switches connect between internal analog modules. All switch states in Figure 21-1 are set by user setting of the corresponding register. The configuration examples are as follows:

- (1) An ADC input is connected to an external pin directly, or is connected to an external pin via an OPAMP.
- (2) An OPAMP can be used for a standalone amplifier or a gain amplifier (×1 or ×4). A comparator is used for standalone, or is connected to an external pin via an OPAMP.

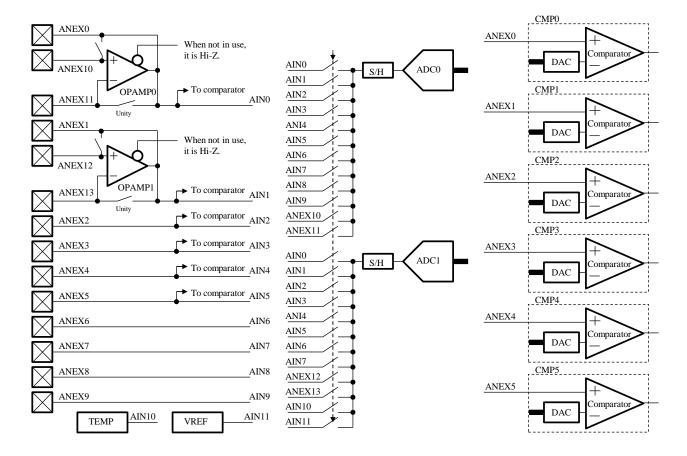


Figure 21-1. Analog Interconnect

22. 12-bit SAR ADC

22.1. Overview

Table 22-1 shows the ADC functional descriptions.

Table 22-1. ADC Functional Descriptions

Item	Description
Resolution	12 bits
Conversion Method	Successive approximation register (SAR)
Conversion Speed	4 MSPS (max.) with clock frequency 60 MHz
Number of Units	2 units
Analog Input	12 channels per unit
Features	Registration of 8 conversion groups (max.) Synchronous operations between the units (ADC0 and ADC1)

The LSI has 2 ADCs of a successive approximation register (SAR) method. The resolution of the ADC is 12 bits. The maximum conversion speed of each ADC is 4 MSPS, where the clock frequency is 60 MHz. The ADC is based on the CLKFAST clock. Each ADC has 12 analog inputs. The specific channel numbers (0 to 11) are assigned to each analog input for identification. These channel numbers are used for the settings. The ADC has 3 registers: a register to store a conversion result in each channel, a register to set the offset value that is added to the conversion result, and a register to set a sampling period. The sampling period is the time that is the ADC internal capacitor is charged with the analog voltage applied the channel. For the sample period, 1 cycle to 256 cycles can be specified. The result converted to the digital value is stored in the registers for storing the conversion result after the offset value set to each channel is added.

After the internal capacitor is charged with the analog voltage, the ADC separates the analog input and the capacitor, and converts the capacitor voltage to the digital value with the SAR method by a binary search. A conversion process of each channel is a series of processing of charging to the capacitor (sample), separating the capacitor (hold), and storing the result, which is obtained by converting the capacitance to the digital value and adding the offset, to the register.

One ADC can convert the analog value of one channel to the digital value in one conversion process. When one ADC needs to convert multiple channels, the ADC performs the channel conversion process continuously. The ADC manages the channels by groups. One ADC has 8 groups. An arbitrary channel can be set for each group. The ADC instructs the group to start conversion instead of specifying the channels directly. The event that is the trigger of the conversion start is set for each group. When receiving the instruction of the conversion start from the CPU or the events, the ADC converts continuously all channels registered in the instructed group.

The following describes the processing of the ADC group and channels. First, the ADC selects one group to be processed from the received trigger. If multiple groups to be the candidates for processing exist, the group with the smallest number is selected. After the group to be processed is determined, the ADC converts all conversion channels set to the group from the smaller channel number in sequence. When the conversion process of the group that is the event output is specified is completed, the ADC event is generated. The ADC event type is determined by the group, and is not related to the channel number. If an interrupt enable is set when the conversion process of all channels is completed, the ADC interrupt signal is generated, and the group processing is completed. The interrupt signal once generated by the ADC is generated continuously unless user clears it. If the unprocessed items such as an unselected group or a trigger received during the processing exist when the group processing is completed, one group to be processed again is determined, and then group processing is started. Otherwise, it enters the idle state until receiving the next activation trigger.

The group is activated by the triggers from the GPIO, comparator, PWM, timer, DSAC, EPU, and CPU. Each group has 3 activation triggers: 2 predetermined CPU triggers (ADT trigger and ADLOOP trigger) and one trigger specified by user (selected from GPIO trigger, comparator trigger, PWM trigger, timer trigger, DSAC trigger, and EPU trigger). Although 2 ADCs operate independently, 2 ADC conversions can be started simultaneously in the Group0. This is valid when 2 analog values require to be converted simultaneously.

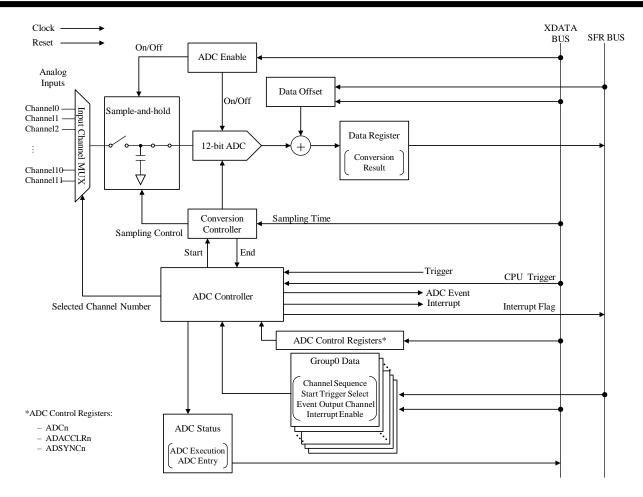


Figure 22-1. 12-bit ADC Block Diagram

22.2. Register Descriptions

The ADC uses 2 registers: the XDATA BUS and SFR BUS registers. Table 22-2 and Table 22-3 show the list of the XDATA BUS and SFR BUS registers, respectively. The letter "n" means the unit number.

Table 22-2. List of XDATA BUS Register

Symbol	Name	Address (Unit0)	Address (Unit1)	Initial Value
ADCn	ADCn Configuration Register	0xF000	0xF080	0x00
ADENn	ADCn Enable Register	0xF001	0xF081	0x00
ADTn	ADCn CPU Trigger Register	0xF003	0xF083	0x00
ADLOOPn	ADCn CPU Loop Trigger Register	0xF008	0xF088	0x00
ADEXEn	ADCn Group Execution Status Register	0xF006	0xF086	0x00
ADENTRYn	ADCn Group Entry Status Register	0xF004	0xF084	0x00
ADIENn	ADCn Group Interrupt Enable Register	0xF007	0xF087	0x00
ADSYNCn	ADCn Synchronous Control Register	0xF005	0xF085	0x00
ADCHSELTESTLn	ADCn Channel Select Test Low Register	0xF00E	0xF08E	0x00
ADCHSELTESTHn	ADCn Channel Select Test High Register	0xF00F	0xF08F	0x00
ADNSMP0n	ADCn Channel0 Sampling Time Register	0xF010	0xF090	0x03
ADNSMP1n	ADCn Channel1 Sampling Time Register	0xF011	0xF091	0x03
ADNSMP2n	ADCn Channel2 Sampling Time Register	0xF012	0xF092	0x03
ADNSMP3n	ADCn Channel3 Sampling Time Register	0xF013	0xF093	0x03
ADNSMP4n	ADCn Channel4 Sampling Time Register	0xF014	0xF094	0x03
ADNSMP5n	ADCn Channel5 Sampling Time Register	0xF015	0xF095	0x03
ADNSMP6n	ADCn Channel6 Sampling Time Register	0xF016	0xF096	0x03
ADNSMP7n	ADCn Channel7 Sampling Time Register	0xF017	0xF097	0x03
ADNSMP8n	ADCn Channel8 Sampling Time Register	0xF018	0xF098	0x03
ADNSMP9n	ADCn Channel9 Sampling Time Register	0xF019	0xF099	0x03
ADNSMPAn	ADCn Channel10 Sampling Time Register	0xF01A	0xF09A	0x03
ADNSMPBn	ADCn Channel11 Sampling Time Register	0xF01B	0xF09B	0x03
ADO0Ln	ADCn Channel0 Data Offset Low Register	0xF020	0xF0A0	0x00
ADO0Hn	ADCn Channel0 Data Offset High Register	0xF021	0xF0A1	0x00
ADO1Ln	ADCn Channel1 Data Offset Low Register	0xF022	0xF0A2	0x00
ADO1Hn	ADCn Channel1 Data Offset High Register	0xF023	0xF0A3	0x00
ADO2Ln	ADCn Channel2 Data Offset Low Register	0xF024	0xF0A4	0x00
ADO2Hn	ADCn Channel2 Data Offset High Register	0xF025	0xF0A5	0x00
ADO3Ln	ADCn Channel3 Data Offset Low Register	0xF026	0xF0A6	0x00
ADO3Hn	ADCn Channel3 Data Offset High Register	0xF027	0xF0A7	0x00
ADO4Ln	ADCn Channel4 Data Offset Low Register	0xF028	0xF0A8	0x00
ADO4Hn	ADCn Channel4 Data Offset High Register	0xF029	0xF0A9	0x00

Symbol	Name	Address (Unit0)	Address (Unit1)	Initial Value
ADO5Ln	ADCn Channel5 Data Offset Low Register	0xF02A	0xF0AA	0x00
ADO5Hn	ADCn Channel5 Data Offset High Register	0xF02B	0xF0AB	0x00
ADO6Ln	ADCn Channel6 Data Offset Low Register	0xF02C	0xF0AC	0x00
ADO6Hn	ADCn Channel6 Data Offset High Register	0xF02D	0xF0AD	0x00
ADO7Ln	ADCn Channel7 Data Offset Low Register	0xF02E	0xF0AE	0x00
ADO7Hn	ADCn Channel7 Data Offset High Register	0xF02F	0xF0AF	0x00
ADO8Ln	ADCn Channel8 Data Offset Low Register	0xF030	0xF0B0	0x00
ADO8Hn	ADCn Channel8 Data Offset High Register	0xF031	0xF0B1	0x00
ADO9Ln	ADCn Channel9 Data Offset Low Register	0xF032	0xF0B2	0x00
ADO9Hn	ADCn Channel9 Data Offset High Register	0xF033	0xF0B3	0x00
ADOALn	ADCn Channel10 Data Offset Low Register	0xF034	0xF0B4	0x00
ADOAHn	ADCn Channel10 Data Offset High Register	0xF035	0xF0B5	0x00
ADOBLn	ADCn Channel11 Data Offset Low Register	0xF036	0xF0B6	0x00
ADOBHn	ADCn Channel11 Data Offset High Register	0xF037	0xF0B7	0x00
ADACCLRn	ADCn Data Read Access Counter Clear Register	0xF002	0xF082	0x00
ADS0Ln	ADCn Group0 Channel Sequence Low Register	0xF040	0xF0C0	0x00
ADS0Hn	ADCn Group0 Channel Sequence High Register	0xF041	0xF0C1	0x00
ADS1Ln	ADCn Group1 Channel Sequence Low Register	0xF048	0xF0C8	0x00
ADS1Hn	ADCn Group1 Channel Sequence High Register	0xF049	0xF0C9	0x00
ADS2Ln	ADCn Group2 Channel Sequence Low Register	0xF050	0xF0D0	0x00
ADS2Hn	ADCn Group2 Channel Sequence High Register	0xF051	0xF0D1	0x00
ADS3Ln	ADCn Group3 Channel Sequence Low Register	0xF058	0xF0D8	0x00
ADS3Hn	ADCn Group3 Channel Sequence High Register	0xF059	0xF0D9	0x00
ADS4Ln	ADCn Group4 Channel Sequence Low Register	0xF060	0xF0E0	0x00
ADS4Hn	ADCn Group4 Channel Sequence High Register	0xF061	0xF0E1	0x00
ADS5Ln	ADCn Group5 Channel Sequence Low Register	0xF068	0xF0E8	0x00
ADS5Hn	ADCn Group5 Channel Sequence High Register	0xF069	0xF0E9	0x00
ADS6Ln	ADCn Group6 Channel Sequence Low Register	0xF070	0xF0F0	0x00
ADS6Hn	ADCn Group6 Channel Sequence High Register	0xF071	0xF0F1	0x00
ADS7Ln	ADCn Group7 Channel Sequence Low Register	0xF078	0xF0F8	0x00
ADS7Hn	ADCn Group7 Channel Sequence High Register	0xF079	0xF0F9	0x00
ADSTSEL0n	ADCn Group0 Start Trigger Select Register	0xF042	0xF0C2	0x00
ADSTSEL1n	ADCn Group1 Start Trigger Select Register	0xF04A	0xF0CA	0x00
ADSTSEL2n	ADCn Group2 Start Trigger Select Register	0xF052	0xF0D2	0x00
ADSTSEL3n	ADCn Group3 Start Trigger Select Register	0xF05A	0xF0DA	0x00
ADSTSEL4n	ADCn Group4 Start Trigger Select Register	0xF062	0xF0E2	0x00
ADSTSEL5n	ADCn Group5 Start Triggesr Select Register	0xF06A	0xF0EA	0x00

Symbol	Name	Address (Unit0)	Address (Unit1)	Initial Value
ADSTSEL6n	ADCn Group6 Start Trigger Select Register	0xF072	0xF0F2	0x00
ADSTSEL7n	ADCn Group7 Start Trigger Select Register	0xF07A	0xF0FA	0x00
ADEVT0Ln	ADCn Group0 Event Output Channel Low Register	0xF044	0xF0C4	0x00
ADEVT0Hn	ADCn Group0 Event Output Channel High Register	0xF045	0xF0C5	0x00
ADEVT1Ln	ADCn Group1 Event Output Channel Low Register	0xF04C	0xF0CC	0x00
ADEVT1Hn	ADCn Group1 Event Output Channel High Register	0xF04D	0xF0CD	0x00
ADEVT2Ln	ADCn Group2 Event Output Channel Low Register	0xF054	0xF0D4	0x00
ADEVT2Hn	ADCn Group2 Event Output Channel High Register	0xF055	0xF0D5	0x00
ADEVT3Ln	ADCn Group3 Event Output Channel Low Register	0xF05C	0xF0DC	0x00
ADEVT3Hn	ADCn Group3 Event Output Channel High Register	0xF05D	0xF0DD	0x00
ADEVT4Ln	ADCn Group4 Event Output Channel Low Register	0xF064	0xF0E4	0x00
ADEVT4Hn	ADCn Group4 Event Output Channel High Register	0xF065	0xF0E5	0x00
ADEVT5Ln	ADCn Group5 Event Output Channel Low Register	0xF06C	0xF0EC	0x00
ADEVT5Hn	ADCn Group5 Event Output Channel High Register	0xF06D	0xF0ED	0x00
ADEVT6Ln	ADCn Group6 Event Output Channel Low Register	0xF074	0xF0F4	0x00
ADEVT6Hn	ADCn Group6 Event Output Channel High Register	0xF075	0xF0F5	0x00
ADEVT7Ln	ADCn Group7 Event Output Channel Low Register	0xF07C	0xF0FC	0x00
ADEVT7Hn	ADCn Group7 Event Output Channel High Register	0xF07D	0xF0FD	0x00

Table 22-3. List of SFR BUS Registers

Symbol (Unit n)	Name	Address (Unit0)	Address (Unit1)	Initial Value
ADO0n	ADCn Channel0 Data Offset Register	0x00	0x01	0x00
ADO1n	ADCn Channel1 Data Offset Register	0x08	0x09	0x00
ADO2n	ADCn Channel2 Data Offset Register	0x10	0x11	0x00
ADO3n	ADCn Channel3 Data Offset Register	0x18	0x19	0x00
ADO4n	ADCn Channel4 Data Offset Register	0x20	0x21	0x00
ADO5n	ADCn Channel5 Data Offset Register	0x28	0x29	0x00
ADO6n	ADCn Channel6 Data Offset Register	0x30	0x31	0x00
ADO7n	ADCn Channel7 Data Offset Register	0x38	0x39	0x00
ADO8n	ADCn Channel8 Data Offset Register	0x40	0x41	0x00
ADO9n	ADCn Channel9 Data Offset Register	0x48	0x49	0x00
ADOAn	ADCn Channel10 Data Offset Register	0x50	0x51	0x00
ADOBn	ADCn Channel11 Data Offset Register	0x58	0x59	0x00
AD0n	ADCn Channel0 Data Register	0x99	0x9A	0x00
AD1n	ADCn Channel1 Data Register	0xA1	0xA2	0x00
AD2n	ADCn Channel2 Data Register	0xA9	0xAA	0x00
AD3n	ADCn Channel3 Data Register	0xB1	0xB2	0x00
AD4n	ADCn Channel4 Data Register	0xB9	0xBA	0x00
AD5n	ADCn Channel5 Data Register	0xC1	0xC2	0x00
AD6n	ADCn Channel6 Data Register	0xC9	0xCA	0x00
AD7n	ADCn Channel7 Data Register	0xD1	0xD2	0x00
AD8n	ADCn Channel8 Data Register	0xD9	0xDA	0x00
AD9n	ADCn Channel9 Data Register	0xE1	0xE2	0x00
ADAn	ADCn Channel10 Data Register	0xE9	0xEA	0x00
ADBn	ADCn Channel11 Data Register	0xF1	0xF2	0x00
ADIFn	ADCn Interrupt Flag Register	0x89	0x8A	0x00

22.2.1. ADCn (ADCn Configuration Register) (n = 0 to 1)

Re	egister	ADC0		ADC0	Configuration Register	Address	0xF000		
Re	egister	ADC1		ADC1	Configuration Register	Address	0xF080		
Bit	Bit I	Name	R/W	Initial	Description		Remarks		
7	CHCO	NMODE	R/W	0	Channel connection mode 0: The channel is set to Mode 0 1: The channel is set to Mode 1 For more details on the channel connection 1 22.4.	modes, see Secti	on		
6	Rese	erved	R	0	The read value is 0. The write value must alw				
5	Rese	erved	R	0	The read value is 0. The write value must alw	ays be 0.			
4	СОМР	ASYNC	R/W	0	Synchronization in 2-cycle mode 0: Comparison-data-creating cycle and concycle are synchronized between other until 1: Not synchronized In the case where 2 ADCs are operated simulacycle mode, ADC-induced noise will comparison-data-creating cycle. And the Amay affect ADC operation (i.e., conversion comparison-operating cycle. To avoid subsequent negative effect, set the bit to 0.	taneously in the occur during DC-induced no accuracy) during	2- a ise g a		
3	МО	DDE2	R/W	0	one cycle 1: 2-cycle mode Comparison data creation and comparison 2 different cycles The 2-cycle mode can lower the negative	Mode 2 (selection of operation cycle mode) 0: 1-cycle mode Comparison data creation and comparison are operated in one cycle 1: 2-cycle mode Comparison data creation and comparison are operated in 2 different cycles The 2-cycle mode can lower the negative effects of power-supply noise on conversion accuracy. However, its conversion			
2	МО	DDE3	R/W	0	Mode 3 (selection of noise-suppressing opera 0: Noise-suppressing operation mode is dis 1: Noise-suppressing operation mode The noise-suppressing operation mode can be effects of power-supply noise on conversion a Setting the bit has restrictions. Table 22-4 settings when combined with the ADCn.MO the settings represented "OK" can only combination other than those listed can converted values. In addition, be sure to set the ADC1.MODE3 bits to the same value.	abled lower the negate accuracy. lists the availal DE1 bit. Note the beauted by be used. Anot obtain properties.	ole nat ny		

Re	egister	ADC0		ADC0	ADC0 Configuration Register Address		0xF000
Re	egister	ADC1		ADC1	Configuration Register	Address	0xF080
Bit	Bit l	Name	R/W	Initial	Description		Remarks
1	МО	DE1	R/W	0	Description Mode 1 (selection of comparison timing mode) 0: Fast comparison-timing mode Speeds up the timing of comparison operation 1: Slow comparison-timing mode Slows down the timing of comparison operation The slow comparison timing mode can reduce the negative effects of power-supply noise on conversion accuracy. Setting the bit has restrictions. Table 22-4 lists the available settings when combined with the ADCn.MODE3 bit. Note that the settings represented "OK" can only be used. Any combination other than those listed cannot obtain proper converted values. Mode 4 (ADC characteristics evaluation mode)		ole nat ny
0			be				

Table 22-4. Restricted Setting Conditions for ADCn.MODE1 and ADCn.MODE3

	Conditions of CLKFA	AST and ADC			ons of ADCn.MC DCn.MODE3	DDE1 and
CLKFAST/ ADC	PLLCFG.REFDIV	LKCFG0.DIV1	LKCFG0.DIV1	ADCn.MODE3	ADCn.MODE1	Setting
				0	0	OK
60 MHz/	0	0b11	0	U	1	
1-cycle Mode	O O	0011	U	1	0	
				1	1	
				0	0	OK
60 MHz/	0	0b11	1	U	1	_
2-cycle Mode	O	0011	1	1	0	OK
				1	1	_
				0	0	OK
	1		0	Ů	1	
	1		U	1	0	OK
≤30 MHz/				1	1	OK
1-cycle Mode			0	0	0	OK
		Other than		U	1	
	_	0b11		1	0	OK
				1	1	OK
				0	0	OK
	1		1	U	1	OK
	1	_	1	1	0	OK
≤30 MHz/				1	1	OK
2-cycle Mode				0	0	OK
	_	Other than	1	U	1	OK
	_	0b11	1	1	0	OK
				1	1	OK

22.2.2. ADENn (ADCn Enable Register) (n = 0 to 1)

Regis	Register ADEN0			ADC0 Enable Register		Address	0x1	F001	
Regis	Register ADEN1			ADC1 En	able Register	Address	0x1	F081	
Bit	Bit Name R/W		R/W	Initial	Description		Remarks		
7	Reserved R		R	0	The read value is 0. The write va	The read value is 0. The write value must always be 0.			
6	Reserved		R	0	The read value is 0. The write va	The read value is 0. The write value must always be 0.			
5	Reserved		R	0	The read value is 0. The write value must always be 0.				
4	R	eserved	R	0	The read value is 0. The write value must always be 0.				
3	R	eserved	R	0	The read value is 0. The write value must always be 0.				
2	R	eserved	R	0	The read value is 0. The write va	due must alway	s be 0.		
1	Reserved		R	0	The read value is 0. The write va	lue must always	s be 0.		
0	AD	ENABLE	R/W	0	ADCn enable 0: ADCn is disabled 1: ADCn is enabled				

22.2.3. ADTn (ADCn CPU Trigger Register) (n = 0 to 1)

Regis	Register ADT0			ADC0 C	CPU Trigger Register	Address	0xF003
Regis	ster	ADT1		ADC1 CPU Trigger Register		Address	0xF083
Bit		Bit Name	R/W	Initial	Description		Remarks
7	Т	RIGGER7	W	0	CPU trigger of Group7 Write 0: No change Write 1: Group7 is activated		
6	Т	RIGGER6	W	0	CPU trigger of Group6 Write 0: No change Write: Group6 is activated		
5	Т	RIGGER5	W	0	CPU trigger of Group5 Write 0: No change Write 1: Group5 is activated		
4	Т	RIGGER4	W	0	CPU trigger of Group4 Write 0: No change Write 1: Group4 is activated		
3	Т	RIGGER3	W	0	CPU trigger of Group3 Write 0: No change Write 1: Group3 is activated		
2	Т	RIGGER2	W	0	CPU trigger of Group2 Write 0: No change Write 1: Group2 is activated		
1	Т	RIGGER1	W	0	CPU trigger of Group1 Write 0: No change Write 1: Group1 is activated		
0	Т	RIGGER0	W	0	CPU trigger of Group0 Write 0: No change Write 1: Group0 is activated		

22.2.4. ADLOOPn (ADCn CPU Loop Trigger Register) (n = 0 to 1)

An activation trigger from the CPU is not stopped even if 0 is written to each bit. To stop the activation trigger, set DLOOPn.LOOPm = 0. For details of the ADLOOP trigger, see Section 22.5.6.3.

Regis		ADLOO			CPU Loop Trigger Register	Address	0:	xF008
Regis	ster	ADLOO	P1	ADC1	CPU Loop Trigger Register	Address	0:	xF088
Bit	Bi	t Name	R/W	Initial	Description			Remarks
7	L	OOP7	R/W	0	CPU trigger of Group7 Read 0: ADLOOP trigger has not bee Read 1: ADLOOP trigger has been is Write 0: ADLOOP trigger is cancelle Write 1: ADLOOP trigger is issued	ssued		
6	LOOP6 R/W 0 R6		CPU trigger of Group6 Read 0: ADLOOP trigger has not bee Read 1: ADLOOP trigger has been is Write 0: ADLOOP trigger is cancelle Write 1: ADLOOP trigger is issued	ssued				
5	LOOP5 R/W				CPU trigger of Group5 Read 0: ADLOOP trigger has not been issued Read 1: ADLOOP trigger has been issued Write 0: ADLOOP trigger is cancelled Write 1: ADLOOP trigger is issued			
4	L	OOP4	R/W	0	CPU trigger of Group4 Read 0: ADLOOP trigger has not bee Read 1: ADLOOP trigger has been is Write 0: ADLOOP trigger is cancelle Write 1: ADLOOP trigger is issued			
3	L	OOP3	R/W	0	CPU trigger of Group3 Read 0: ADLOOP trigger has not bee Read 1: ADLOOP trigger has been is Write 0: ADLOOP trigger is cancelle Write 1: ADLOOP trigger is issued	ssued		
2	CPU trigger of Group2 Read 0: ADLOOP trigger has not been issued LOOP2 R/W 0 Read 1: ADLOOP trigger has been issued Write 0: ADLOOP trigger is cancelled Write 1: ADLOOP trigger is issued							
1	L	OOP1	R/W	0	CPU trigger of Group1 Read 0: ADLOOP trigger has not been issued Read 1: ADLOOP trigger has been issued Write 0: ADLOOP trigger is cancelled Write 1: ADLOOP trigger is issued			
0	L	OOP0	R/W	0	CPU trigger of Group0 Read 0: ADLOOP trigger has not bee Read 1: ADLOOP trigger has been is Write 0: ADLOOP trigger is cancelle Write 1: ADLOOP trigger is issued	ssued		

22.2.5. ADEXEn (ADCn Group Execution Status Register) (n = 0 to 1)

Regis	ster	ADEXE0		ADC0 C	Group Execution Status Register	Address	0xF006
Regis	ster	ADEXE1		ADC1 Group Execution Status Register		Address	0xF086
Bit]	Bit Name	R/W	Initial	Description		Remarks
7	EXECUTION7 R		R	0	Execution status of Group7 0: Stopping 1: Executing		
6	EXECUTION6		R	0	Execution status of Group6 0: Stopping 1: Executing		
5	EXECUTION5		R	0	Execution status of Group5 0: Stopping 1: Executing		
4	EX	ECUTION4	R	0	Execution status of Group4 0: Stopping 1: Executing		
3	EX	ECUTION3	R	0	Execution status of Group3 0: Stopping 1: Executing		
2	EX	ECUTION2	R	0	Execution status of Group2 0: Stopping 1: Executing		
1	1 EXECUTION1 R		R	0	Execution status of Group1 0: Stopping 1: Executing		
0	EX	ECUTION0	R	0	Execution status of Group0 0: Stopping 1: Executing		

22.2.6. ADENTRYn (ADCn Group Entry Status Register) (n = 0 to 1)

Regis	ster	ADENTRY0		ADC0 C	Group Entry Status Register	Address	0xF004
Regis	ster	ADENTRY1		ADC1 Group Entry Status Register		Address	0xF084
Bit		Bit Name	R/W	Initial	Description		Remarks
7		ENTRY7	R	0	Entry status of Group7 0: Unentered 1: Entered		
6		ENTRY6	R	0	Entry status of Group6 0: Unentered 1: Entered		
5		ENTRY5	R	0	Entry status of Group5 0: Unentered 1: Entered		
4		ENTRY4	R	0	Entry status of Group4 0: Unentered 1: Entered		
3		ENTRY3	R	0	Entry status of Group3 0: Unentered 1: Entered		
2		ENTRY2	R	0	Entry status of Group3 0: Unentered 1: Entered		
1		ENTRY1	R	0	Entry status of Group1 0: Unentered 1: Entered		
0		ENTRY0	R	0	Entry status of Group0 0: Unentered 1: Entered		

22.2.7. ADIENn (ADCn Group Interrupt Enable Register) (n = 0 to 1)

Regis	ster	ADIEN0		ADC0 C	Froup Interrupt Enable Register	Address	0xF007
Regis	ster	ADIEN1		ADC1 Group Interrupt Enable Register		Address	0xF087
Bit	В	it Name	R/W	Initial	Description		Remarks
7		IEN7	R/W	0	Enabling the interrupt signal of Grou 0: Interrupt signal is disabled 1: Interrupt signal is enabled	p7	
6		IEN6	R/W	0	Enabling the interrupt signal of Grou 0: Interrupt signal is disabled 1: Interrupt signal is enabled	рб	
5		IEN5	R/W	0	Enabling the interrupt signal of Grou 0: Interrupt signal is disabled 1: Interrupt signal is enabled	p5	
4		IEN4	R/W	0	Enabling the interrupt signal of Grou 0: Interrupt signal is disabled 1: Interrupt signal is enabled	p4	
3		IEN3	R/W	0	Enabling the interrupt signal of Grou 0: Interrupt signal is disabled 1: Interrupt signal is enabled	p3	
2		IEN2	R/W	0	Enabling the interrupt signal of Grou 0: Interrupt signal is disabled 1: Interrupt signal is enabled	p2	
1		IEN1	R/W	0	Enabling the interrupt signal of Grou 0: Interrupt signal is disabled 1: Interrupt signal is enabled	p1	
0		IEN0	R/W	0	Enabling the interrupt signal of Grou 0: Interrupt signal is disabled 1: Interrupt signal is enabled	p0	

22.2.8. ADSYNCn (ADCn Synchronous Control Register) (n = 0 to 1)

Regis	ster	ADSYNC0		ADC0 Synchronous Control Register Address		0xF005			
Regis	ster	ADSYNC1		ADC1 S	ADC1 Synchronous Control Register		0xF085		
Bit	Bit Name R/W		R/W	Initial	Description	Description			
7	Reserved R			0	The read value is 0. The write value	The read value is 0. The write value must always be 0.			
6	Reserved R			0	The read value is 0. The write value	must always be	0.		
5	Reserved R			0	The read value is 0. The write value	The read value is 0. The write value must always be 0			
4]	Reserved	R	0	The read value is 0. The write value	must always be	0.		
3]	Reserved	R	0	The read value is 0. The write value	0.			
2	Reserved R			0	The read value is 0. The write value	0.			
1	Reserved R		R	0	The read value is 0. The write value	0.			
0	SYNCHRONOUS R/W		R/W	0	Synchronous execution 0: Not synchronously executed 1: Synchronously executed				

22.2.9. ADCHSELTESTLn (ADCn Channel Select Test Low Register) (n = 0 to 1)

Regi	ister	ADCHSELTE	STL0	ADC0 C	hannel Select Test Low Register	Address	0xF00E	
Regi	ister	ADCHSELTE	STL1	ADC1 C	hannel Select Test Low Register	Address	0xF08E	
Bit	t Bit Name R/W			Initial	Description		Remarks	
7	Reserved R			0	The read value is 0. The write value	The read value is 0. The write value must always be 0.		
6	Reserved R			0	The read value is 0. The write value	e 0.		
5	Reserved R			0	The read value is 0. The write value	must always be	e 0.	
4		Reserved	R	0	The read value is 0. The write value	must always be	e 0.	
3		Reserved	R	0	The read value is 0. The write value	must always be	e 0.	
2	Reserved R 0 The read value is 0. The write value is			must always be	e 0.			
1	Reserved R 0 The read value is 0. The write value must always be 0.		e 0.					
0	Reserved R			0	The read value is 0. The write value	must always be	e 0.	

22.2.10. ADCHSELTESTHn (ADCn Channel Select Test High Register) (n = 0 to 1)

Reg	gister	ADCHSELTE	STH0	ADC0 C	hannel Select Test High Register	Address	0xF00F		
Reg	ADCHSELTESTH1		ADC1 C	hannel Select Test High Register	Address	(0xF08F		
Bit	Bit Name R/W			Initial	Description Remark				
7	Reserved R			0	The read value is 0. The write value n	nust always be	0.		
6	Reserved R			0	The read value is 0. The write value must always be 0.				
5	Reserved R			0	The read value is 0. The write value n	nust always be	0.		
4]	Reserved	R	0	The read value is 0. The write value must always be 0.				
3]	Reserved	R	0	The read value is 0. The write value must always be 0.				
2	Reserved R		R	0	The read value is 0. The write value must always be 0.				
1	Reserved R		R	0	The read value is 0. The write value must always be 0.				
0]	Reserved	R	0	The read value is 0. The write value must always be 0.				

22.2.11. ADNSMPmn (ADCn Channel m Sampling Time Register) (n = 0 to 1) (m = 0 to 11)

Regis	ster	ADNSMP00		ADC0 C	hannel0 Sampling Time Register	Address	0xF010
Regis	ster	ADNSMP01		ADC1 C	hannel0 Sampling Time Register	Address	0xF090
Regis	ster	ADNSMP10		ADC0 C	hannel1 Sampling Time Register	Address	0xF011
Regis	ster	ADNSMP11		ADC1 Channel1 Sampling Time Register Address			0xF091
Regis	ster	ADNSMP20		ADC0 C	hannel2 Sampling Time Register	Address	0xF012
Regis	ster	ADNSMP21		ADC1 C	hannel2 Sampling Time Register	Address	0xF092
Regis	ster	ADNSMP30		ADC0 C	hannel3 Sampling Time Register	Address	0xF013
Regis	ster	ADNSMP31		ADC1 C	hannel3 Sampling Time Register	Address	0xF093
Regis	ster	ADNSMP40		ADC0 C	hannel4 Sampling Time Register	Address	0xF014
Regis	ster	ADNSMP41		ADC1 C	hannel4 Sampling Time Register	Address	0xF094
Regis	ster	ADNSMP50		ADC0 C	hannel5 Sampling Time Register	Address	0xF015
Regis	ster	ADNSMP51		ADC1 C	hannel5 Sampling Time Register	Address	0xF095
Regis	ster	ADNSMP60		ADC0 C	hannel6 Sampling Time Register	Address	0xF016
Regis	ster	ADNSMP61		ADC1 C	hannel6 Sampling Time Register	Address	0xF096
Regis	ster	ADNSMP70		ADC0 C	hannel7 Sampling Time Register	Address	0xF017
Regis	ster	ADNSMP71		ADC1 C	hannel7 Sampling Time Register	Address	0xF097
Regis	ster	ADNSMP80		ADC0 C	hannel8 Sampling Time Register	Address	0xF018
Regis	ster	ADNSMP81		ADC1 C	hannel8 Sampling Time Register	Address	0xF098
Regis	ster	ADNSMP90		ADC0 C	hannel9 Sampling Time Register	Address	0xF019
Regis	ster	ADNSMP91		ADC1 C	hannel9 Sampling Time Register	Address	0xF099
Regis	ter	ADNSMPA0		ADC0 C	hannel10 Sampling Time Register	Address	0xF01A
Regis	ster	ADNSMPA1		ADC1 C	hannel10 Sampling Time Register	Address	0xF09A
Regis	ster	ADNSMPB0		ADC0 C	hannel11 Sampling Time Register	Address	0xF01B
Regis	ter	ADNSMPB1		ADC1 C	hannel11 Sampling Time Register	Address	0xF09B
Bit		Bit Name	R/W	Initial	Description		Remarks
7			R/W	0	Sampling cycle	mag (1)	
6			R/W	0	00000000: 256 cycles (never beco 00000001: 1 cycle	mes 0)	
5			R/W	0	00000010: 2 cycles		
4			R/W	0	00000011: 3 cycles 00000100: 4 cycles		
3			R/W	0	i		
2			R/W	0	11111111: 255 cycles		
1			R/W	1	·	1 0	
0		SHTIME R/W		1	The bit specifies a sampling cycle t to 256). For more details, see Section Do not use the sampling cycles list proper converted values are not obta 00000101: 5 cycles 00100101: 37 cycles 01000101: 69 cycles 01100101: 101 cycles 10000101: 133 cycles 10100101: 165 cycles 11000101: 197 cycles	·	

22.2.12. ADOmLn (ADCn Channel m Data Offset Low Register) (n = 0 to 1) (m = 0 to 11)

Register						8 / \		,
Register ADOILO ADCO Channell Data Offset Low Register Address 0xF022 Register ADOIL ADCI Channell Data Offset Low Register Address 0xF0A2 Register ADO2L0 ADC0 Channel2 Data Offset Low Register Address 0xF0A4 Register ADO3L0 ADC0 Channel3 Data Offset Low Register Address 0xF0A4 Register ADO3L0 ADC0 Channel3 Data Offset Low Register Address 0xF0A6 Register ADO3L1 ADC1 Channel3 Data Offset Low Register Address 0xF0A6 Register ADO4L0 ADC0 Channel4 Data Offset Low Register Address 0xF0A6 Register ADO5L0 ADC0 Channel5 Data Offset Low Register Address 0xF0A8 Register ADO5L0 ADC0 Channel5 Data Offset Low Register Address 0xF0AA Register ADO5L0 ADC0 Channel5 Data Offset Low Register Address 0xF0A6 Register ADO6L0 ADC1 Channel5 Data Offset Low Register Address 0xF0A0 Register ADO7L0 ADC1 Channel6 Data Offset Low Register Add	Regis	ster	ADO0L0		ADC0 C	Channel0 Data Offset Low Register	Address	0xF020
Register ADOIL ADCI Channell Data Offset Low Register Address 0xF0A2 Register ADO2L0 ADC0 Channel2 Data Offset Low Register Address 0xF0A4 Register ADO2L1 ADC1 Channel2 Data Offset Low Register Address 0xF0A4 Register ADO3L0 ADC0 Channel3 Data Offset Low Register Address 0xF0A6 Register ADO3L1 ADC1 Channel3 Data Offset Low Register Address 0xF0A6 Register ADO4L0 ADC0 Channel4 Data Offset Low Register Address 0xF0A8 Register ADO4L1 ADC1 Channel5 Data Offset Low Register Address 0xF0A8 Register ADO5L0 ADC0 Channel5 Data Offset Low Register Address 0xF0A8 Register ADO5L1 ADC1 Channel5 Data Offset Low Register Address 0xF0AA Register ADO6L0 ADC0 Channel5 Data Offset Low Register Address 0xF0AC Register ADO5L1 ADC1 Channel6 Data Offset Low Register Address 0xF0AC Register ADO7L1 ADC1 Channel7 Data Offset Low Register Addres	Regis	ster	ADO0L1		ADC1 C	Channel Data Offset Low Register	Address	0xF0A0
Regist=r ADO2L0	Regis	ster	ADO1L0		ADC0 C	Channel1 Data Offset Low Register	Address	0xF022
Register ADO2L1 ADC1 Channel2 Data Offset Low Register Address 0xF0A4 Register AD03L0 ADC0 Channel3 Data Offset Low Register Address 0xF026 Register AD03L1 ADC1 Channel3 Data Offset Low Register Address 0xF026 Register AD04L0 ADC0 Channel4 Data Offset Low Register Address 0xF028 Register AD04L1 ADC1 Channel4 Data Offset Low Register Address 0xF02A Register AD05L0 ADC0 Channel5 Data Offset Low Register Address 0xF02A Register AD06L0 ADC0 Channel5 Data Offset Low Register Address 0xF02A Register AD06L1 ADC1 Channel5 Data Offset Low Register Address 0xF02C Register AD07L0 ADC0 Channel6 Data Offset Low Register Address 0xF02C Register AD07L1 ADC1 Channel7 Data Offset Low Register Address 0xF03C Register AD08L1 ADC1 Channel8 Data Offset Low Register Address 0xF08D <td>Regis</td> <td>ster</td> <td>ADO1L1</td> <td></td> <td>ADC1 C</td> <td>Channell Data Offset Low Register</td> <td>Address</td> <td>0xF0A2</td>	Regis	ster	ADO1L1		ADC1 C	Channell Data Offset Low Register	Address	0xF0A2
Register AD03L0 ADC0 Channel3 Data Offset Low Register Address 0xF026 Register AD03L1 ADC1 Channel3 Data Offset Low Register Address 0xF026 Register AD04L0 ADC0 Channel4 Data Offset Low Register Address 0xF028 Register AD04L1 ADC1 Channel4 Data Offset Low Register Address 0xF02A Register AD05L0 ADC0 Channel5 Data Offset Low Register Address 0xF02A Register AD06L1 ADC0 Channel5 Data Offset Low Register Address 0xF02A Register AD06L0 ADC0 Channel5 Data Offset Low Register Address 0xF02A Register AD06L1 ADC1 Channel6 Data Offset Low Register Address 0xF02C Register AD07L0 ADC0 Channel7 Data Offset Low Register Address 0xF02E Register AD08L0 ADC0 Channel7 Data Offset Low Register Address 0xF03E Register AD08L1 ADC1 Channel8 Data Offset Low Register Address 0xF03E Register AD09L1 ADC2 Channel10 Data Offset Low Register A	Regis	ster	ADO2L0		ADC0 C	Channel2 Data Offset Low Register	Address	0xF024
Regist=	Regis	ster	ADO2L1		ADC1 C	Channel2 Data Offset Low Register	Address	0xF0A4
Register ADO4L0 ADC0 Channel4 Data Offset Low Register Address 0xF028 Register ADO4L1 ADC1 Channel4 Data Offset Low Register Address 0xF0A8 Register ADO5L0 ADC0 Channel5 Data Offset Low Register Address 0xF0AA Register ADO5L1 ADC1 Channel5 Data Offset Low Register Address 0xF0AA Register ADO6L0 ADC0 Channel6 Data Offset Low Register Address 0xF0AC Register ADO6L1 ADC0 Channel6 Data Offset Low Register Address 0xF0AC Register ADO7L0 ADC0 Channel7 Data Offset Low Register Address 0xF0AC Register ADO7L1 ADC1 Channel7 Data Offset Low Register Address 0xF03C Register ADO8L0 ADC0 Channel8 Data Offset Low Register Address 0xF03C Register ADO8L1 ADC1 Channel8 Data Offset Low Register Address 0xF03C Register ADO9L1 ADC1 Channel9 Data Offset Low Register Address 0xF03C Register ADOAL0 ADC1 Channel10 Data Offset Low Register A	Regis	ster	ADO3L0		ADC0 C	Channel3 Data Offset Low Register	Address	0xF026
Register ADO4L1 ADC1 Channel4 Data Offset Low Register Address 0xF0A8 Register ADO5L0 ADC0 Channel5 Data Offset Low Register Address 0xF02A Register ADO5L1 ADC1 Channel5 Data Offset Low Register Address 0xF0AA Register ADO6L0 ADC0 Channel6 Data Offset Low Register Address 0xF0AC Register ADO6L1 ADC1 Channel6 Data Offset Low Register Address 0xF0AC Register ADO7L0 ADC0 Channel7 Data Offset Low Register Address 0xF0AC Register ADO7L1 ADC1 Channel7 Data Offset Low Register Address 0xF03C Register ADO8L0 ADC0 Channel8 Data Offset Low Register Address 0xF030 Register ADO8L1 ADC1 Channel8 Data Offset Low Register Address 0xF032 Register ADO9L0 ADC0 Channel9 Data Offset Low Register Address 0xF032 Register ADO4L0 ADC0 Channel9 Data Offset Low Register Address 0xF082 Register ADOAL1 ADC1 Channel10 Data Offset Low Register A	Regis	ster	ADO3L1		ADC1 C	Channel3 Data Offset Low Register	Address	0xF0A6
Register ADOSL0 ADC0 Channel5 Data Offset Low Register Address 0xF02A Register ADOSL1 ADC1 Channel5 Data Offset Low Register Address 0xF0AA Register ADO6L0 ADC0 Channel6 Data Offset Low Register Address 0xF02C Register ADO6L1 ADC1 Channel6 Data Offset Low Register Address 0xF0AC Register ADO7L0 ADC0 Channel7 Data Offset Low Register Address 0xF0AC Register ADO7L1 ADC1 Channel7 Data Offset Low Register Address 0xF0AE Register ADO8L0 ADC0 Channel8 Data Offset Low Register Address 0xF030 Register ADO8L1 ADC1 Channel8 Data Offset Low Register Address 0xF032 Register ADO9L0 ADC0 Channel9 Data Offset Low Register Address 0xF032 Register ADOAL0 ADC0 Channel10 Data Offset Low Register Address 0xF034 Register ADOAL1 ADC1 Channel10 Data Offset Low Register Address 0xF034 Register ADOBL0 ADC0 Channel10 Data Offset Low Register <th< td=""><td>Regis</td><td>ster</td><td>ADO4L0</td><td></td><td>ADC0 C</td><td>Channel4 Data Offset Low Register</td><td>Address</td><td>0xF028</td></th<>	Regis	ster	ADO4L0		ADC0 C	Channel4 Data Offset Low Register	Address	0xF028
Register ADOSL1 ADC1 Channel5 Data Offset Low Register Address 0xF0AA Register ADO6L0 ADC0 Channel6 Data Offset Low Register Address 0xF02C Register ADO6L1 ADC1 Channel6 Data Offset Low Register Address 0xF0AC Register ADO7L0 ADC0 Channel7 Data Offset Low Register Address 0xF02E Register ADO7L1 ADC1 Channel7 Data Offset Low Register Address 0xF03E Register ADO8L0 ADC0 Channel8 Data Offset Low Register Address 0xF030 Register ADO8L1 ADC1 Channel8 Data Offset Low Register Address 0xF030 Register ADO9L0 ADC0 Channel9 Data Offset Low Register Address 0xF032 Register ADO4L1 ADC1 Channel9 Data Offset Low Register Address 0xF032 Register ADOAL1 ADC1 Channel10 Data Offset Low Register Address 0xF034 Register ADOBL0 ADC0 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel11 Data Offset Low Register	Regis	ster	ADO4L1		ADC1 C	Channel4 Data Offset Low Register	Address	0xF0A8
Register ADO6L0 ADC0 Channel6 Data Offset Low Register Address 0xF02C Register ADO7L0 ADC1 Channel6 Data Offset Low Register Address 0xF0AC Register ADO7L0 ADC0 Channel7 Data Offset Low Register Address 0xF0AE Register ADO7L1 ADC1 Channel7 Data Offset Low Register Address 0xF03C Register ADO8L0 ADC0 Channel8 Data Offset Low Register Address 0xF030 Register ADO8L1 ADC1 Channel8 Data Offset Low Register Address 0xF030 Register ADO9L0 ADC0 Channel9 Data Offset Low Register Address 0xF032 Register ADO9L1 ADC1 Channel9 Data Offset Low Register Address 0xF032 Register ADOAL0 ADC1 Channel10 Data Offset Low Register Address 0xF034 Register ADOBL0 ADC0 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel11 Data Offset Low Register <td>Regis</td> <td>ster</td> <td>ADO5L0</td> <td></td> <td>ADC0 C</td> <td>Channel5 Data Offset Low Register</td> <td>Address</td> <td>0xF02A</td>	Regis	ster	ADO5L0		ADC0 C	Channel5 Data Offset Low Register	Address	0xF02A
Register ADO6L1 ADC1 Channel6 Data Offset Low Register Address 0xF0AC Register ADO7L0 ADC0 Channel7 Data Offset Low Register Address 0xF02E Register ADO7L1 ADC1 Channel7 Data Offset Low Register Address 0xF03E Register ADO8L0 ADC0 Channel8 Data Offset Low Register Address 0xF030 Register ADO8L1 ADC1 Channel8 Data Offset Low Register Address 0xF032 Register ADO9L1 ADC1 Channel9 Data Offset Low Register Address 0xF032 Register ADOAL0 ADC1 Channel10 Data Offset Low Register Address 0xF034 Register ADOAL1 ADC1 Channel10 Data Offset Low Register Address 0xF034 Register ADOBL0 ADC1 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL0 ADC1 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel10 Data Offset Low Register Address 0xF036	Regis	ster	ADO5L1		ADC1 C	Channel5 Data Offset Low Register	Address	0xF0AA
Register ADO7L0 ADC0 Channel7 Data Offset Low Register Address 0xF02E Register ADO7L1 ADC1 Channel7 Data Offset Low Register Address 0xF0AE Register ADO8L0 ADC0 Channel8 Data Offset Low Register Address 0xF030 Register ADO8L1 ADC1 Channel8 Data Offset Low Register Address 0xF080 Register ADO9L0 ADC0 Channel9 Data Offset Low Register Address 0xF032 Register ADO4L0 ADC1 Channel9 Data Offset Low Register Address 0xF082 Register ADOAL0 ADC1 Channel10 Data Offset Low Register Address 0xF084 Register ADOBL0 ADC0 Channel11 Data Offset Low Register Address 0xF086 Register ADOBL0 ADC1 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL0 ADC1 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel11 Data Offset Low Register	Regis	ster	ADO6L0		ADC0 C	Channel6 Data Offset Low Register	Address	0xF02C
Register ADO7L1 ADC1 Channel7 Data Offset Low Register Address 0xF0AE Register ADO8L0 ADC0 Channel8 Data Offset Low Register Address 0xF030 Register ADO8L1 ADC1 Channel8 Data Offset Low Register Address 0xF0B0 Register ADO9L0 ADC0 Channel9 Data Offset Low Register Address 0xF032 Register ADO9L1 ADC1 Channel9 Data Offset Low Register Address 0xF032 Register ADOAL0 ADC0 Channel10 Data Offset Low Register Address 0xF034 Register ADOBL1 ADC1 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL0 ADC1 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel11 Data Offset Low Register Address 0xF036 Bit Bit Name R/W 0 Image: No Company of the Address Remarks Propertion Remarks Remarks ADO8 Offset Value	Regis	ster	ADO6L1		ADC1 C	Channel6 Data Offset Low Register	Address	0xF0AC
Register ADO8L0 ADC0 Channel8 Data Offset Low Register Address 0xF030 Register ADO8L1 ADC1 Channel8 Data Offset Low Register Address 0xF080 Register ADO9L0 ADC0 Channel9 Data Offset Low Register Address 0xF032 Register ADO9L1 ADC1 Channel9 Data Offset Low Register Address 0xF082 Register ADOAL0 ADC0 Channel10 Data Offset Low Register Address 0xF084 Register ADOBL1 ADC1 Channel11 Data Offset Low Register Address 0xF086 Register ADOBL0 ADC1 Channel11 Data Offset Low Register Address 0xF086 Bit Bit Name R/W Initial Description Remarks 7 R/W 0 R/W 0 The lower bits of offset An offset value used for each channel can be set by signed 13-bit values (-4096 to 4096). An offset value (-4096 to 4096). The ADOmHn.OFFSTSIGN bit defines which sign is to be set.	Regis	ster	ADO7L0		ADC0 C	Channel7 Data Offset Low Register	Address	0xF02E
Register ADO8L1 ADC1 Channel8 Data Offset Low Register Address 0xF0B0 Register ADO9L0 ADC0 Channel9 Data Offset Low Register Address 0xF032 Register ADO9L1 ADC1 Channel9 Data Offset Low Register Address 0xF034 Register ADOAL1 ADC1 Channel10 Data Offset Low Register Address 0xF034 Register ADOBL0 ADC0 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel11 Data Offset Low Register Address 0xF036 Bit Bit Name R/W Initial Description Remarks 7 R/W 0 R/W 0 An offset value used for each channel can be set by signed 13-bit values (~4096 to 4096). An offset value used for each channel can be set by signed 13-bit values (~4096 to 4096). The ADOmHn.OFFSTSIGN bit defines which sign is to be set.	Regis	ster	ADO7L1		ADC1 C	Channel7 Data Offset Low Register	Address	0xF0AE
Register ADO9L0 ADC0 Channel9 Data Offset Low Register Address 0xF032 Register ADO9L1 ADC1 Channel9 Data Offset Low Register Address 0xF082 Register ADOAL0 ADC0 Channel10 Data Offset Low Register Address 0xF034 Register ADOAL1 ADC1 Channel11 Data Offset Low Register Address 0xF084 Register ADOBL0 ADC1 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel11 Data Offset Low Register Address 0xF086 Bit Bit Name R/W Initial Description Remarks 7 R/W 0 R/W 0 An offset value used for each channel can be set by signed 13-bit values (-4096 to 4096). An offset value used for each channel can be set by signed 13-bit values (-4096 to 4096). The ADOmHn.OFFSTSIGN bit defines which sign is to be set.	Regis	ster	ADO8L0		ADC0 C	Channel8 Data Offset Low Register	Address	0xF030
Register ADO9L1 ADC1 Channel9 Data Offset Low Register Address 0xF0B2 Register ADOAL0 ADC0 Channel10 Data Offset Low Register Address 0xF0B4 Register ADOBL0 ADC0 Channel11 Data Offset Low Register Address 0xF036 Bit Bit Name R/W Initial Description Remarks 7 R/W 0 The lower bits of offset An offset value used for each channel can be set by signed 13-bit values (-4096 to 4096). The ADOmHn.OFFSTSIGN bit defines which sign is to be set. 1 R/W 0 The ADOmHn.OFFSTSIGN bit defines which sign is to be set.	Regis	ster	ADO8L1		ADC1 C	Channel8 Data Offset Low Register	Address	0xF0B0
Register ADOAL0 ADC0 Channel10 Data Offset Low Register Address 0xF034 Register ADOAL1 ADC1 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel11 Data Offset Low Register Address 0xF036 Bit Name R/W Initial Description Remarks 7 R/W 0 The lower bits of offset An offset value used for each channel can be set by signed 13-bit values (-4096 to 4096). The ADOmHn.OFFSTSIGN bit defines which sign is to be set. 1 R/W 0 The ADOmHn.OFFSTSIGN bit defines which sign is to be set.	Regis	ster	ADO9L0		ADC0 C	Channel9 Data Offset Low Register	Address	0xF032
Register ADOAL1 ADC1 Channel10 Data Offset Low Register Address 0xF0B4 Register ADOBL0 ADC0 Channel11 Data Offset Low Register Address 0xF0B6 Bit Name R/W Initial Description Remarks 7 R/W 0 R/W 0 The lower bits of offset An offset value used for each channel can be set by signed 13-bit values (-4096 to 4096). The ADOmHn.OFFSTSIGN bit defines which sign is to be set. The ADOmHn.OFFSTSIGN bit defines which sign is to be set.	Regis	ster	ADO9L1		ADC1 Channel9 Data Offset Low Register		Address	0xF0B2
Register ADOBL0 ADC0 Channel11 Data Offset Low Register Address 0xF036 Register ADOBL1 ADC1 Channel11 Data Offset Low Register Address 0xF036 Bit Name R/W Initial Description Remarks 7 6 R/W 0 The lower bits of offset An offset value used for each channel can be set by signed 13-bit values (-4096 to 4096). The ADOmHn.OFFSTSIGN bit defines which sign is to be set. 2 R/W 0 R/W 0 The ADOmHn.OFFSTSIGN bit defines which sign is to be set.	Regis	ster	ADOAL0		ADC0 Channel10 Data Offset Low Register		Address	0xF034
Register ADOBL1 ADC1 Channel11 Data Offset Low Register Address 0xF0B6 Bit Bit Name R/W Initial Description Remarks 7 R/W 0 R/W 0 R/W 0 The lower bits of offset An offset value used for each channel can be set by signed 13-bit values (−4096 to 4096). The ADOmHn.OFFSTSIGN bit defines which sign is to be set. 1 R/W 0	Regis	ster	ADOAL1		ADC1 Channel10 Data Offset Low Register		Address	0xF0B4
Bit Name	Regis	ster	ADOBL0		ADC0 C	Channel 11 Data Offset Low Register	Address	0xF036
R/W 0 R/W 0 R/W	Regis	ster	ADOBL1		ADC1 C	Channel 11 Data Offset Low Register	Address	0xF0B6
6 R/W 0 5 R/W 0 4 R/W 0 R/W 0 The lower bits of offset An offset value used for each channel can be set by signed 13-bit values (-4096 to 4096). The ADOmHn.OFFSTSIGN bit defines which sign is to be set.	Bit]	Bit Name	R/W	Initial	Description		Remarks
The lower bits of offset R/W 0	7			R/W	0			
R/W 0	6			R/W	0			
OFFSET R/W 0	5	OFFSET		R/W	0	The lower bits of offset		
R/W 0 signed 13-bit values (-4096 to 4096). The ADOmHn.OFFSTSIGN bit defines which sign is to be set.	4			R/W	0			by
2 R/W 0 to be set. R/W 0	3			R/W	0			is
	2			R/W	0			
0 R/W 0	1			R/W	0			
	0			R/W	0			

22.2.13. ADOmHn (ADCn Channel m Data Offset High Register) (n = 0 to 1) (m = 0 to 11)

Regis	ster	ADO0H0		ADC0 C	Channel Data Offset High Register	Address	0xF021
Regis	ster	ADO0H1		ADC1 C	Channel Data Offset High Register	Address	0xF0A1
Regis	ster	ADO1H0		ADC0 Channel1 Data Offset High Register		Address	0xF023
Regis	ster	ADO1H1		ADC1 (Channell Data Offset High Register	Address	0xF0A3
Regis	ster	ADO2H0		ADC0 (Channel2 Data Offset High Register	Address	0xF025
Regis	ster	ADO2H1		ADC1 (Channel2 Data Offset High Register	Address	0xF0A5
Regis	ster	ADO3H0		ADC0 (Channel3 Data Offset High Register	Address	0xF027
Regis	ster	ADO3H1		ADC1 C	Channel3 Data Offset High Register	Address	0xF0A7
Regis	ster	ADO4H0		ADC0 C	Channel4 Data Offset High Register	Address	0xF029
Regis	ster	ADO4H1		ADC1 C	Channel4 Data Offset High Register	Address	0xF0A9
Regis	ster	ADO5H0		ADC0 C	Channel 5 Data Offset High Register	Address	0xF02B
Regis	ster	ADO5H1		ADC1 C	Channel 5 Data Offset High Register	Address	0xF0AB
Regis	ster	ADO6H0		ADC0 C	Channel6 Data Offset High Register	Address	0xF02D
Regis	ster	ADO6H1		ADC1 C	Channel6 Data Offset High Register	Address	0xF0AD
Regis	ster	ADO7H0		ADC0 C	Channel7 Data Offset High Register	Address	0xF02F
Regis	ster	ADO7H1		ADC1 C	Channel7 Data Offset High Register	Address	0xF0AF
Regis	ster	ADO8H0		ADC0 C	Channel8 Data Offset High Register	Address	0xF031
Regis	ster	ADO8H1		ADC1 C	Channel8 Data Offset High Register	Address	0xF0B1
Regis	ster	ADO9H0		ADC0 C	Channel9 Data Offset High Register	Address	0xF033
Regis	ster	ADO9H1		ADC1 C	Channel9 Data Offset High Register	Address	0xF0B3
Regis	ster	ADOAH0		ADC0 Channel10 Data Offset High Register		Address	0xF035
Regis	ster	ADOAH1		ADC1 Channel10 Data Offset High Register		Address	0xF0B5
Regis	ster	ADOBH0		ADC0 Channel11 Data Offset High Register A		Address	0xF037
Regis	ster	ADOBH1		ADC1 C	Channel11 Data Offset High Register	Address	0xF0B7
Bit]	Bit Name	R/W	Initial	Description		Remarks
7	-	Reserved	R	0	Sign extension bit		
6		Reserved	R	0	Writing 1 to the OFFSTSIGN bit sets	the bit to 1	
5		Reserved R		0	Withing 1 to the OFFS1SION bit sets	s the off to 1.	
4	Ol	OFFSTSIGN R/W		0	Sign bit		
3	R/W		R/W	0	The higher bits of offset		
2		OFFSET	R/W	0	An offset value used for each chan	nel can be set	by
1			R/W	0	signed 13-bit values (-4096 to 4096)		
0			R/W	0	The OFFSTSIGN bit defines which s	sign is to be set.	

22.2.14. ADACCLRn (ADCn Data Read Access Counter Clear Register) (n = 0 to 1)

Regis	ster	ADACCI	LR0	ADC0 D	ata Read Access Counter Clear Register	Address	0	xF002
Regis	ster	ADACCI	LR1	ADC1 D	ADC1 Data Read Access Counter Clear Register Address			xF082
Bit	Bit	Bit Name R/W		Initial	Description			Remarks
7	Re	served	R	0	The read value is 0. The write value must always be 0.			
6	Re	eserved	R	0	The read value is 0. The write value must	t always be ().	
5	Reserved R		R	0	The read value is 0. The write value must	t always be ().	
4	Reserved R			0	The read value is 0. The write value mus	t always be ().	
3	Reserved R			0	The read value is 0. The write value mus	t always be ().	
2	Re	eserved	R	0	The read value is 0. The write value must	t always be ().	
1	Re	served	R	0	The read value is 0. The write value mus	t always be ().	
0	Clearing the data read access counters of the ADmn ADOmn registers Read 0: Accessible to the lower 8 bits							

22.2.15. ADSmLn (ADCn Group m Channel Sequence Low Register) (n = 0 to 1) (m = 0 to 7)

Regis	ter	ADS0L0		ADC0 Gro	oup0 Channel Sequence Low Register	Address	0xF040
Regis	ter	ADS0L1		ADC1 Gro	oup0 Channel Sequence Low Register	Address	0xF0C0
Regis	ter	ADS1L0		ADC0 Gro	oup1 Channel Sequence Low Register	Address	0xF048
Regis	ster	ADS1L1		ADC1 Gro	0xF0C8		
Regis	ter	ADS2L0		ADC0 Gro	pup2 Channel Sequence Low Register	Address	0xF050
Regis		ADS2L1		Y	oup2 Channel Sequence Low Register	Address	0xF0D0
Regis		ADS3L0			oup3 Channel Sequence Low Register	Address	0xF058
Regis		ADS3L1			oup3 Channel Sequence Low Register	Address	0xF0D8
Regis		ADS4L0			oup4 Channel Sequence Low Register	Address	0xF060
Regis		ADS4L1			oup4 Channel Sequence Low Register	Address	0xF0E0
					1 1		
Regis		ADS5L0			oup5 Channel Sequence Low Register	Address	0xF068
Regis		ADS5L1			oup5 Channel Sequence Low Register	Address	0xF0E8
Regis	ter	ADS6L0			oup6 Channel Sequence Low Register	Address	0xF070
Regis	Register ADS6L1			ADC1 Gro	oup6 Channel Sequence Low Register	Address	0xF0F0
Regis	Register ADS7L0			ADC0 Gro	pup7 Channel Sequence Low Register	Address	0xF078
Regis	ter	ADS7L1		ADC1 Gro	pup7 Channel Sequence Low Register	Address	0xF0F8
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	АΙ				Conversion of Channel7		
		OSCH7	R/W	0	0: Channel7 is not converted 1: Channel7 is converted		
6	ΑI	OSCH7 OSCH6	R/W	0	0: Channel7 is not converted		
5					0: Channel7 is not converted 1: Channel7 is converted Conversion of Channel6 0: Channel6 is not converted		
	AI	DSCH6	R/W	0	0: Channel7 is not converted 1: Channel7 is converted Conversion of Channel6 0: Channel6 is not converted 1: Channel6 is converted Conversion of Channel5 0: Channel5 is not converted		
5	AI AI	DSCH6	R/W	0	0: Channel7 is not converted 1: Channel7 is converted Conversion of Channel6 0: Channel6 is not converted 1: Channel6 is converted Conversion of Channel5 0: Channel5 is not converted 1: Channel5 is converted Conversion of Channel4 0: Channel4 is not converted		
5	AI AI	DSCH6 DSCH5 DSCH4	R/W R/W	0 0	0: Channel7 is not converted 1: Channel7 is converted Conversion of Channel6 0: Channel6 is not converted 1: Channel6 is converted Conversion of Channel5 0: Channel5 is not converted 1: Channel5 is converted Conversion of Channel4 0: Channel4 is not converted 1: Channel4 is not converted Conversion of Channel3 0: Channel3 is not converted		
5 4 3	AI AI AI	DSCH6 DSCH5 DSCH4 DSCH3	R/W R/W R/W	0 0 0	0: Channel7 is not converted 1: Channel7 is converted Conversion of Channel6 0: Channel6 is not converted 1: Channel6 is converted Conversion of Channel5 0: Channel5 is not converted 1: Channel5 is converted Conversion of Channel4 0: Channel4 is not converted 1: Channel4 is converted 1: Channel4 is converted 1: Channel3 is converted Conversion of Channel3 0: Channel3 is not converted 1: Channel3 is not converted Conversion of Channel2 0: Channel2 is not converted		

22.2.16. ADSmHn (ADCn Group m Channel Sequence High Register) (n = 0 to 1) (m = 0 to 7)

Regis	ster	ADS0H0)	ADC0 Gro	oup0 Channel Sequence High Register	Address	0xF041	
Regis	ster	ADS0H1		ADC1 Gro	oup0 Channel Sequence High Register	Address	0xF0C1	
Regis	ster	ADS1H0)	ADC0 Gro	oup1 Channel Sequence High Register	Address	0xF049	
Regis	ster	ADS1H1		ADC1 Gro	oup1 Channel Sequence High Register	Address	0xF0C9	
Regis	ster	ADS2H0)	ADC0 Gro	pup2 Channel Sequence High Register	Address	0xF051	
Regis	ster	ADS2H1		ADC1 Gro	oup2 Channel Sequence High Register	Address	0xF0D1	
Regis	ster	ADS3H0)	ADC0 Gro	oup3 Channel Sequence High Register	Address	0xF059	
Regis	ster	ADS3H1		ADC1 Gro	oup3 Channel Sequence High Register	Address	0xF0D9	
Regis	ster	ADS4H0)	ADC0 Gro	oup4 Channel Sequence High Register	Address	0xF061	
Regis	ster	ADS4H1		ADC1 Gro	oup4 Channel Sequence High Register	Address	0xF0E1	
Regis	ster	ADS5H0)	ADC0 Gro	oup5 Channel Sequence High Register	Address	0xF069	
Regis	ster	ADS5H1		ADC1 Gro	Group5 Channel Sequence High Register Address			
Regis	Register ADS6H0			ADC0 Gro	0xF071			
Regis	Register ADS6H1			ADC1 Gro	oup6 Channel Sequence High Register	Address	0xF0F1	
Regis	ster	ADS7H0)	ADC0 Gro	pup7 Channel Sequence High Register	Address	0xF079	
Regis	ster	ADS7H1		ADC1 Gro	ADC1 Group7 Channel Sequence High Register Address			
Bit	Bi	t Name	R/W	Initial	Description		Remarks	
7	Re	eserved	R	0	The read value is 0. The write value must	st always be 0.		
6	Re	eserved	R	0	The read value is 0. The write value must	st always be 0.		
5	Re	eserved	R	0	The read value is 0. The write value must	st always be 0.		
4	Re	eserved	R	0	The read value is 0. The write value must	st always be 0.		
3	AD	SCH11	R/W	0	Conversion of Channell1 0: Channell1 is not converted 1: Channell1 is converted			
2	ADSCH10 R/W		R/W	0	Conversion of Channel10 0: Channel10 is not converted 1: Channel10 is converted			
1	AI	OSCH9	R/W	0	Conversion of Channel9 0: Channel9 is not converted 1: Channel9 is converted			
0	AI	OSCH8	R/W	0	Conversion of Channel8 0: Channel8 is not converted 1: Channel8 is converted			

22.2.17. ADSTSELmn (ADCn Group m Start Trigger Select Register) (n = 0 to 1) (m = 0 to 7)

Regis	ter	ADSTSEL0	0	ADC0 G	roup0 Start Trigger Select Register	Address	0xF042	
Regis	ter	ADSTSEL0	1	ADC1 G	broup0 Start Trigger Select Register	Address	0xF0C2	
Regis	ter	ADSTSEL1	0	ADC0 G	Froup1 Start Trigger Select Register	Address	0xF04A	
Regis	ter	ADSTSEL11		ADC1 G	broup1 Start Trigger Select Register	Address	0xF0CA	
Regis	ter	ADSTSEL2	0	ADC0 G	Froup2 Start Trigger Select Register	Address	0xF052	
Regis	ter	ADSTSEL2	1	ADC1 G	Froup2 Start Trigger Select Register	Address	0xF0D2	
Regis	ter	ADSTSEL3	0	ADC0 G	broup3 Start Trigger Select Register	Address	0xF05A	
Regis	ter	ADSTSEL3	1	ADC1 G	Froup3 Start Trigger Select Register	Address	0xF0DA	
Regis	ter	ADSTSEL4	0	ADC0 G	Froup4 Start Trigger Select Register	Address	0xF062	
Regis	ter	ADSTSEL4	1	ADC1 G	Froup4 Start Trigger Select Register	Address	0xF0E2	
Regis	ter	ADSTSEL5	0	ADC0 G	ADC0 Group5 Start Trigger Select Register Address		0xF06A	
Regis	ter	ADSTSEL5	1	ADC1 Group5 Start Trigger Select Register Address			0xF0EA	
Regis	ter	ADSTSEL6	0	ADC0 G	broup6 Start Trigger Select Register	Address	0xF072	
Regis	ter	ADSTSEL6	1	ADC1 G	broup6 Start Trigger Select Register	Address	0xF0F2	
Regis	ter	ADSTSEL7	0	ADC0 Group7 Start Trigger Select Register		Address	0xF07A	
Regis	ter	ADSTSEL7	1	ADC1 G	Froup7 Start Trigger Select Register	Address	0xF0FA	
Bit	Е	Bit Name	R/W	Initial	Description		Remarks	
7	F	Reserved	R	0	The read value is 0. The write value	must always be	0.	
6	F	Reserved	R	0	The read value is 0. The write value	must always be	0.	
5			R/W	0				
4	TRIGGER		R/W	0				
3			R/W	0	Activation trigger number			
2			R/W	0	Select a trigger number used as an from Table 22-7, then set it in 6 bits.		ger	
1			R/W	0	110111 1 auto 22-1, then set it in 0 bits.			
0			R/W	0				

22.2.18. ADEVTmLn (ADCn Group m Event Output Channel Low Register) $(n=0\ to\ 1)$ $(m=0\ to\ 7)$

Regi	ster	ADEVT0L0		ADC0 G	roup0 Event Output Channel Low Register	Address	0xF044		
Regi	ster	ADEVT0L1		ADC1 G	roup0 Event Output Channel Low Register	Address	0xF0C4		
Regi	ster	ADEVT1L0		ADC0 G	roup1 Event Output Channel Low Register	Address	0xF04C		
Regi	ster	ADEVT1L1		ADC1 G	DC1 Group1 Event Output Channel Low Register Address				
Regi	ster	ADEVT2L0		ADC0 G	roup2 Event Output Channel Low Register	Address	0xF054		
Regi	ster	ADEVT2L1		ADC1 G	ADC1 Group2 Event Output Channel Low Register Address				
Regi	ster	ADEVT3L0		ADC0 G	roup3 Event Output Channel Low Register	Address	0xF05C		
Regi	ster	ADEVT3L1		ADC1 G	roup3 Event Output Channel Low Register	Address	0xF0DC		
Regi	ster	ADEVT4L0		ADC0 G	roup4 Event Output Channel Low Register	Address	0xF064		
Regi	ster	ADEVT4L1		ADC1 G	roup4 Event Output Channel Low Register	Address	0xF0E4		
Regi	ster	ADEVT5L0		ADC0 G	roup5 Event Output Channel Low Register	Address	0xF06C		
Regi	ster	ADEVT5L1		ADC1 G	roup5 Event Output Channel Low Register	Address	0xF0EC		
Regi	ster	ADEVT6L0		ADC0 G	roup6 Event Output Channel Low Register	Address	0xF074		
Regi	ster	ADEVT6L1		ADC1 G	roup6 Event Output Channel Low Register	Address	0xF0F4		
Regi	ster	ADEVT7L0		ADC0 G	roup7 Event Output Channel Low Register	Address	0xF07C		
Regi	ster	ADEVT7L1		ADC1 G	ADC1 Group7 Event Output Channel Low Register Address				
Bit	F	Bit Name	R/W	Initial	Description		Remarks		
7	7 EVENTOUTCH7 R/W			0	Issuing an event at the completion conversion 0: Event is not issued 1: Event is issued	of Channel	77		
6	EVE	NTOUTCH6	R/W	0	Issuing an event at Channel6 conversion cor 0: Event is not issued 1: Event is issued				
5	EVE	NTOUTCH5	R/W	0	Issuing an event at Channel5 conversion cor 0: Event is not issued 1: Event is issued	npletion			
4	EVE	NTOUTCH4	R/W	0	Issuing an event at Channel4 conversion cor 0: Event is not issued 1: Event is issued	mpletion			
3	EVE	NTOUTCH3	R/W	0	Issuing an event at Channel3 conversion cor 0: Event is not issued 1: Event is issued	mpletion			
2	EVENTOUTCH2 R/W		R/W	0	Issuing an event at Channel2 conversion cor 0: Event is not issued 1: Event is issued				
1	EVENTOUTCH1 R/W		R/W	0	Issuing an event at Channel1 conversion cor 0: Event is not issued 1: Event is issued				
0	EVE	NTOUTCH0	R/W	0	Issuing an event at Channel0 conversion cor 0: Event is not issued 1: Event is issued	npletion			

22.2.19. ADEVTmHn (ADCn Group m Event Output Channel High Register) $(n=0\ to\ 1)$ $(m=0\ to\ 7)$

Re	gister	ADEVT0H0		ADC0 (Group0 Event Output Channel High Register	Address	0xF045	
Re	gister	ADEVT0H1		ADC1 0	Group0 Event Output Channel High Register	Address	0xF0C5	
Re	gister	ADEVT1H0		ADC0 C	Group1 Event Output Channel High Register	Address	0xF04D	
Reg	gister	ADEVT1H1		ADC1 O	ADC1 Group1 Event Output Channel High Register Address			
Reg	gister	ADEVT2H0		ADC0 0	Group2 Event Output Channel High Register	Address	0xF055	
Reg	gister	ADEVT2H1		ADC1 0	Group2 Event Output Channel High Register	Address	0xF0D5	
Reg	gister	ADEVT3H0		ADC0 0	Group3 Event Output Channel High Register	Address	0xF05D	
Reg	gister	ADEVT3H1		ADC1 0	Group3 Event Output Channel High Register	Address	0xF0DD	
Reg	gister	ADEVT4H0	ı	ADC0 (Group4 Event Output Channel High Register	Address	0xF065	
Reg	gister	ADEVT4H1		ADC1 0	Group4 Event Output Channel High Register	Address	0xF0E5	
Reg	gister	ADEVT5H0		ADC0 0	Group5 Event Output Channel High Register	Address	0xF06D	
Reg	gister	ADEVT5H1		ADC1 0	Group5 Event Output Channel High Register	Address	0xF0ED	
Re	gister	ADEVT6H0	ı	ADC0 C	ADC0 Group6 Event Output Channel High Register Address			
Re	gister	ADEVT6H1		ADC1 C	Group6 Event Output Channel High Register	Address	0xF0F5	
Re	Register ADEVT7H0			ADC0 C	Group7 Event Output Channel High Register	Address	0xF07D	
Re	gister	ADEVT7H1		ADC1 O	Group7 Event Output Channel High Register	Address	0xF0FD	
Bit	Bi	t Name	R/W	Initial	Description		Remarks	
7	Re	eserved	R	0	The read value is 0. The write value must alw	ays be 0.		
6	R	eserved	R	0	The read value is 0. The write value must alw			
5	Re	eserved	R	0	The read value is 0. The write value must alw	ays be 0.		
4	Re	eserved	R	0	The read value is 0. The write value must alw	ays be 0.		
3	EVEN'	TOUTCH11	R/W	0	Issuing an event at Channel11 conversion con 0: Event is not issued 1: Event is issued			
2	2 EVENTOUTCH10 R/W		0	Issuing an event at Channel10 conversion completion 0: Event is not issued 1: Event is issued				
1	EVEN	TOUTCH9	R/W	0	Issuing an event at Channel9 conversion com 0: Event is not issued 1: Event is issued			
0	EVEN	TOUTCH8	R/W	0	Issuing an event at Channel8 conversion com 0: Event is not issued 1: Event is issued	pletion		

22.2.20. ADOmn (ADCn Channel m Data Offset Register) (n = 0 to 1) (m = 0 to 11)

Registe	r ADO00		ADC0 C	hannel0 Data Offset Register	Address	0x00		
Registe				hannel0 Data Offset Register	Address	0x01		
Registe	r ADO10		ADC0 C	hannel1 Data Offset Register	Address	0x08		
Registe	r ADO11		ADC1 Channel1 Data Offset Register Address			0x09		
Registe	r ADO20	ADO20		ADC0 Channel2 Data Offset Register Address				
Registe	r ADO21		ADC1 C	hannel2 Data Offset Register	Address	0x11		
Registe	r ADO30		ADC0 C	hannel3 Data Offset Register	Address	0x18		
Registe	r ADO31		ADC1 C	hannel3 Data Offset Register	Address	0x19		
Registe	r ADO40		ADC0 C	hannel4 Data Offset Register	Address	0x20		
Registe	r ADO41		ADC1 C	hannel4 Data Offset Register	Address	0x21		
Registe	r ADO50		ADC0 C	hannel5 Data Offset Register	Address	0x28		
Registe	r ADO51		ADC1 C	hannel5 Data Offset Register	Address	0x29		
Registe				hannel6 Data Offset Register	Address	0x30		
Registe				hannel6 Data Offset Register	Address	0x31		
Registe				hannel7 Data Offset Register	Address	0x38		
Registe	r ADO71		ADC1 C	hannel7 Data Offset Register	Address	0x39		
Registe	r ADO80		ADC0 C	hannel8 Data Offset Register	Address	0x40		
Registe	r ADO81		ADC1 C	hannel8 Data Offset Register	Address	0x41		
Registe	r ADO90			hannel9 Data Offset Register	Address	0x48		
Registe	r ADO91		ADC1 C	hannel9 Data Offset Register	Address	0x49		
Registe	r ADOA0		ADC0 C	hannel10 Data Offset Register	Address	0x50		
Registe	r ADOA1		ADC1 Channel10 Data Offset Register Address			0x51		
Registe	r ADOB0		ADC0 Channel11 Data Offset Register Address		0x58			
Registe	r ADOB1		ADC1 Channel11 Data Offset Register		Address	0x59		
Bit	Bit Name	R/W	Initial	Description		Remarks		
15	Reserved	R	0	Sign extension bit				
14	Reserved	R	0					
13	Reserved	R	0	Writing 1 to the SIGN bit sets the bit	to 1.			
12	SIGN	R/W	0	Sign bit				
11		R/W	0					
10		R/W	0					
9		R/W	0					
8		R/W	0					
7		R/W	0	Offset				
6	OFFSET	R/W	0	An offset value used for each chan	nel can be set	by		
5		R/W	0	signed 13-bit values (-4096 to 4096)				
4		R/W	0	The SIGN bit defines which sign is to be set.				
3		R/W	0					
2		R/W	0					
1		R/W	0					
0		R/W	0					

22.2.21. ADmn (ADCn Channel m Data Register) $(n=0 \ to \ 1) \ (m=0 \ to \ 11)$

For details, see Section 22.6.1

For	details,	see Section 22.	6.1.				
Regi	ster	AD00		ADC0 C	hannel0 Data Register	Address	0x99
Regi	ster	AD01		ADC1 C	hannel0 Data Register	Address	0x9A
Regi	ster	AD10		ADC0 C	hannel1 Data Register	Address	0xA1
Regi	ster	AD11		ADC1 C	hannel1 Data Register	Address	0xA2
Regi	ster	AD20		ADC0 Channel2 Data Register		Address	0xA9
Regi	ster	AD21		ADC1 C	hannel2 Data Register	Address	0xAA
Regi	ster	AD30		ADC0 C	hannel3 Data Register	Address	0xB1
Regi	ster	AD31		ADC1 C	hannel3 Data Register	Address	0xB2
Regi	ster	AD40		ADC0 C	hannel4 Data Register	Address	0xB9
Regi	ster	AD41		ADC1 C	hannel4 Data Register	Address	0xBA
Regi	ster	AD50		ADC0 C	hannel5 Data Register	Address	0xC1
Regi	ster	AD51		ADC1 C	hannel5 Data Register	Address	0xC2
Regi	ster	AD60		ADC0 C	hannel6 Data Register	Address	0xC9
Regi	ster	AD61		ADC1 C	hannel6 Data Register	Address	0xCA
Regi	ster	AD70		ADC0 C	hannel7 Data Register	Address	0xD1
Regi	ster	AD71		ADC1 C	hannel7 Data Register	Address	0xD2
Regi	ster	AD80		ADC0 C	hannel8 Data Register	Address	0xD9
Regi	ster	AD81		ADC1 C	OC1 Channel8 Data Register Address		
Regi	ster	AD90		ADC0 C	ADC0 Channel9 Data Register Address		
Regi	ster	AD91		ADC1 C	ADC1 Channel9 Data Register Address		
Regi	ster	ADA0		ADC0 C	ADC0 Channel10 Data Register Address		
Regi	ster	ADA1		ADC1 C	hannel10 Data Register	Address	0xEA
Regi	ster	ADB0		ADC0 C	hannel11 Data Register	Address	0xF1
Regi	ster	ADB1		ADC1 C	hannel11 Data Register	Address	0xF2
Bit]	Bit Name	R/W	Initial	Description	Remarks	
15]	Reserved	R	0	Sign extension bit		
14		Reserved	R	0	Writing 1 to the DATASIGN bit sets	the bit to 1.	
13	D.	ATASIGN	R	0	Sign bit		
12			R	0	-		
11	1		R	0			
10	1		R	0			
9	1		R	0			
8]		R	0			
7			R	0			
6	DATA R		R	0	Conversion result		
5		R R		0			
4				0			
3			R	0			
2			R	0			
1			R	0			
0			R	0			

22.2.22. ADIFn (ADCn Interrupt Flag Register) (n = 0 to 1)

Regi	ister	ADIF0		ADC0 In	terrupt Flag Register	Address	0x89
Regi	ister	ADIF1		ADC1 In	terrupt Flag Register	Address	0x8A
Bit		Bit Name	R/W	Initial	Description		Remarks
15		Reserved	R	0	The read value is 0. The write value	must always	be 0.
14		Reserved	R	0	The read value is 0. The write value	must always	be 0.
13		Reserved	R	0	The read value is 0. The write value	must always	be 0.
12		Reserved	R	0	The read value is 0. The write value	must always	be 0.
11		Reserved	R	0	The read value is 0. The write value	must always	be 0.
10		Reserved	R	0	The read value is 0. The write value	must always	be 0.
9		Reserved	R	0	The read value is 0. The write value	must always	be 0.
8		Reserved	R	0	The read value is 0. The write value	must always	be 0.
7		IFLG7	R/C	0	Interrupt flag of Group7 Read 0: Interrupt is not detected Read 1: Interrupt is detected Write 0: No change Write 1: The bit is cleared	·	
6		IFLG6	R/C	0	Interrupt flag of Group6 Read 0: Interrupt is not detected Read 1: Interrupt is detected Write 0: No change Write 1: The bit is cleared		
5		IFLG5	R/C	0	Interrupt flag of Group5 Read 0: Interrupt is not detected Read 1: Interrupt is detected Write 0: No change Write 1: The bit is cleared		
4		IFLG4	R/C	0	Interrupt flag of Group4 Read 0: Interrupt is not detected Read 1: Interrupt is detected Write 0: No change Write 1: The bit is cleared		
3		IFLG3	R/C	0	Interrupt flag of Group3 Read 0: Interrupt is not detected Read 1: Interrupt is detected Write 0: No change Write 1: The bit is cleared		
2		IFLG2	R/C	0	Interrupt flag of Group2 Read 0: Interrupt is not detected Read 1: Interrupt is detected Write 0: No change Write 1: The bit is cleared		
1		IFLG1	R/C	0	Interrupt flag of Group1 Read 0: Interrupt is not detected Read 1: Interrupt is detected Write 0: No change Write 1: The bit is cleared		
0		IFLG0	R/C	0	Interrupt flag of Group0 Read 0: Interrupt is not detected Read 1: Interrupt is detected Write 0: No change Write 1: The bit is cleared		

22.3. Operation

22.3.1. Basic Operation

Before a register is operated, enable the ADC module clock (set the MCLKE2.ME_ADC0 and MCLKE2.ME_ADC1 bits to 1). After that, the ADC is enabled and operated by setting the ADENn.ADENABLE bit to 1. If the ADC is not used, power consumption can be reduced by setting the ADENn.ADENABLE bit to 0. Figure 22-2 shows the flowchart of the ADC initialization process.

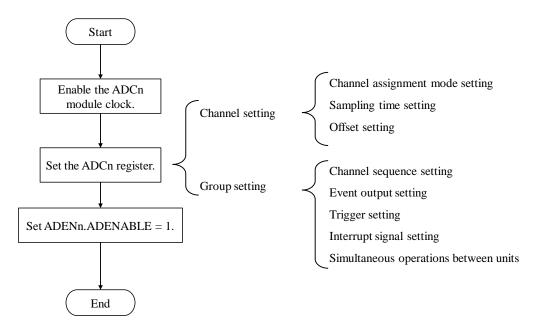


Figure 22-2. Flowchart of Initialization Process

If the group to be activated by the trigger exists when the trigger from the GPIO, comparator, PWM, timer, DSAC, EPU, or CPU is received during the ADC operation, the conversion process is started. This trigger is called an activation trigger. As an exception, the trigger from the CPU starts the conversion process regardless of the ADENn register value. Care must be taken when the trigger is received from the CPU while the ADENn.ADENABLE bit is 0. At this time, since the power supply voltage is not applied to the comparator, the ADC cannot generate the correct conversion result. When the activation trigger is received while the ADC is in an idle state (i.e., a state where the ADC is not converting), the conversion process is started after the group to be processed is selected. For this group selection, one cycle is consumed, i.e., the ADLOOP trigger, which is the CPU trigger, operates one cycle behind compared to other triggers.

The internal capacitor is charged (sample-and-hold) before the ADC converts the input to the digital value. The sampling period is in accordance with the cycles (1 cycle to 256 cycles) set by each channel. After the sample-and-hold, the capacitance is converted to the digital. The conversion algorithm takes 12 cycles with successive approximation register (SAR) by a binary search.

As shown in Figure 22-3, the time taking to convert the first channel after receiving the trigger is the sampling period (t) + 13 cycles.

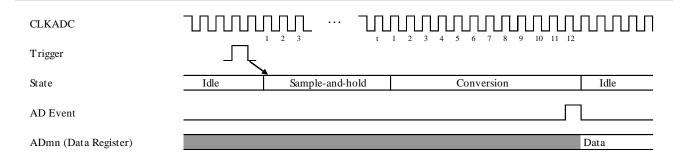


Figure 22-3. Conversion Timing of 1 Channel by Binary Search

Since the second or subsequent channels and the groups are processed continuously, the conversion process requires the sampling period (t) + 12 cycles. The result converted to the digital value is stored in the ADmn register for each channel after adding the offset. When the conversion process of each channel is completed, the ADC generates the ADC event for each group. Also, when the processing of each group is completed, the ADC generates an interrupt signal. Since the interrupt signal is not automatically cleared, user must clear the interrupt signal.

Figure 22-4, Figure 22-5, and Figure 22-6 show the basic operation timings. Figure 22-4 shows the basic operation when issuing the trigger to activate the Group x that converts the Channel a. Figure 22-5 shows the basic operation when issuing the trigger to activate the Group x that converts the Channel a and Channel b. Figure 22-6 shows the basic operation when issuing one trigger to activate the multiple groups (Group x and Group y), and then issuing a trigger to activate another group, Group z, during the execution (it is assumed that the Group z has higher priority than the Group y).

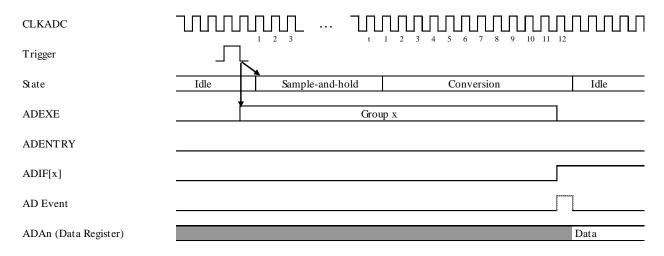


Figure 22-4. Basic Operation Timing in Conversion Group of 1 Channel

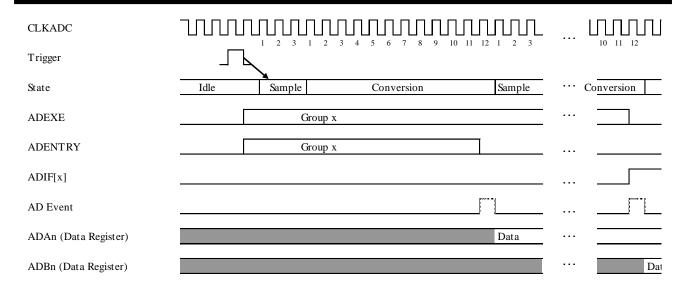


Figure 22-5. Basic Operation Timing in Conversion Group of 2 Channels

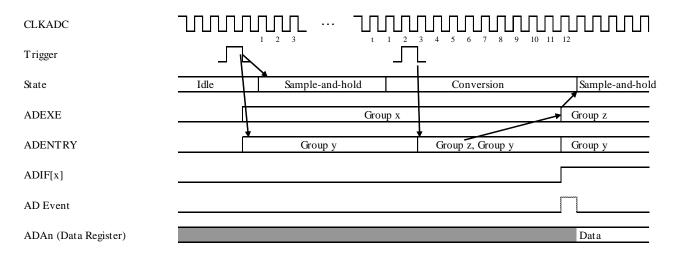


Figure 22-6. Basic Operation Timing in Operating 2 or More Groups

22.3.2. Register Access

The following cares should be taken when accessing the registers.

- If the ADOmn registers of the XDATA BUS and the SFR BUS are written simultaneously, the XDATA BUS register has the highest priority.
- If the setting operation and the resetting operation of the ADIFn registers occur simultaneously, the setting operation has the highest priority.
- When the ADmn register is read by 8-bit access from the CPU, the lower 8-bit data is read in the first access, and the high 8-bit data is read in the second access. Be sure to perform the read operation continuously to the lower and higher bits.

22.4. Analog Inputs and Channels

Each ADC has 12 analog inputs. The particular channel numbers (0 to 11) are assigned to the analog input. Table 22-5 describes the channel number assignment. The ADCn.CHCONMODE bit determines the channel numbers to assign to the analog inputs.

Each analog input has a switch. While this switch is turned off, the analog input becomes high impedance. During the sampling, only one input switch is turned on, and the analog input pin is connected to the ADC internal sampling capacitor. If the ADENn.ADENABLE bit is set to 0, all analog input switches are turned off even while the conversion process is being executed.

The following sections describe the sampling period and the offset, which are the channel setting items.

ADC0 ADC1 Channel Number Channel Number **Analog Input Analog Input** Mode 0 Mode 1 Mode 0 Mode 1 0 0 ANEX0 11 ANEX0 11 ANEX1 1 10 ANEX1 1 10 ANEX2 2 9 ANEX2 2 9 3 8 3 8 ANEX3 ANEX3 4 7 7 ANEX4 ANEX4 4 5 5 ANEX5 6 ANEX5 6 ANEX6 6 5 ANEX6 6 5 ANEX7 7 4 ANEX7 7 4 8 3 8 3 ANEX8 ANEX12 2 9 9 2 ANEX9 ANEX13 ANEX10 10 1 **TEMP** 10 1 0 **VREF** 0 ANEX11 11 11

Table 22-5. Channel Number Assignment to Analog Input

22.4.1. Sample

A sample operates to inject the charge into the ADC internal sampling capacitor and to make the analog input voltage equal to the ADC internal sampling capacitor voltage. The sampling cycle is determined by the ADNSMPmn register for each channel.

The ADC analog input pin is connected to the ADC internal sampling capacitor by turning on the input switch. The voltage of the sampling capacitor is undefined. During the sampling cycle, the current flows so that the voltages of the sampling capacitor and the analog input are the same.

The ADNSMPmn register determines the sampling period of each channel from 1 cycle to 256 cycles. This setting is common to all groups. If the ADNSMPmn register is set to 0x00, the sampling period is regarded as 256 cycles.

The ADC is designed within the error range described in the electrical characteristics (Section 29) when the impedance of the part where the voltage is measured is 0 and the sampling period is 3 cycles outside the LSI. When the sampling period is shortened, the charge of the internal sampling capacitor is not changed sufficiently, and the correct conversion result may not be obtained in some cases. Conversely, the longer the sampling period, the smaller the error can be, but the longer the conversion time takes. The appropriate sampling period must be set according to the impedance size of the part where the voltage is measured.

22.4.2. Offset

Before the result converted to the digital value is output to each channel, the offset to be added can be set. To set the offset of the Channel m, write the signed 13-bit values (-4096 to 4095) to the ADOmn register. This setting is common to all groups.

The ADOmn register is accessed from the XDATA BUS and the SFR BUS.

The number of cycles required to store the result in the register is constant regardless of the offset setting.

22.5. Group

The ADC manages the followings in a group: when to activate, and which channel to be processed in which order. Up to 8 groups can be used in one ADC. The numbers (0 to 7) are assigned to each group.

For each group, it is necessary to set the information such as an activation trigger, a channel sequence, an event generation channel, and the enable or disable of interrupt signal.

The following sections describe the group processing method and the group setting items executed by the ADC.

22.5.1. Group Status

In each group, an execution status and an entry status are managed separately.

The execution status indicates whether the group is currently being processed or not. The execution status has 2 states, "executing" and "stopping". The execution status of the Group m can be acquired from the ADEXEn.EXECUTIONm bit. When ADEXEn.EXECUTIONm = 1, the Group m is in the executing status.

The entry status indicates whether or not a channel conversion process has been entered to the ADC. The entry status has 2 states, "entered" and "unentered". If the group no longer needs to make a channel conversion request to the ADC (or, starts processing the last channel of the channel sequence), the entry status turns into the unentered state. The entry status of the Group m can be acquired from the ADENTRYn.ENTRYm bit. When ADENTRYn.ENTRYm = 1, the Group m is being entered. In this way, each group makes transitions among 4 statuses (2 execution statuses \times 2 entry statuses). These 4 statuses are classified as shown in Table 22-6.

Execution Status	Entry Status	Group Status
Stanning	Unentered	Stopped
Stopping	Entered	Idling
	Unentered	Processing the final channel
Executing	Entered	Processing the channels other than the final or Processing the final channel and waiting for the next processing

Table 22-6. Group States

22.5.2. Processes from Group Activation to Completion

This section describes a process flow from when a group receives an activation trigger to when the group is activated, the ADC performs the conversion process, and the group is completed.

To activate the group, the ADC needs to receive the activation trigger of the group. Section 22.5.6 describes the details of the activation trigger. When the group receives the activation trigger, the entry status is changed to the entered state. The execution status is not changed.

When the ADC receives the activation trigger, or completes the execution group processing, the ADC selects the next execution group. The ADC selects the group with the smallest number in the groups of the entered state, and turns into the execution status. Where, the receiving order of the activation trigger is not taken into account. Even if the ADC receives the last activation trigger, the group is selected when the group number is the smallest.

When the group enters the activation state, the ADC processes all channels of the channel sequence in the order of the smaller channel number. The channel to be converted by the group is set in the channel sequence. Section 22.5.4

describes the details of the channel sequence. If the event generation is specified, the ADC event is issued every time each channel processing completes.

While the group is in the entered state, the ADC is ignored even if the activation trigger is received. Note that, when the ADC starts processing the last channel, the entry status of the group turns into the unentered state. Therefore, while the group processes the last channel, this group being executed can also receive the activation trigger.

When the channel sequence of the group has one channel, the operation is as follows:

- If the group becomes the execution status, the entry status of the group turns into unentered state simultaneously.
- If the group is activated after receiving the activation trigger, the entry status maintains the last unentered state.

When the processing of all channels in the channel sequence is completed, the group completes the processing by setting 1 to the interrupt signal flag of the ADIFn register.

22.5.3. Processing of Execution Group Selection

When the ADC receives the activation trigger, or completes the execution group processing, the ADC selects the next execution group. The ADC selects the group with the smallest number in the groups of the entered state, and turns into the execution status. Where, the receiving order of the activation trigger is not taken into account. Even if the ADC receives the last activation trigger, the group is selected when the group number is the smallest.

Even if the ADC receives the activation trigger multiple times while the group is being entered, the entry status turns into the unentered state whenever the group is executed, regardless of its number of times. To entry the group again, issue the activation trigger in the unentered state. To keep the group always entered state, use the ADLOOP trigger, which is the CPU trigger. The activation trigger continues to be issued automatically for each cycle by setting ADLOOPn.LOOPm = 1. For details of the ADLOOPn register, see Section 22.5.6.3.

22.5.4. Channel Sequence

Each group has a channel sequence that sets which channel to be processed. When the Channel m is processed in the Group m, set the ADSCHm bit of the ADS mLn or ADSmHn register to 1. Where, converting one channel by one group processing multiple times cannot be set. For example, to process 3 channels (Channel1, Channel5, and Channel11) in the Group1, write 0b0000_1000_0010_0010, which is binary number, to the ADS1Ln and ADS1Hn registers. Where, the lower 8 bits (0b0010_0010) are written to the ADS1Ln register, and the higher 8 bits (0b0000_1000) are written to the ADS1Hn register.

When the ADC processes the group, all groups registered in the channel sequence are processed in the order of the channel number. Do not rewrite the channel sequence of the group (i.e., the setting values of the ADSmHn and ADSmLn registers) while the ADC processes the group.

22.5.5. Event Generation Channel

The ADEVTmn register determines whether the event is generated or not for each channel. In the same way as the ADSmHn and ADSmLn registers, to process the Channel m in the Group m, set the ADEVTm bit of the ADEVTmLn and ADEVTmHn registers to 1. It is no problem even if this value is different from the channel sequence values (i.e., the values of the ADSmHn and ADSmLn registers).

For example, to generate the events of the Channel1, Channel5, and Channel11, in the Group0, write 0b0000_1000_0010_0010, which is binary number, to the ADEVT0Ln and ADEVT0Hn registers. Where, the lower 8 bits (0b0010_0010) are written to the ADEVT0Ln register, and the higher 8 bits (0b0000_1000) are written to the ADEVT0Hn register.

For details of the ADC event, see Section 22.6.2.

22.5.6. Activation Trigger

The following 3 activation triggers are used in each group. No distinction exists among these 3 triggers; these are used as the same activation triggers.

- Trigger by the event (select one trigger from GPIO trigger, comparator trigger, PWM trigger, timer trigger, DSAC trigger, and EPU trigger)
- ADC trigger from the CPU
- ADLOOP trigger from the CPU

22.5.6.1. Activation Trigger by Event

To specify the activation trigger of the Group m, select the activation trigger from Table 22-7, and set the corresponding trigger numbers to the ADSTSELmn register. To not specify the activation trigger, set the ADSTSELmn register to 0. Also, one trigger can be specified as the activation trigger for multiple groups.

To use the trigger numbers of 1 to 9, enable the EVC module clock (i.e., set MCLKE1.ME_EVC = 1). To use the trigger numbers of 34 to 57, set the event input to the ADC by the EVC module register (any of EVSEL5, EVSEL6, EVSEL7, or EVSEL8).

Trigger Type Number Trigger Type Number Trigger Type Number 0 20 TMR1_CMA 40 EPU0_8/EPU1_8 GPIO0 rise TMR1 CMB 41 EPU0 9/EPU1 9 1 21 2 GPIO0 fall 22 TMR2_CMA 42 EPU2_2/EPU3_2 3 GPIO0 both 23 TMR2_CMB 43 EPU2_3/EPU3_3 4 GPIO1 rise 24 TMR3 CMA 44 EPU2 4/EPU3 4 25 5 TMR3_CMB 45 EPU2_5/EPU3_5 GPIO1 fall GPIO1 both PWM0_0 46 EPU2_6/EPU3_6 26 6 7 PWM0 1 47 EPU2_7/EPU3_7 GPIO2 rise 27 8 48 EPU2_8/EPU3_8 GPIO2 fall 28 PWM1_0 49 9 GPIO2 both 29 EPU2 9/EPU3 9 PWM1 1 10 CMP0 30 PWM2 0 50 EPU4 2/EPU5 2 EPU4_3/EPU5_3 11 CMP1 31 PWM2 1 51 PWM3_0 12 CMP2 32 52 EPU4_4/EPU5_4 13 CMP3 33 PWM3 1 53 EPU4 5/EPU5 5 14 CMP4 34 EPU0 2/EPU1 2 54 EPU4 6/EPU5 6 15 CMP5 35 EPU0 3/EPU1 3 55 EPU4 7/EPU5 7 16 36 EPU0 4/EPU1 4 56 EPU4 8/EPU5 8 17 37 EPU0_5/EPU1_5 57 EPU4_9/EPU5_9 TMR0 CMA 38 EPU0 6/EPU1 6 18 19 TMR0 CMB 39 EPU0 7/EPU1 7

Table 22-7. Trigger Numbers

22.5.6.2. ADT Trigger

The ADTn register is to issue the activation trigger from the CPU to the ADC. Since the CPU trigger is set in advance to the group activation trigger, the setting cannot be changed.

One trigger is issued by writing to the ADTn register once. To issue the activation trigger from the CPU to the Group m, set ADTn.TRIGGERm = 1. This register is dedicated to the writing.

22.5.6.3. ADLOOP Trigger

The ADLOOPn register is to issue the activation trigger from the CPU to the ADC. Since the CPU trigger is set in advance to the group activation trigger, the setting cannot be changed.

To issue the activation trigger from the CPU to the Group m, set ADLOOPn.LOOPm = 1. During ADLOOPn.LOOPm = 1, the activation trigger of the Group m is issued continuously to the ADC for each cycle. To stop issuing this activation trigger, set ADLOOPn.LOOPm = 0.

The ADLOOP trigger can be used for continuing to operate the ADC without using the CPU resources for the channel that the value to be always monitored.

Since the ADLOOP trigger issues the activation trigger after the value is stored in the register, the time from the idle state to the ADC activation state is delayed by one cycle from the ADT trigger.

22.5.7. Enable/Disable Setting of Interrupt Signal

To enable the interrupt signal of the Group m, set ADIENn.IENm = 1.

When processing of the Group m is completed, the ADC sets the ADIFn.IFLGm bit to 1, and set the interrupt flag of the Group m to 1. If the interrupt signal of the group is not enabled here, the interrupt signal from the ADC is not generated.

For details of the interrupt signal, see Section 22.6.3.

22.6. Output

22.6.1. Acquisition of Conversion Result

The ADC stores the signed 16-bit value in the ADmn register. The signed 16-bit value is result of adding the unsigned 12-bit value (0 to 4095), which is acquired by digitally converting the input of Channel m, and the signed 13-bit channel offset (-4096 to 4095), which is defined by the ADOmn register.

When reading the ADmn register from the CPU, the amount of data that can be read out at once is 8 bit. Thus, it is necessary to read it twice in order to acquire 16-bit data. When reading twice sequentially from the ADmn register, the lower 8 bits are acquired in the first reading and the higher 8 bits are acquired in the second reading. The ADmn register is basically read twice sequentially. If reading the first lower bits again after reading the first lower bits, set the ADACCLRn register to 1.

When reading from the DSAC or the EPU, all data (16 bits) can be read at once.

Figure 22-7. Method of Offset Addition

22.6.2. ADC Event

When completing the conversion of each channel, the ADC issues the ADC event if specified. The ADC event issues the different signals for each group. At this time, the same ADC event is issued in the same groups even if the channels are different.

The ADEVTmHn and ADEVTmLn registers determine whether the event that is issued in each channel of each group exists or not. While one group is executed, multiple ADC events can be issued.

22.6.3. Interrupt Signal

When existing the group that the interrupt flag is 1 and the interrupt signal is enabled, the ADC interrupt signal is issued. The interrupt flag of the group that the interrupt signal is not enabled is ignored. To enable the interrupt signal of the Group m, set ADIENn.IENm = 1.

The interrupt flag of each group becomes 1 when each group processing is completed regardless of the interrupt enable or disable. Also, the interrupt flag that becomes 1 once does not become 0 unless user clears it. The interrupt flag of the Group m is set to 1 by setting ADIFn.IFLGm = 1. To clear all interrupt flags, write 0xFF to the ADIFn register. If the clearing operation of the interrupt flag and the setting operation by the ADC occur simultaneously, the setting operation by the ADC has the highest priority.

The ADIFn register can also be used to check which group processing is completed.

22.7. Synchronous Operations between Units

Although the conversions of the ADC0 and the ADC1 are normally processed independently, setting the ADSYNCn.SYNCHRONOUS bits of ADC0 and ADC1 to 1 allows the conversion timing of the Group0 (the timing to go into sample-and-hold operation) to be synchronized (see Figure 22-8).

This mode is called "synchronous operations between units," i.e., synchronous operation mode. Be sure to set the ADSYNCn.SYNCHRONOUS bits of both ADC0 and ADC1 to the same value to make this mode work properly. In the synchronous operation mode, the period necessary for synchronizing the ADC0 and the ADC1 is 3 cycles after the ADEXEn register changes.

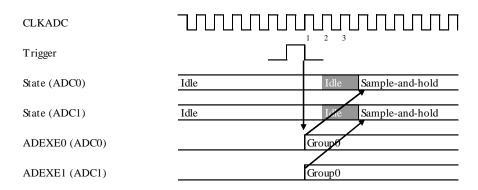


Figure 22-8. Timing to Activate Simultaneously with Same Triggers

During the synchronous operation mode, when either ADC0 or ADC1 attempts to execute the Group0, it enters the idle state until the other executes the Group0. When the ADEXEn.EXECUTION0 bits of both ADC0 and ADC1 become 1, the ADC0 and ADC1 start the conversion process of the Group0 simultaneously.

Figure 22-9 and Figure 22-10 show the basic timings of synchronous operations between units.

When only the ADSYNCn.SYNCHRONOUS bit of either ADC0 or ADC1 is set to 1, the state continues after it enters the idle state, because the ADEXEn.EXECUTION0 bit of the ADC that has ADSYNCn.SYNCHRONOUS = 0 does not become 1. Therefore, be sure to set the ADSYNCn.SYNCHRONOUS bits of both ADC0 and ADC1 to the same values.

When setting ADSYNCn.SYNCHRONOUS = 0, the ADC returns from the idle state and starts the Group0 processing (see Figure 22-11).

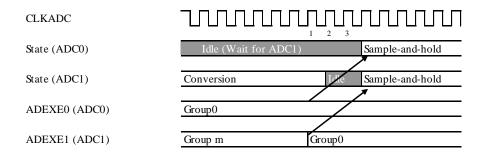


Figure 22-9. Timing to Start Group0 Processing Simultaneously with ADC0 after Group m Processing Completion by ADC1

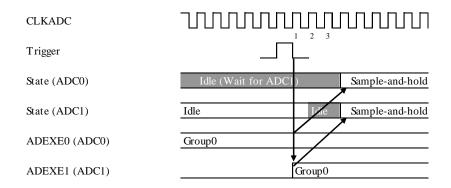


Figure 22-10. Timing to Activate Group0 by ADC1 after Receiving Trigger

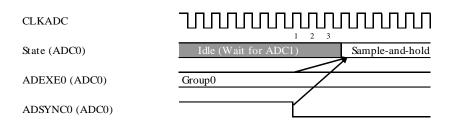


Figure 22-11. Timing to Cancel ADC0 Idling with Setting ADSYNC0.SYNCHRONOUS = 0

22.8. Usage Notes and Restrictions

Do not rewrite the ADCn register during conversion operations.

23. Op Amp (OPAMP)

23.1 Overview

The LSI has a general-purpose op amp that is selected from a standalone or a unity-gain (also called a voltage follower) type.

The input and output pins of the op amp (OPAMP) can be connected to an external pins or an internal resource. These connections are set by the corresponding register.

Table 23-1. OPAMP Functional Descriptions

Item	Description	Remarks
Number of Units	2 units	
Selectable Mode	 Standalone mode Unity-gain mode (×1 or ×4) Low power consumption mode Enable or disable control by an event Positive input bypass function 	The setting bit of the low power consumption mode of IBIAS is in SYSC.

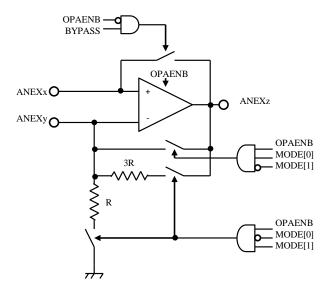


Figure 23-1. OPAMP Block Diagram

23.2 Register Descriptions

Table 23-2. List of Registers

Symbol	Name	Address	Initial Value
MIXOPA0	Mix OPAMP0 Configuration Register	0xF600	0x00
MIXPGA0	Mix OPAMP0 PGA Configuration Register	0xF601	0x00
MIXEEVCR0	Mix OPAMP0 Enable Event Control Register	0xF602	0x00
MIXDEVCR0	Mix OPAMP0 Disable Event Control Register	0xF603	0x00
MIXOPA1	Mix OPAMP1 Configuration Register	0xF680	0x00
MIXPGA1	Mix OPAMP1 PGA Configuration Register	0xF681	0x00
MIXEEVCR1	Mix OPAMP1 Enable Event Control Register	0xF682	0x00
MIXDEVCR1	Mix OPAMP1 Disable Event Control Register	0xF683	0x00

23.2.1 MIXOPAn (Mix OPAMP n Configuration Register) (n = 0 to 1)

Regi	Register		MIXOPA0		MP0 Configuration Register Address		0xF600		
Regi	ster	MIXOP	A1	Mix OPAMP1 Configuration Register Addre		MP1 Configuration Register Address			
Bit	Bit	Name	R/W	Initial	Description		Remarks		
7	OPA	AENB	R/W	0	OPAMP enable 0: OPAMP is disabled 1: OPAMP is enabled When a disable event is detected, the OPAENB bit is set to 0. When an enable event is detected, the OPAENB bit is set to 1. If a write operation to the bit and either of these event-driven rewrite operations occurred simultaneously, the write operation to the OPAENB bit has the highest priority.		0: OPAMP is disabled 1: OPAMP is enabled When a disable event is detected, the OPAENB bit is set to 0. When an enable event is detected, the OPAENB bit is set to 1. If a write operation to the bit and either of these event-driver		
6	Res	served	R/W	0	The read value is 0. The write value n	nust always be 0.			
5	Res	served	R/W	0	The read value is 0. The write value n	nust always be 0.			
4	Res	served	R/W	0	The read value is 0. The write value n	nust always be 0.			
3	Res	served	R/W	0	The read value is 0. The write value must always be 0.				
2	Res	served	R/W	0	The read value is 0. The write value must always be 0.				
1	Res	served	R/W	0	The read value is 0. The write value must always be 0.				
0	Res	served	R/W	0	The read value is 0. The write value n	nust always be 0.			

MD6603

23.2.2 MIXPGAn (Mix OPAMP n PGA Configuration Register) (n = 0 to 1)

Regi	Register MIXPGA0 Mix OPAMP0 PGA Configuration Register		MIXPGA0		AMP0 PGA Configuration Register	Address	0xF601
Regi	ster	MIXPG	A1	Mix OPAMP1 PGA Configuration Register		Address	0xF681
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	BY	PASS	R/W	0	Positive input and output connection setting 0: No connection 1: Positive input and output are connected The bit is valid only when the OPAENB bit is 0. When the OPAENB bit is 1, the positive input and output are not connected, regardless of the BYPASS bit setting.		
6	Res	served	R	0	The read value is 0. The write value must always be 0.		
5	Res	served	R	0	The read value is 0. The write value must always	ys be 0.	
4	Res	served	R	0	The read value is 0. The write value must always	ys be 0.	
3	Res	served	R/W	0	The read value is 0. The write value must always	ys be 0.	
2	Res	served	R/W	0	The read value is 0. The write value must always	ys be 0.	
1			R/W	0	OPAMP operating mode selection		
0	M	ODE	R/W	0	00: Op amp 01: Unity-gain amplifier (×1) 10: Unity-gain amplifier (×4) 11: Setting prohibited		

23.2.3 MIXEEVCRn (Mix OPAMP n Enable Event Control Register) (n = 0 to 1)

Regi	ster	MIXEE	VCR0	Mix OP	Mix OPAMP0 Enable Event Control Register Address		0xF602	
Regi	ster	MIXEE	VCR1	Mix OP	AMP1 Enable Event Control Register	Address	0xF682	
Bit	Bit	Name	R/W	Initial	Description		Remarks	
7	Res	served	R	0	The read value is 0. The write value must always be 0.			
6	Res	served	R	0	The read value is 0. The write value must alwa	nys be 0.		
5	Res	served	R	0	The read value is 0. The write value must always	nys be 0.		
4			R/W	0	OPAMP enable event selection	4 ODAEND		
3			R/W	0	00000: No selection made. Only writing t bit enables the OPAMP.	to the OPAENB		
2			R/W	0	00001: TMR0_CMA			
1	I R/W		R/W	0	00010: TMR0 CMB			
0	E	VON	R/W	0	00100: TMR1_CMB 00101: TMR2_CMA 00110: TMR2_CMB 00111: TMR3_CMA 01000: TMR3_CMB 01001: PWM0_0 01010: PWM0_1 01011: PWM1_0 01100: PWM1_1 01101: PWM2_0 01110: PWM2_1 01111: PWM3_0 10000: PWM3_1 10001: EPU0 10010: EPU1 10011: EPU2 10100: EPU3 10101: EPU4 10110: EPU5 Other than above: Setting prohibited			

23.2.4 MIXDEVCRn (Mix OPAMP n Disable Event Control Register) (n = 0 to 1)

Regi	ister	MIXDE	VCR0	Mix OP	AMP0 Disable Event Control Register	Address	0xF603
Regi	ister	MIXDE	MIXDEVCR1 Mix OPAMP1 Disable Event Control Register Address		Address	0xF683	
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must always	ays be 0.	
6	Res	served	R	0	The read value is 0. The write value must always be 0.		
5	Res	served	R	0	The read value is 0. The write value must always be 0.		
4			R/W	0	OPAMP disable event selection	<u> </u>	
3			R/W	0	bit disables the OPAMP.	to the OFAENB	
2			R/W	0	00001: TMR0_CMA 00010: TMR0_CMB		
1			R/W	0	00010: TMR0_CMB 00011: TMR1_CMA		
0	EV	/OFF	R/W	0	00100: TMR1_CMB 00101: TMR2_CMA 00110: TMR2_CMB 00111: TMR3_CMA 01000: TMR3_CMB 01001: ADC0_0 01010: ADC0_1 01011: ADC0_2 01100: ADC0_3 01101: ADC0_4 01110: ADC0_5 01111: ADC0_6 10000: ADC1_0 10010: ADC1_0 10010: ADC1_1 10011: ADC1_2 10100: ADC1_3 10101: ADC1_5 10111: ADC1_6 11000: ADC1_7 11001: EPU0 11010: EPU1 11011: EPU2 11100: EPU3 11101: EPU4 11110: EPU5 Other than above: Setting prohibited		

The enabled/disabled defined by the OPAMP.OPAENB bit can be set by an event.

An event is defined by the MIXEEVCRn.EVON bit or the MIXDEVCRn.EVOFF bit (other than zero). When the setting event of the MIXEEVCRn.EVON bit or the MIXDEVCRn.EVOFF bit is generated, the OPAMP can be enabled or disabled, respectively. In addition, the OPAENB can be set 1 or 0 directly to enable or disable the OPAMP, respectively. If an enable event defined by the MIXEEVCRn.EVON bit and a disable event defined by the MIXDEVCRn.EVOFF are generated at the same time, the disable event is ignored because the enable event has the highest priority.

Figure 23-2 shows the OPAMP operation example when a PWM and an AD conversion are set to the enable and disable events, respectively. When the PWM Event is generated, the OPAMP is enabled, and the TMR counter is concurrently cleared. Then, the AD conversion is started by the compare match of the TMR. When the AD conversion complete event is generated, the OPAMP is disabled. Since the OPAMP only operates during the AD conversion, the power consumption is reduced. In the operation, the TMR is used to generate the settling time of the OPAMP.

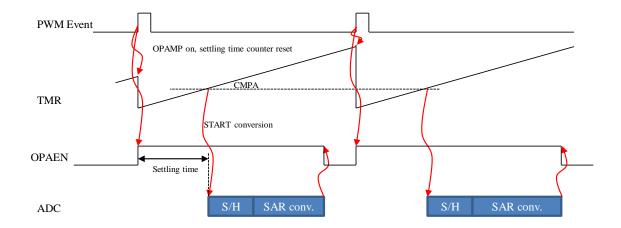


Figure 23-2. OPAMP Operational Example

24. Comparator

24.1. Overview

The LSI has 6 units of high-speed comparators with the DAC to generate reference voltage.

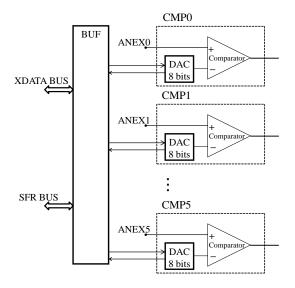


Figure 24-1. Comparator Block Diagram

Table 24-1. Comparator Functional Descriptions

Item	Description
Number of Units	6 units
Reference DAC	 R-2R structure Resolution: 8 bits Conversion speed: See Section 29. Controls updating of DAC outputs by events: CPU writing, DSAC writing, comparator event, timer event, and PWM event Generates masking signal so that comparator does not generate event before and after updating DAC
Comparator	 Response speed: See Section 29. Enable/Disable control for hysteresis Low power consumption mode Event/Interrupt generation by edge detection Event/Interrupt generation by level detection Input sampling function and noise filtering function Sampling interval setting function Comparator output masking function by PWM signals Event detection stopping function when DAC is updated Return to standby mode by level detection Output function to LUT

Unit No.	External Pin (-)	External Pin (+)
0	DAC0	ANEX0
1	DAC1	ANEX1
2	DAC2	ANEX2
3	DAC3	ANEX3
4	DAC4	ANEX4
5	DAC5	ANEX5

Table 24-2. Input Pin of Each Comparator

24.1.1. Comparator Control

The input signals to the high-speed comparator can be set, respectively. The output of the high-speed comparator can be used for the interrupt request and the trigger events for other modules. Figure 24-1 shows the comparator block diagram.

The comparators have the following functions.

- Comparator outputs have a glitch filter. The filter period can be selected from 1 cycle to 4 cycles. The period of 1 cycle can be extended by up to 128 times by the prescaler setting.
- Comparator outputs can be masked for a period of 32 cycles from the timing that the DAC setting is updated.
- Comparator outputs can be masked using a PWM signal. The signal can be selected from 8 PWM signals.
- Whether to enable or disable comparator's hysteresis can be selected.
- Using the slow mode, which the response speed of comparators is decreased, the current consumption can be reduced.

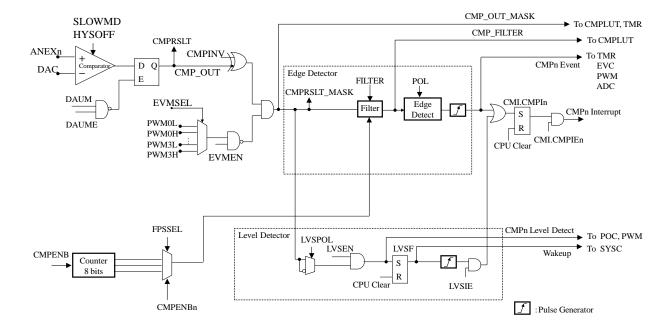


Figure 24-2. Block Diagram of Comparator

24.1.2. DAC Control

The output level of the 8-bit DAC to generate reference voltage is updated by the CPU, DSAC, comparator events, timer events, or PWM events.

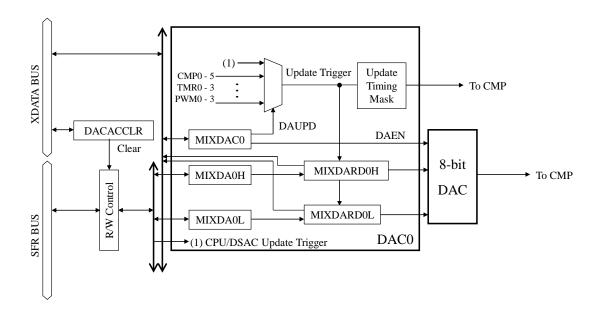


Figure 24-3. Block Diagram of 8-bit DAC

24.2. Register Descriptions

Table 24-3. List of XDATA BUS Registers

Symbol	Name	Address	Initial Value
MIXCMP0	Mix Comparator0 Configuration	0xF380	0x00
MIXCMS0	Mix Comparator0 Functional Select	0xF381	0x00
MIXCMR0	Mix Comparator0 Result	0xF382	0x00
MIXCMF0	Mix Comparator0 Function	0xF383	0x00
MIXCMEM0	Mix Comparator0 Event Mask	0xF384	0x00
MIXDAC0	Mix DAC0 Configuration	0xF3C0	0x00
MIXDARD0L	Mix DAC0 Read Data Low	0xF3C1	0x00
MIXDARD0H	Mix DAC0 Read Data High	0xF3C2	0x00
MIXDAFUNC0	Mix DAC0 Function	0xF3C3	0x00
DACACCLR0	Mix DAC0 Access Counter Clear Register	0xF3C4	0x00
MIXCMP1	Mix Comparator1 Configuration	0xF400	0x00
MIXCMS1	Mix Comparator1 Functional Select	0xF401	0x00
MIXCMR1	Mix Comparator1 Result	0xF402	0x0X
MIXCMF1	Mix Comparator1 Function	0xF403	0x00
MIXCMEM1	Mix Comparator1 Event Mask	0xF404	0x00
MIXDAC1	Mix DAC1 Configuration	0xF440	0x00
MIXDARD1L	Mix DAC1 Read Data Low	0xF441	0x00
MIXDARD1H	Mix DAC1 Read Data High	0xF442	0x00
MIXDAFUNC1	Mix DAC1 Function	0xF443	0x00
DACACCLR1	Mix DAC1 Access Counter Clear Register	0xF444	0x00
MIXCMP2	Mix Comparator2 Configuration	0xF480	0x00
MIXCMS2	Mix Comparator2 Functional Select	0xF481	0x00
MIXCMR2	Mix Comparator2 Result	0xF482	0x0X
MIXCMF2	Mix Comparator2 Function	0xF483	0x00
MIXCMEM2	Mix Comparator2 Event Mask	0xF484	0x00
MIXDAC2	Mix DAC2 Configuration	0xF4C0	0x00
MIXDARD2L	Mix DAC2 Read Data Low	0xF4C1	0x00
MIXDARD2H	Mix DAC2 Read Data High	0xF4C2	0x00
MIXDAFUNC2	Mix DAC2 Function	0xF4C3	0x00
DACACCLR2	Mix DAC2 Access Counter Clear Register	0xF4C4	0x00
MIXCMP3	Mix Comparator3 Configuration	0xF500	0x00
MIXCMS3	Mix Comparator3 Functional Select	0xF501	0x00
MIXCMR3	Mix Comparator3 Result	0xF502	0x0X
MIXCMF3	Mix Comparator3 Function	0xF503	0x00

MD6603

Symbol	Name	Address	Initial Value
MIXCMEM3	Mix Comparator3 Event Mask	0xF504	0x00
MIXDAC3	Mix DAC3 Configuration	0xF540	0x00
MIXDARD3L	Mix DAC3 Read Data Low	0xF541	0x00
MIXDARD3H	Mix DAC3 Read Data High	0xF542	0x00
MIXDAFUNC3	Mix DAC3 Function	0xF543	0x00
DACACCLR3	Mix DAC3 Access Counter Clear Register	0xF544	0x00
MIXCMP4	Mix Comparator4 Configuration	0xED80	0x00
MIXCMS4	Mix Comparator4 Functional Select	0xED81	0x00
MIXCMR4	Mix Comparator4 Result	0xED82	0x0X
MIXCMF4	Mix Comparator4 Function	0xED83	0x00
MIXCMEM4	Mix Comparator4 Event Mask	0xED84	0x00
MIXDAC4	Mix DAC4 Configuration	0xEDC0	0x00
MIXDARD4L	Mix DAC4 Read Data Low	0xEDC1	0x00
MIXDARD4H	Mix DAC4 Read Data High	0xEDC2	0x00
MIXDAFUNC4	Mix DAC4 Function	0xEDC3	0x00
DACACCLR4	Mix DAC4 Access Counter Clear Register	0xEDC4	0x00
MIXCMP5	Mix Comparator5 Configuration	0xEE00	0x00
MIXCMS5	Mix Comparator5 Functional Select	0xEE01	0x00
MIXCMR5	Mix Comparator5 Result	0xEE02	0x0X
MIXCMF5	Mix Comparator5 Function	0xEE03	0x00
MIXCMEM5	Mix Comparator5 Event Mask	0xEE04	0x00
MIXDAC5	Mix DAC5 Configuration	0xEE40	0x00
MIXDARD5L	Mix DAC5 Read Data Low	0xEE41	0x00
MIXDARD5H	Mix DAC5 Read Data High	0xEE42	0x00
MIXDAFUNC5	Mix DAC5 Function	0xEE43	0x00
DACACCLR5	Mix DAC5 Access Counter Clear Register	0xEE44	0x00

MD6603

Table 24-4. List of SFR BUS Registers

Symbol	Name	Address	Initial Value
CMI0	Mix Comparator Interrupt0	0xF3	0x00
CMI1	Mix Comparator Interrupt1	0x9D	0x00
MIXDA0L	Mix DAC0 Data Low	0x96	0x00
MIXDA0H	Mix DAC0 Data High	0x96	0x00
MIXDA1L	Mix DAC1 Data Low	0x95	0x00
MIXDA1H	Mix DAC1 Data High	0x95	0x00
MIXDA2L	Mix DAC2 Data Low	0x92	0x00
MIXDA2H	Mix DAC2 Data High	0x92	0x00
MIXDA3L	Mix DAC3 Data Low	0x93	0x00
MIXDA3H	Mix DAC3 Data High	0x93	0x00
MIXDA4L	Mix DAC4 Data Low	0x8D	0x00
MIXDA4H	Mix DAC4 Data High	0x8D	0x00
MIXDA5L	Mix DAC5 Data Low	0x8E	0x00
MIXDA5H	Mix DAC5 Data High	0x8E	0x00

24.2.1. MIXCMPn (Mix Comparator n Configuration) (n = 0 to 5)

Regi	ster	MIXCN	Л Р0	Mix Comp	Mix Comparator Configuration Address		
Regi	ster	MIXCN	/IP1	Mix Comp	parator1 Configuration	Address	0xF400
Regi	ster	MIXCN	ЛР2	Mix Comp	parator2 Configuration	Address	0xF480
Regi	ster	MIXCN	ЛР3	Mix Comp	parator3 Configuration	Address	0xF500
Regi	ster	MIXCN	ЛР4	Mix Comp	parator4 Configuration	Address	0xED80
Regi	ster	MIXCN	ЛР5	Mix Comp	parator5 Configuration	Address	0xEE00
Bit	Bit Name R/W		R/W	Initial	Description		Remarks
7	СМ	PENB	R/W	0	Comparator enable 0: Comparator function is disabled 1: Comparator function is enabled		
6	Res	served	R	0	The read value is 0. The write value must always be 0.		
5	Res	served	R	0	The read value is 0. The write value must a		
4	Res	served	R	0	The read value is 0. The write value must a		
3	Reserved R		0	The read value is 0. The write value must a			
2	Reserved R		0	The read value is 0. The write value must a	_		
1	Res	served	R	0	The read value is 0. The write value must a	_	
0	Res	served	R	0	The read value is 0. The write value must a	always be 0.	

24.2.2. MIXCMSn (Mix Comparator n Functional Select) (n = 0 to 5)

When MIXCMPn.CMPENB = 0, set the MIXCMSn register.

Regi	ster	MIXCM	1 S0	Mix Co	omparator0 Functional Select	Address	0xF381		
Regi	ster	MIXCM	IS1	Mix Co	Mix Comparator1 Functional Select Address				
Regi	ster	MIXCM	1S2	Mix Co	omparator2 Functional Select	Address	0xF481		
Regi	ster	MIXCM	1S3	Mix Co	omparator3 Functional Select	Address	0xF501		
Regi	ster	MIXCM	1 S4	Mix Co	mparator4 Functional Select	Address	0xED81		
Regi	ster	MIXCM	1S5	Mix Co	mparator5 Functional Select	Address	0xEE01		
Bit	Bit	Name	R/W	Initial	Description		Remarks		
7	Res	served	R	0	The read value is 0. The write value must always	ys be 0.			
6	LVSEN R/W		0	Level detection enable 0: Level detection function is disabled 1: Level detection function is enabled					
5	LV	LVSIE R/W		0	Level detection interrupt enable 0: Level detection interrupt function is disabled 1: Level detection interrupt function is enabled.				
4	LV	SPOL	R/W	0	Level detection polarity 0: Low level 1: High level				
3			R/W	0	Edge polarity	AD: CMDEND ()			
2	P	POL R/W		0	- 00: Not detected (same operation as MIXCMPn.CMPENB = 0) 01: Detected by falling edge 10: Detected by rising edge 11: Detected by both rising and falling edges				
1		R/W		0	Glitch filter				
0	FII	LTER	R/W	0	O0: Glitch filter is not used 01: 1 cycle 10: 2 cycles 11: 4 cycles One cycle of the glitch filter is defined by the MIXCMFn.FPSSEL bits.				

24.2.3. MIXCMRn (Mix Comparator n Result) (n = 0 to 5)

Regis	ter	MIXCN	/IR0	Mix Com	Comparator Result Address		0xF382
Regis	ter	MIXCN	/IR1	Mix Com	Mix Comparator1 Result Address		
Regis	ter	MIXCN	ЛR2	Mix Com	parator2 Result	Address	0xF482
Regis	ter	MIXCN	/IR3	Mix Com	parator3 Result	Address	0xF502
Regis	ter	MIXCN	/IR4	Mix Com	parator4 Result	Address	0xED82
Regis	ter	MIXCN	/IR5	Mix Com	parator5 Result	Address	0xEE02
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	CP	SLTM	R	Х	CMP_OUT_MASK signal monitor		
/	CK	3L1WI	K	Α	MASKED_CMP_OUT is monitored.		
6	Res	served	R	0	The read value is 0. The write value must	always be 0.	
5	Res	served	R	0	The read value is 0. The write value must	The read value is 0. The write value must always be 0.	
4	Res	served	R	0	The read value is 0. The write value must		
3	Res	served	R	0	The read value is 0. The write value must		
2	Res	served	R	0	The read value is 0. The write value must	always be 0.	
1	LVSF R/C		R/C	0	Level detection flag Read 0: Level is not detected Read 1: Level is detected Write 0: No change Write 1: The bit is cleared The bit can be cleared by writing 1 to the bit when the		
0	CMI	PRSLT	R	X	comparator is not detecting the level. CMP_OUT signal monitor CMP_OUT is monitored.		

24.2.4. MIXCMFn (Mix Comparator n Function) (n = 0 to 5)

Regi	ister	MIXCMF0		Mix Com	parator0 Function	Address	0xF383
Regi	ister	MIXCN	⁄IF1	Mix Com	parator1 Function	Address	0xF403
Regi	ister	MIXCN	/IF2	Mix Com	parator2 Function	Address	0xF483
Regi	ister	MIXCN	/IF3	Mix Com	parator3 Function	Address	0xF503
Regi	ister	MIXCN	⁄IF4	Mix Com	parator4 Function	Address	0xED83
Regi	ister	MIXCN	/IF5	Mix Com	parator5 Function	Address	0xEE03
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Reserved R 0 The read value is 0. The write value must always		always be 0.				
6	R/W		0	Filter prescaler			
5			R/W	0	(Set frequency of signal for the glitch filter 000: 1/1	:)	
4	FPSSEL R/W		R/W	0	001: 1/8 010: 1/16 011: 1/32 100: 1/64 101: 1/128 Other than above: Setting prohibited		
3	Res	erved	R	0	The read value is 0. The write value must a	always be 0.	
2	CMPINV R/W		0	CMPRSLT signal (see Figure 24-2) inversion 0: CMPRSLT signal is not inverted 1: CMPRSLT signal is inverted			
1	HYSOFF R/W		0	Comparator hysteresis 0: Hysteresis is set 1: Hysteresis is not set			
0	SLO	WMD	R/W	0	Comparator slow mode enable 0: Slow mode is disabled 1: Slow mode is enabled		

24.2.5. MIXCMEMn (Mix Comparator n Event Mask) (n = 0 to 5)

Regi	ister	ter MIXCMEM0		Mix Com	parator0 Event Mask	Address	0xF384
Regi	ister	MIXCMEM1		Mix Com	parator1 Event Mask	Address	0xF404
Regi	ister	MIXCMEM2		Mix Com	parator2 Event Mask	Address	0xF484
Regi	ister	MIXCN	ИЕМ3	Mix Com	parator3 Event Mask	Address	0xF504
Regi	ister	MIXCN	ИЕМ4	Mix Com	parator4 Event Mask	Address	0xED84
Regi	ister	MIXCN	ИЕМ5	Mix Com	parator5 Event Mask	Address	0xFE04
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	DAUME R/W		R/W	0	Mask enable for DAC updating 0: Masking function for DAC updating is disabled 1: Masking function for DAC updating is enabled		
6	Reserved R		R	0	The read value is 0. The write value must a	always be 0.	
5	Res	erved	R	0	The read value is 0. The write value must a	always be 0.	
4	Res	erved	R	0	The read value is 0. The write value must always be 0.		
3	EV	MEN	R/W	0	Event mask enable 0: Event mask is disabled 1: Event mask is enabled		
2			R/W	0	Event mask	to mosts the	
1]		R/W	0	(Selection of the PWM signal used comparator output)	to mask the	
0	EVMSEL		R/W	0	000: PWM0L 001: PWM0H 010: PWM1L 011: PWM1H 100: PWM2L 101: PWM2H 110: PWM3L 111: PWM3H		

MD6603

24.2.6. CMI0 (Mix Comparator Interrupt0)

Regi	ster CMI0		Mix Comp	parator Interrupt()	Address	0xF3
Bit	Bit Name	R/W	Initial	Description		Remarks
7	CMPIE3	R/W	0	Comparator3 interrupt enable 0: Interrupt is disabled 1: Interrupt is enabled		
6	CMPIE2	R/W	0	Comparator2 interrupt enable 0: Interrupt is disabled 1: Interrupt is enabled		
5	CMPIE1	R/W	0	Comparator1 interrupt enable 0: Interrupt is disabled 1: Interrupt is enabled		
4	CMPIE0	R/W	0	Comparator0 interrupt enable 0: Interrupt is disabled 1: Interrupt is enabled		
3	CMPI3	R/C	0	Comparator3 interrupt flag (The flag is generated regardless of the CMI0.CMPIE3 bit) Read 0: Interrupt signal is not detected Read 1: Interrupt signal is detected Write 0: No change Write 1: The bit is cleared	setting of the	
2	Comparator2 interrupt flag (The flag is generated regardless of the setting of the CMI0.CMPIE2 bit) Read 0: Interrupt signal is not detected Read 1: Interrupt signal is detected Write 0: No change Write 1: The bit is cleared					
1	CMPI1	R/C	0	Comparator1 interrupt flag (The flag is generated regardless of the CMI0.CMPIE1 bit) Read 0: Interrupt signal is not detected Read 1: Interrupt signal is detected Write 0: No change Write 1: The bit is cleared	setting of the	
0	CMPI0	R/C	0	Comparator0 interrupt flag (The flag is generated regardless of the CMI0.CMPIE0 bit) Read 0: Interrupt signal is not detected Read 1: Interrupt signal is detected Write 0: No change Write 1: The bit is cleared	setting of the	

MD6603

24.2.7. CMI1 (Mix Comparator Interrupt1)

Regi	ister	CMI1		Mix Comp	parator Interrupt1	Address	0x9D		
Bit	Bit N	Name	R/W	Initial	Description		Remarks		
7	Rese	erved	R	0	The read value is 0. The write value must a	always be 0.			
6	Rese	erved	R	0	The read value is 0. The write value must a	always be 0.			
5	CMPIE5 R/W		R/W	0	Comparator5 interrupt enable 0: Interrupt is disabled 1: Interrupt is enabled				
4	CMPIE4 R/W		R/W	0	Comparator4 interrupt enable 0: Interrupt is disabled 1: Interrupt is enabled				
3	Rese	erved	R	0	The read value is 0. The write value must a	always be 0.			
2	Rese	erved	R	0	The read value is 0. The write value must a	The read value is 0. The write value must always be 0.			
1	CM	1PI5	R/C	0	Comparator5 interrupt flag (The flag is generated regardless of the CMI1.CMPIE5 bit) Read 0: Interrupt signal is not detected Read 1: Interrupt signal is detected Write 0: No change Write 1: The bit is cleared	setting of the			
0	CM	1PI4	R/C	0	Comparator4 interrupt flag (The flag is generated regardless of the setting of the CMI1.CMPIE4 bit) Read 0: Interrupt signal is not detected Read 1: Interrupt signal is detected Write 0: No change Write 1: The bit is cleared				

24.2.8. MIXDACn (Mix DAC n Configuration) (n = 0 to 5)

Regi	ster	MIXDAC	0xF3C0					
Regi	ster	MIXDAC	1	Mix DAC1	Configuration	Address	0xF440	
Regi	ster	MIXDAC	2	Mix DAC2	Configuration	Address	0xF4C0	
Regi	ster	MIXDAC	3	Mix DAC3	Configuration	Address	0xF540	
Regi	ster	MIXDAC	4	Mix DAC4	Configuration	Address	0xFDC0	
Regi	ster	MIXDAC	5	Mix DAC5	Configuration	Address	0xFE40	
Bit	Bi	t Name	R/W	Initial	Description		Remarks	
7	Ι	DAEN	R/W	0	DAC enable 0: DAC function is disabled 1: DAC function is enabled			
6	6 DFORM R/W		R/W	0	Data register format 0: MSB side is used (dddd_dddd_0000_0000) 1: LSB side is used (0000_0000_dddd_dddd) To read from/write to the MIXDAn DFORM = 0. To read from/write to the MIXDAn DFORM = 1.			
5			R/W	0	DAC update timing (The trigger ev	vent to update		
4	-		R/W	0				
3	-		R/W	0	0 CPU or DSAC 001000: CMP0 (pulse)			
2			R/W	0	001001: CMP1 (pulse) 001010: CMP2 (pulse)			
1			R/W	0	001011: CMP3 (pulse)			
0	DAUPD		R/W	0	- 001100: Timer0_CMA (pulse) 001101: Timer0_CMB (pulse) 001110: Timer1_CMA (pulse) 001111: Timer1_CMB (pulse) 010000: PWM0_Event0 (pulse) 010001: PWM0_Event1 (pulse) 010010: PWM1_Event0 (pulse) 010011: PWM1_Event1 (pulse) 010100: PWM2_Event0 (pulse) 010101: PWM2_Event1 (pulse) 010110: PWM3_Event1 (pulse) 010111: PWM3_Event1 (pulse) 010111: PWM3_Event1 (pulse) 011000: CMP4 (pulse) 011001: CMP5 (pulse) 011011: Timer2_CMA (pulse) 011101: Timer3_CMA (pulse) 011101: Timer3_CMB (pulse) 011101: Timer3_CMB (pulse) 011101: Timer3_CMB (pulse)			

24.2.9. MIXDAnL (**Mix DAC n Data Low**) (**n** = **0 to 5**)

Regi	ster	MIXDA01	L	Mix DAC0 I	Data Low	Address	0x96
Regi	ster	MIXDA11	L	Mix DAC1 I	Data Low	Address	0x95
Regi	ster	MIXDA21	L	Mix DAC2 I	Data Low	Address	0x92
Regi	ster	MIXDA31	L	Mix DAC3 I	Data Low	Address	0x93
Regi	ster	MIXDA41	L	Mix DAC4 I	Data Low	Address	0x8D
Regi	ster	er MIXDA5L		Mix DAC5 I	Data Low	Address	0x8E
Bit	Bi	Bit Name R/W		Initial	Description		Remarks
7			R/W	0			
6			R/W	0			
5			R/W	0	Lower side of the input data of DAC		
4	DA	DATA	R/W	0			
3	DF	ADATA	R/W	0	See description on the MIXDAnH reg		
2			R/W	0			
1			R/W	0			
0			R/W	0			

24.2.10. MIXDAnH (Mix DAC n Data High) (n = 0 to 5)

Regi	ster	MIXDA01	Н	Mix DAC0	AC0 Data High Address		0x96			
Regi	ster	MIXDA1H		Mix DAC1	Data High	Address	0x95			
Regi	ster	MIXDA21	Н	Mix DAC2	Data High	Address	0x92			
Regi	ster	MIXDA31	Н	Mix DAC3	Data High	Address	0x93			
Regi	ster	MIXDA41	Н	Mix DAC4	Data High	Address	0x88			
Regi	ster	MIXDA51	Н	Mix DAC5	Data High	Address	0xB8			
Bit	Bi	t Name	R/W	Initial	Description		Remarks			
7		R/W		0	Higher side of the input data of DAC					
6			R/W	0	• When DFORM = 0:					
5			R/W	0	The data is stored in bits 15 to 8. 0x00 is stored in bits 7 to 0. • When DFORM = 1: The data is stored in bits 7 to 0. 0x00 is stored in bits 15 to 8.					
4			R/W	0						
3			R/W	0						
2			R/W	0	• When MIXDACn.DAUPD = 0b000					
1	DA	ADATA	R/W	0	The DA output is updated when the register is set by the CPU or the DS					
0	DADATA		R/W	0	register is set by the CPU or the DSAC. (For the CPU, this is set by the second access. For the DSAC, this is set by the second access in the byte access mode or by word access.) • When MIXDACn.DAUPD bits are set other than 0b0000000: The DA output is updated by the issue of the specified updating trigger. Before the updating trigger is issued, the MIXDAnL and MIXDAnH registers must be set.					

24.2.11. MIXDARDnL (Mix DAC n Read Data Low) (n = 0 to 5)

After data is written to both the MIXDAnH and MIXDAnL registers, when the trigger determined by the MIXDACn.DAUPD bits is detected, the MIXDARDnL and MIXDARDnH registers are updated.

Regi	ister MIXDAR		D0L	Mix DAC0 I	Read Data Low	Address	0xF3C1
Regi	ster	MIXDAR	D1L	Mix DAC1 l	Read Data Low	Address	0xF441
Regi	ster	MIXDAR	D2L	Mix DAC2 l	Read Data Low	Address	0xF4C1
Regi	ster	MIXDAR	D3L	Mix DAC3 l	Read Data Low	Address	0xF541
Regi	ster	MIXDAR	D4L	Mix DAC4 I	Read Data Low	Address	0xFDC1
Regi	ster MIXDARD5L		D5L	Mix DAC5 l	Read Data Low	Address	0xFE41
Bit	Bit Name R		R/W	Initial	Description		Remarks
7		R 0		0			
6			R	0			
5			R	0			
4	г	ADD	R	0	Lower side of the input read data of D	AC	
3	DARD		R	0	See description on the MIXDARDnH	register.	
2			R	0			
1			R	0			
0			R	0			

24.2.12. MIXDARDnH (Mix DAC n Read Data High) (n = 0 to 5)

After data is written to both the MIXDAnH and MIXDAnL registers, when the trigger determined by the MIXDACn.DAUPD bits is detected, the MIXDARDnL and MIXDARDnH registers are updated.

Regi	ster	MIXDAR	D0H	Mix DAC0 l	Read Data High	Address	0xF3C2
Regi	ster	MIXDAR	D1H	Mix DAC1 Read Data High Address		Address	0xF442
Regi	ster	MIXDAR	D2H	Mix DAC2 l	Read Data High	Address	0xF4C2
Regi	ster	MIXDAR	D3H	Mix DAC3 l	Read Data High	Address	0xF542
Regi	ster	MIXDAR	D4H	Mix DAC4 l	Read Data High	Address	0xFDC2
Regi	ster	MIXDAR	D5H	Mix DAC5 l	Read Data High	Address	0xFE42
Bit	Bit Name R		R/W	Initial	Description		Remarks
7			R	0			
6			R	0	Higher side of the input data of DAC		
5			R	0	a Whan MIVDACT DEODM O		
4	г	NA DID	R	0	• When MIXDACn.DFORM = 0: The data is read from bits 15 to 8.		
3	DARD		R	0	0x00 is read from bits 7 to 0. • When MIXDACn.DFORM = 1:		
2			R	0	The data is read from bits 7 to 0.		
1			R	0	0x00 is read from bits 15 to 8.		
0			R	0			

24.2.13. DACACCLRn (Mix DAC n Access Counter Clear Register) (n = 0 to 5)

Register		DACACCLR0		Mix DAC0 Access Counter Clear Register Address			0xF3C4
Register		DACACCLR1		Mix DAC1 Access Counter Clear Register Address			0xF444
Register		DACACCLR2		Mix DAC2 Access Counter Clear Register Address			0xF4C4
Register		DACACCLR3		Mix DAC3 Access Counter Clear Register Address			0xF544
Register		DACACCLR4		Mix DAC4 Access Counter Clear Register Address			0xFDC4
Register		DACACCLR5		Mix DA	Mix DAC5 Access Counter Clear Register Address		0xFE44
Bit	Bi	t Name	R/W	Initial	Description		Remarks
7	CPUCLR		W	0	Clears the CPU access counter for the DAC conversion data register Write 0: No change Write 1: CPU access counter register is cleared (CPU SFR access counter is cleared)		
6	Reserved		R	0	The read value is 0. The write value must a		
5	Reserved		R	0	The read value is 0. The write value must a		
4	Reserved		R	0	The read value is 0. The write value must a		
3	Reserved		R	0	The read value is 0. The write value must a		
2	Reserved		R	0	The read value is 0. The write value must a		
1	Reserved		R	0	The read value is 0. The write value must a		
0	Reserved R		R	0	The read value is 0. The write value must a		

MD6603

24.2.14. MIXDAFUNCn (Mix DAC n Function) (n = 0 to 5)

Register		MIXDAFUNC0		Mix DAC0 Function Address		0xF3C3	
Register		MIXDAFUNC1		Mix DAC1 Function Address			0xF443
Register		MIXDAFUNC2		Mix DAC2 Function Add		Address	0xF4C3
Register		MIXDAFUNC3		Mix DAC3 Function Address			0xF543
Register		MIXDAFUNC4		Mix DAC4 Function Address		Address	0xFDC3
Register		MIXDAFUNC5		Mix DAC5 Function Add		Address	0xFE43
Bit	Bit Name R/V		R/W	Initial	Description	Remarks	
7	Reserved		R	0	The read value is 0. The write value must always be 0.		
6	Reserved		R	0	The read value is 0. The write value must al		
5	Reserved		R	0	The read value is 0. The write value must al		
4	Reserved		R	0	The read value is 0. The write value must al		
3	Reserved		R	0	The read value is 0. The write value must al		
2	Reserved		R	0	The read value is 0. The write value must al		
1	Reserved		R	0	The read value is 0. The write value must al		
0	SELS R		R/W	0	Selection of signed/unsigned DAC data 0: Unsigned DAC data 1: Signed DAC data		

24.3. Operation

In order to prevent an interrupt from being generated by mistake, clear the interrupt flag before enabling the interrupt by the comparator.

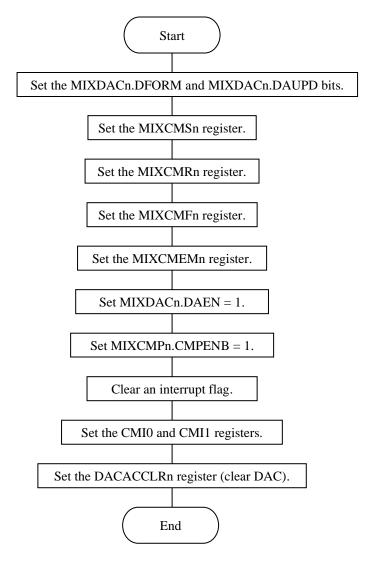


Figure 24-4. Operation Flowchart

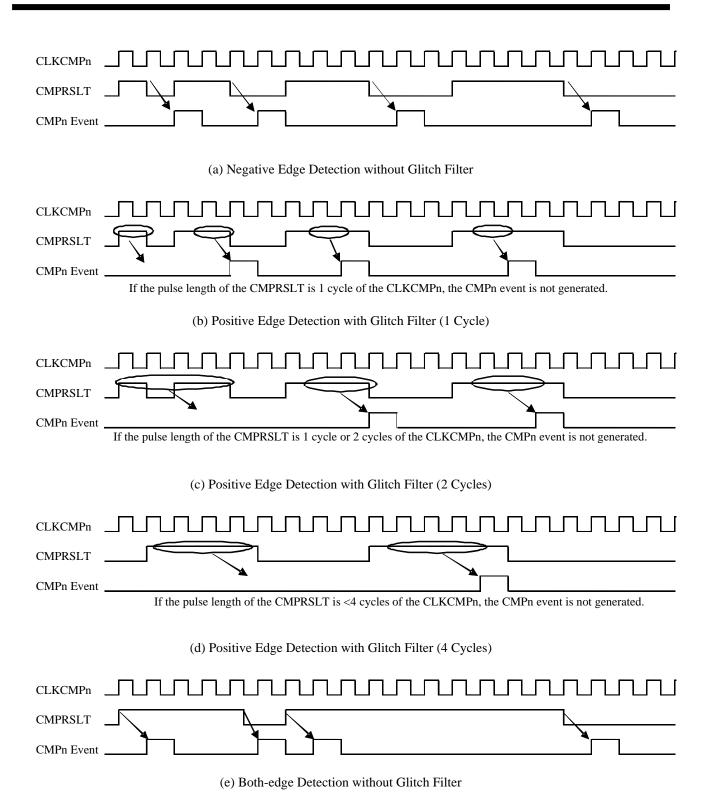


Figure 24-5. Examples of CMPn Level Detection Generation

24.3.1. Activation and Stop

When MIXDACn.DAEN = 1, the DAC function is enabled. When MIXDACn.DAEN = 0, the DAC function is disabled.

When MIXCMPn.CMPENB = 1, the comparator is enabled. When the MIXCMPn.CMPENB = 0, the comparator is disabled.

24.3.2. Setting and Updating of DAC

Write the DA conversion value of 8-bit digital value to the MIXDAnL.DADATA and MIXDAnH.DADATA bits (total 16 bits). To write 8-bit digital value to the MIXDAnH register, set MIXDACn.DFORM = 0.0x00 is automatically written to the MIXDAnL register. On the other hand, to write 8-bit digital value to the MIXDAnL register, set MIXDACn.DFORM = 1.0x00 is automatically written to the MIXDAnH register.

To read out the input value of the DAC, read the MIXDARDnL.DARDx bit or the MIXDARDnH.DARDx bit. 0x00 is read from the register not selected by the MIXDACn.DFORM bit.

The system is initially set up so that the output value of the DAC is updated when the value is overwritten by the CPU or the DSAC. The trigger to update the DAC output value can be changed by the MIXDACn.DAUPD bits.

To clear the CPU access counter of the MIXDAnL/H register, set DACACCLR.CPUCLR = 1 after writing to the MIXDAnL register. After the access counter is cleared, the MIXDAnL register can be accessed again.

The format of the DAC data to be written to/read from can be selected from either signed or unsigned. To set the format of unsigned or signed, set the MIXDAFUNCn.SELS bit to 0 or 1, respectively. However, when the MIXDACn.DFORM bit is 0 (MSB side), the lower 8 bits are discarded in the case of writing, and 0x00 is read from the lower 8 bits in the case of reading.

The Comparator output can be masked for a fixed period from the timing to update the DAC output value. When the MIXCMEMn.DAUME bit is set to 1, masking function is enabled. The masking period is 32 cycles from the clock cycle next to the timing at which the update trigger becomes 1. If an update trigger is generated during the masking period, counting is started again from the next cycle, and the masking period is extended.

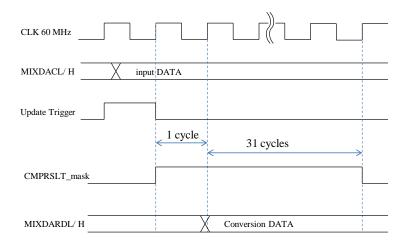


Figure 24-6. Comparator Output Masking Operation for Updating DAC Output

24.3.3. Comparator Operation Mode

Using the slow mode decreases the response speed of comparators, and reduces the current consumption. To enable the slow mode, set MIXCMFn.SLOWMD = 1.

In addition, whether to enable or disable comparator's hysteresis can be selected. When the MIXCMFn.HYSOFF bit is set to 1, the hysteresis is disabled.

24.3.4. Comparator Output Control

When the MIXCMFn.CMPINV bit is set to 1, the comparator output (the CMPRSLT signal shown in Figure 24-2) is inverted.

The comparator output can be masked using a PWM signal. When the MIXCMEMn.EVMEN bit is set to 1, this function is enabled. There are 8 usable PWM signals that are defined by the MIXCMEMn.EVMSEL bits. The comparator output masked by an event can be monitored by reading the MIXCMRn.CRSLTM bit.

Moreover, the comparator output masked by the PWM signal can be masked for a fixed period of 32 cycles when the output value of the DAC is updated. This function is enabled by setting the MIXCMEMn.DAUME bit to 1.

24.3.5. Interrupt and Event Generation

When the MIXCMSn.LVSEN bit is set to 1, the level detection function can be used. In addition, the detection level is defined by the MIXCMSn.LVSPOL bit. When the bit is set to 1 or 0, the detection level is high or low, respectively.. When the level detection is occurred, the MIXCMRn.LVSF bit is set to 1. To clear this value, write 1 to the MIXCMRn.LVSF bit.

The level detection signal that is output to the POC, PWM, and SYSC can be used as a signal for the PWM output control or the returning from the standby state.

The polarity of the edge detection is determined by the MIXCMSn.POL bits. The edge polarity can be selected from rising (0b01), falling (0b10), and both rising and falling (0b11).

When detecting the edge, the glitch filter can be used. The filtering period is defined by the MIXCMSn.FILTER bits. The filtering period can be selected from filter disabled (0b00), 1 cycle (0b01), 2 cycles (0b10), and 4 cycles (0b11). In addition, the filter is equipped with the prescaler. Therefore, the width of one cycle of the filter period can be changed by the MIXCMFn.FPSSEL bits. The edge detection signal can be output to the DSAC, PWM, and TMR.

The edge detection signal and the level detection signal of the comparator can be used as an interrupt signal. To use the level detection signal of comparator for the interrupt signal, set the MIXCMSn.LVSIE bit to 1. The comparator to generate the interrupt signal is defined by the CMPIEn bit of the CMI0 or CMI1 register. When the interrupt signal is output, the CMPIn bit of the CMI0 or CMI1 register is set to 1 regardless of the setting of the CMPIEn bit. To clear this value, write 1 to the same bit.

24.3.6. Output to LUT

The monitoring signal of CMP_OUT (the MIXCMRn.CMPRSLT bit) or the signal after passing the noise filter (CMP_FILLTER) can be output to LUT.

24.4. Usage Notes and Restrictions

To read the MIXDAnL/H register by 8-bit access, make sure to set MIXDACn.DFORM = 1 (LSB side). The register cannot be read by setting MIXDACn.DFORM = 0 (MSB side).

25. Temperature Sensor (TEMP)

25.1. Overview

The LSI has the temperature sensor (TEMP) that generates a voltage according to the junction temperature. The voltage is measured by the ADC. For the output voltage of the TEMP, see Section 29.

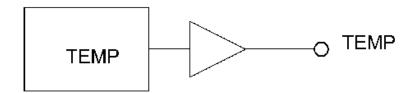


Figure 25-1. TEMP Block Diagram

25.2. Register Descriptions

25.2.1. TEMP (Temperature Sensor Control)

Register	ТЕМР		Temperature Sensor Control		Address	0xFFC1	
Bit	Bit Name	R/W	Initial	D	escription		Remarks
7	Reserved	R	0	The read value is 0. The	write value mu	ıst always be 0.	
6	Reserved	R	0	The read value is 0. The	write value mu	ıst always be 0.	
5	Reserved	R	0	The read value is 0. The write value must always be 0.			
4	Reserved	R	0	The read value is 0. The write value must always be 0.			
3	Reserved	R	0	The read value is 0. The	write value mu	ıst always be 0.	
2	Reserved	R	0	The read value is 0. The	write value mu	ıst always be 0.	
1	Reserved	R	0	The read value is 0. The write value must always be 0.			
0	ТЕМРЕ	R/W	0	TEMP enable 0: TEMP is disabled 1: TEMP is enabled			

26. PWM Output Controller (POC)

26.1. Overview

The PWM output controller (POC) fixes the PWM output pin to the preset pin state by detecting the event from the CMP or the CMPLUT.

Figure 26-1 shows the POC block diagram.

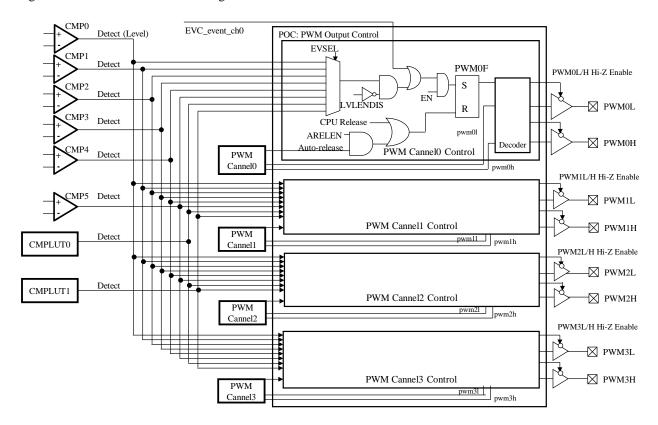


Figure 26-1. POC Block Diagram

26.2. Register Descriptions

Table 26-1. List of Registers

Symbol	Name	Address	Initial Value
POCCR0	POC Control Register0	0xFD80	0x00
POCCR1	POC Control Register1	0xFD81	0x00
POCCR2	POC Control Register2	0xFD82	0x00
POCCR3	POC Control Register3	0xFD83	0x00
POCSTS	POC Status Register	0xFD88	0x00
POCBAS	POC BUS I/F Access Status Register	0xFD8C	0x00
POCOCR0	POC Output Control Register0	0xFD90	0x00
POCOCR1	POC Output Control Register1	0xFD91	0x00
POCOCR2	POC Output Control Register2	0xFD92	0x00
POCOCR3	POC Output Control Register3	0xFD93	0x00
POCTRG	POC CPU Trigger Register	0xFD98	0x00
POCDTC0	POC Dead Time Control Register0	0xFDA0	0x00
POCDTC1	POC Dead Time Control Register1	0xFDA1	0x00
POCDTC2	POC Dead Time Control Register2	0xFDA2	0x00
POCDTC3	POC Dead Time Control Register3	0xFDA3	0x00
POCDTP0	POC Dead Time Period Register0	0xFDA8	0x00
POCDTP1	POC Dead Time Period Register1	0xFDA9	0x00
POCDTP2	POC Dead Time Period Register2	0xFDAA	0x00
POCDTP3	POC Dead Time Period Register3	0xFDAB	0x00

26.2.1. POCCRn (POC Control Register n) (n = 0 to 3)

Re	gister	POCO	CR0	POC C	ontrol Register0	Address	0xFD80		
	gister	POCO	CR1	POC C	ontrol Register1	Address	0xFD81		
Re	gister	POCO	CR2	POC Control Register2 Address					
	gister	POCO	CR3		ontrol Register3	Address	0xFD83		
Bit	Bit N	ame	R/W	Initial	Description		Remarks		
7	EN R/W		R/W	0	POC control enable 0: PWMnL/H control by POC is disabled 1: PWMnL/H control by POC is enabled If the POCSTS.PWMnF bit is set when POCCRn.EN = 1, the		he		
6	AREI	LEN	R/W	0	PWMnL/H pin is put into the preset pin state. Automatic release of high impedance of PWM 0: Not automatically released (CPU/EPU released by CPU or EPU 1: Automatically released in either of the centre of the c	Mn output pin elease); can only be ases where: P_MAX value of the P_MIN value of the	he		
5	CONFHn0 R/W 0 The PWMnH POCOCRn.C If CONFHn = CONFHn = Sets PV event CONFHn = Does no CONFHn = Sets PV		CONFHn = 01: Does not control PWMnH even after re CONFHn = 10: Sets PWMnH output to low level after CONFHn = 11:	6.2.4). CRn.CONFHn0} ate after receiving a eceiving an event receiving an event	an				
4	CONF	FLn0	Sets PWMnH output to high level after receiving an event PWMnL output control The PWMnL pin control is determined by this bit and the POCOCRn.CONFLn1 bit (see also Section 26.2.4). If CONFLn = {POCOCRn.CONFLn1, POCCRn.CONFLn0} CONFLn = 00: Sets PWMnL to a high impedance state after receiving an event CONFLn = 01: Does not control PWMnL even after receiving an event CONFLn = 10: Sets PWMnL output to low level after receiving an event CONFLn = 11: Sets PWMnL output to high level after receiving an event		he				

MD6603

Re	gister	POC	CR0	POC C	ontrol Register0	Address	0xFD80
Re	gister	POC	CR1	POC C	ontrol Register1	Address	0xFD81
Re	gister	POC	CR2	POC C	ontrol Register2	Address	0xFD82
Re	gister	POC	CR3	POC C	ontrol Register3	Address	0xFD83
Bit	Bit N	ame	R/W	Initial	Description		Remarks
3	LVLE	LVLEVDIS R/W		0	Determining whether or not to accept the let the EVSEL bit 0: Level event acceptance is enabled 1: Level event acceptance is disabled	ру	
2			R/W	0	Event of PWMn output pin (high impedance)		
1				0	000: CMP0 is selected 001: CMP1 is selected		
0	EVSEL R/V		R/W	0	010: CMP2 is selected 011: CMP3 is selected 100: CMP4 is selected 101: CMP5 is selected 110: CMPLUT0 is selected 111: CMPLUT1 is selected		

26.2.2. POCSTS (POC Status Register)

Regi	ster	POCST	ΓS	POC St	atus Register	Address	0xFD88		
Bit	Bit 1	Name	R/W	Initial	Description		Remarks		
7	Res	erved	R	0	The read value is 0. The write value must a	lways be 0.			
6	Res	erved	R	0	The read value is 0. The write value must a	The read value is 0. The write value must always be 0.			
5	Res	erved	R	0	The read value is 0. The write value must a	lways be 0.			
4	Res	erved	R	0	The read value is 0. The write value must a	lways be 0.			
3	PW	M3F	R/C	0		Control status of PWM3 output pin Read 0: PWM3L/H is controlled by PWM3 Read 1: PWM3L/H is controlled by POC Write 0: No change			
2	PW	M2F	R/C	0	Control status of PWM2 output pin Read 0: PWM2L/H is controlled by PWM Read 1: PWM2L/H is controlled by POC Write 0: No change Write 1: PWM2L/H control by POC is cl				
1	PWM1F R/C 0 Control status of PWM1 output pin Read 0: PWM1L/H is controlled by PWM1 Read 1: PWM1L/H is controlled by POC Write 0: No change Write 1: PWM1L/H control by POC is cleared								
0	PW	Write 1: PWM1L/H control by POC is cleared Control status of PWM0 output pin Read 0: PWM0L/H is controlled by PWM0 PWM0F R/C 0 Read 1: PWM0L/H is controlled by POC Write 0: No change Write 1: PWM0L/H control by POC is cleared							

26.2.3. POCBAS (POC BUS I/F Access Status Register)

Regi	ster	POCE	BAS	POC B	POC BUS I/F Access Status Register Address			
Bit	Bit Na	ame	R/W	Initial	Description	Description		
7	Reserved R 0 The read value is 0. The write value must always be 0.							
6	Reserv	ved	R	0	The read value is 0. The write value must al	ways be 0.		
5	Reserv	ved	R	0	The read value is 0. The write value must al			
4	Reserved R		R	0	The read value is 0. The write value must al			
3	Reserv	ved	R	0	The read value is 0. The write value must al	value is 0. The write value must always be 0.		
2	Reserv	ved	R	0	The read value is 0. The write value must al	ways be 0.		
1	Reserv	ved	R	0	The read value is 0. The write value must al	ways be 0.		
0	POCXA	ACS	R	XDATA BUS access status 0: Waiting Writing to the POCSTS and POCTRG registers is allowed 1: Accessing Writing to the POCSTS or POCTRG register is prohibited				

26.2.4. POCOCRn (POC Output Control Register n) (n = 0 to 3)

Regi	ster	POC	OCR0	POC Output Control Register0 Address			0xFD90
Regi	ster	POC	OCR1	POC O	utput Control Register1	Address	0xFD91
Regi	ster	POC	OCR2	POC O	utput Control Register2	Address	0xFD92
Regi	ster	POC	OCR3	POC O	utput Control Register3	Address	0xFD93
Bit	Bit N	lame	R/W	Initial	Description		Remarks
7	PLI	NV	R/W	0	1: Pin control by POC starts at negative le	Event level inversion 0: Pin control by POC starts at positive level 1: Pin control by POC starts at negative level Events which are output from the event controller (EVC) are	
6	Rese	rved	R	0	The read value is 0. The write value must always be 0.		
5	Rese	rved	R	0	The read value is 0. The write value must al	ways be 0.	
4	Rese	rved	R	0	The read value is 0. The write value must al	ways be 0.	
3	Rese	rved	R	0	The read value is 0. The write value must al	ways be 0.	
2	Rese	rved	R	0	The read value is 0. The write value must al	ways be 0.	
1	CONI	FHn1	R/W	0	PWMnH output control The PWMnH pin control is determined by this bit and the POCCRn.CONFHn0 bit. For more details, see Section 26.2.1.		
0	PWMnL output control						

MD6603

26.2.5. POCTRG (POC CPU Trigger Register)

Regi	ster PO	CTRG	POC C	PU Trigger Register	Address	0xFD98
Bit	Bit Name	R/W	Initial	Description		Remarks
7	Reserved	R	0	The read value is 0. The write value must always be 0.		
6	Reserved	R	0	The read value is 0. The write value must a	lways be 0.	
5	Reserved	R	0	The read value is 0. The write value must a	lways be 0.	
4	Reserved	R	0	The read value is 0. The write value must a	lways be 0.	
3	TRG3	W	0	CPU trigger for POC operation of PWM3L/H Write 0: No change Write 1: POC operation of PWM3 is executed The read value is always 0.		
2	TRG2	W	0	CPU trigger for POC operation of PWM3L Write 0: No change Write 1: POC operation of PWM2 is exe The read value is always 0.		
1	TRG1	W	0	The read value is always 0. CPU trigger for POC operation of PWM1L/H Write 0: No change Write 1: POC operation of PWM1 is executed The read value is always 0.		
0	TRG0	W	0	CPU trigger for POC operation of PWM0L/H Write 0: No change Write 1: POC operation of PWM0 is executed The read value is always 0.		

26.2.6. POCDTCn (POC Dead Time Control Register n) (n = 0 to 3)

Regi	ster	POCDT	CO	POC Dead	POC Dead Time Control Register0 Address		
Regi	ster	POCDT	C1	POC Dead Time Control Register1 Address			0xFDA1
Regi	ster	POCDT	C2	POC Dead	d Time Control Register2	Address	0xFDA2
Regi	ster	POCDT	C3	POC Dead	d Time Control Register3 Address		0xFDA3
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	CLR	WAIT	R/W	0	Delay function of POC control clear 0: Output control by POC is finished release signal 1: Output control by POC is finished of dead time counting, if a releas during POC dead time count The bit defines the setting for POC oper of a release signal during a dead time c	after the completion e signal is received ration at the reception	
6	Res	served	R	0	The read value is 0. The write value mu		
5	Res	served	R	0	The read value is 0. The write value mu		
4	Res	served	R	0	The read value is 0. The write value mu		
3	Res	served	R	0	The read value is 0. The write value mu		
2	Res	served	R	0	The read value is 0. The write value mu		
1	HDEN R/		R/W	0	PWMnH dead time count enable 0: No delay time is added 1: A delay time is added When PWMnH is set to high level determines whether or not to add a delay at the reception of an event.		
0	LDEN R/W		R/W	0	PWMnL dead time count enable 0: No delay time is added 1: A delay time is added When PWMnL is set to high level I determines whether or not to add a delay at the reception of an event.		

26.2.7. POCDTPn (POC Dead Time Period Register n) (n = 0 to 3)

Regi	ster	POCDT	TP0	POC Dead Time Period Register0 Address		0xFDA8	
Regi	ster	POCDTP1		POC Dead	d Time Period Register1	Address	0xFDA9
Regi	ster	POCDT	TP2	POC Dead	d Time Period Register2	Address	0xFDAA
Regi	ster	POCDT	TP3	POC Dead	d Time Period Register3	Address	0xFDAB
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value mu	ast always be 0.	
6			R/W	0			
5			R/W	0	POC dead time period		
4			R/W	0	The bit determines the amount of delay time to be added.		
3	Γ	OTP	R/W	0	The delay time is defined as follows:	time to be added.	
2			R/W	0	Delay time = $(DTP + 2) \times (8 \times CLKPWM period)$		
1			R/W	0			
0			R/W	0			

26.3. Operation

26.3.1. Basic Operation

When a selected event is generated, the POC fixes the PWMnL/H (n = 0 to 3) output pin to the preset pin state.

The POCCRn.EVSEL bit selects the trigger event from the level detection events of the CMP0 to the CMP5 and CMPLUT0/1. The POCSTS.PWMnF bit is set to 1 by the selected event, the event from the EPU, or the writing to the POCTRG register from the CPU or the EPU. To disable the level event selected by the POCCRn.EVSEL bit, write 1 to the POCCRn.LVLEVDIS bit.

When POCSTS.PWMnF = 1, PWMnL/H of the PWM output becomes the pin state controlled by the POC. The PWMnH pin state controlled by the POC is determined by the POCCRn.CONFHn0 bit and the POCOCRn.CONFHn1 bit. The PWMnL pin state controlled by the POC is determined by the POCCRn.CONFLn0 bit and the POCOCRn.CONFLn1 bit. The following explains the example of the PWM0H pin setting. The setting of the PWMnL pin is the same.

- In the settings of POCCR0.CONFH00 = 0 and POCOCR0.CONFH01 = 0 When POCSTS.PWM0F = 1, the PWM0H pin becomes the high impedance.
- In the settings of POCCR0.CONFH00 = 1 and POCOCR0.CONFH01 = 0 Even if POCSTS.PWM0F = 1, the POC does not control the PWM0H pin.
- In the settings of POCCR0.CONFH00 = 0 and POCOCR0.CONFH01 = 1 When POCSTS.PWM0F = 1, the PWM0H pin becomes the low level.
- In the settings of POCCR0.CONFH00 = 1 and POCOCR0.CONFH01 = 1 When POCSTS.PWM0F = 1, the PWM0H pin becomes the high level.

There are 2 methods to release the control by the POC: the CPU/EPU release and the automatic release. The CPU/EPU release is issued by writing 1 to the POCSTS.PWMnF bit. The automatic release is issued by the PWM channel n when POCCRn.ARELEN = 1. The PWM channel n issues the automatic release trigger, when either of the following compare match event is generated: the compare match event between the PWMn counter and the CMP_MIN value, which is in the up-down mode, or between the counter and the CMP_MAX value, which is in the up mode, (i.e., the CMP_MIN value is loaded when the PWMnCNT register's value matches the CMP_MAX value in the up mode). The POCSTS.PWMnF bit is cleared when the CPU/EPU release or the automatic release is issued while the selected event is not detected. For the PWMnL/H output control timing, see Figure 26-2.

First, make sure that the bit corresponding to the channel of the POCBAS register is 0, and then write to the POCTRG and POCSTS registers. Even if the writing is performed when the bit corresponding to the channel of the POCBAS register is 1, the writing is not reflected in the POC operation.

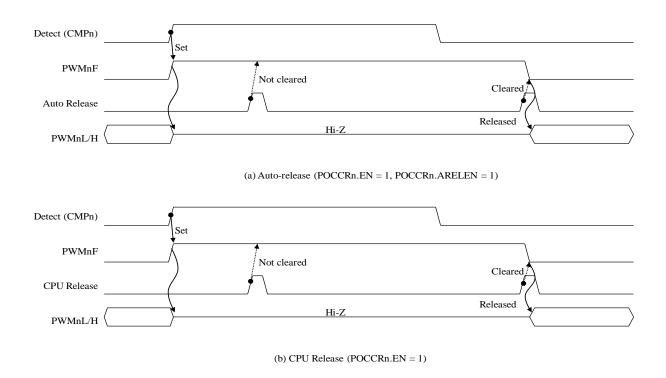


Figure 26-2. Operation Timing

When the POC controls the PWMnL/H pin to high impedance and the corresponding pull-down of the PWMnL/H pin is enabled (when the corresponding bit of the PPD1 register is set to 1), the corresponding PWMnL/H pin is pulled down while the POC controls the pin output.

The POCCRn.EN bit enables the POC function of the PWM channel n. When POCCRn.EN = 1, the POCSTS.PWMnF bit can be set by the selected control events. When POCCRn.EN = 0, the POCSTS.PWMnF bit cannot be set. Before the register that sets the POC control is set again, set POCCRn.EN = 0.

26.3.2. Control Delay Addition

Only when controlling the pin level to high, the POC can add a delay to the time from receiving the event until starting to control the pin. The setting whether to add a delay or not can be selected for each pin. To add a delay to the PWMnH pin control, set POCDTCn.HDEN = 1 in addition to the normal setting. To add a delay to the PWMnL pin control, set POCDTCn.LDEN = 1 in addition to the normal setting.

The delay time is determined by the POCDTPn register. For the setting value, see Section 26.2.7. While the control delay is added, the POC response when the release signal is issued in the control delay can be selected from the following operations:

- (1) Release the POC control immediately
- (2) Release the control after waiting for the set delay time and the pin is controlled

When selecting the operation (2) above, set POCDTCn.CLRWAIT = 1. At this time, the automatic clear function by the PWM (POCCRn.ARELEN = 1) cannot be used. Also, be sure to check that the POC is controlling the pin, and then clear the POC control from the CPU or the EPU.

26.4. Usage Notes and Restrictions

26.4.1. Clock Settings

To use the POC appropriately, be sure to set the following settings: enable the POC clock by the MCLKE5 register of the system controller; enable the PWM clock with setting proper values to the PWMCSC0 and PWMENBL registers.

26.4.2. Usage Notes on POCCRn.EN Bit

Before changing the POC setting value, be sure to set the POCCRn.EN bit to 0. To avoid malfunctions, do not change another field value in the same address of the POCCRn.EN bit when the POCCRn.EN bit is changed to 0.

26.4.3. Operational Timing at Control Delay Addition

When the control delay is added to the POC, the POC channel with control delay synchronizes the following signals with its own clock.

- Operation starting event signal
- Operation starting signal by writing to the POCTRG register
- Operation release signal by writing to the POCSTS register

For the PWM channels with the pins where the control delay, the time after a signal detection until a reflection of the signals to the pin control is about 16 cycles longer in the PWM cycle than that of the PWM channels without the pin added the control delay.

26.4.4. Operational Restrictions on Using Clear-wait Function

The following restrictions are implemented when clearing the POC control in the case where the control delay addition function is used and the clear-wait function is enabled (i.e., setting the POCDTCn register to either of 0x81, 0x82, or 0x83):

- (1) Auto-release by PWM is not available. Be sure to set POCCRn.ARELEN = 0.
- (2) Before clearing the POC control by writing 1 to the POCSTS.PWMnF bit, read the POCSTS register to make sure that the bit to be cleared is set to 1 (or, currently being controlled). Otherwise, the LSI may result in unexpected behaviors thus malfunctions.

27. Comparator Lookup Table (CMPLUT)

27.1. Overview

The comparator lookup table (CMPLUT) generates the arbitrary event signals from 6 comparator outputs and the GPIO level events. The CMPLUT outputs are connected to the event inputs of POC, PWM, EPU, and the LUT0/1 output pin.

Table 27-1 shows the CMPLUT functional descriptions. Figure 27-1 shows the CMPLUT block diagram.

Table 27-1. CMPLUT Functional Descriptions

Item	Description
Number of Units	2 units
Input Signal	Inputs the output signals of comparators (CMP0 to CMP5) (The asynchronous output or the noise filter output is selectable per unit)
Output Signal	Outputs the logic calculation results of the lookup table and each GPIO level event (The asynchronous output or the noise filter output is selectable per unit)

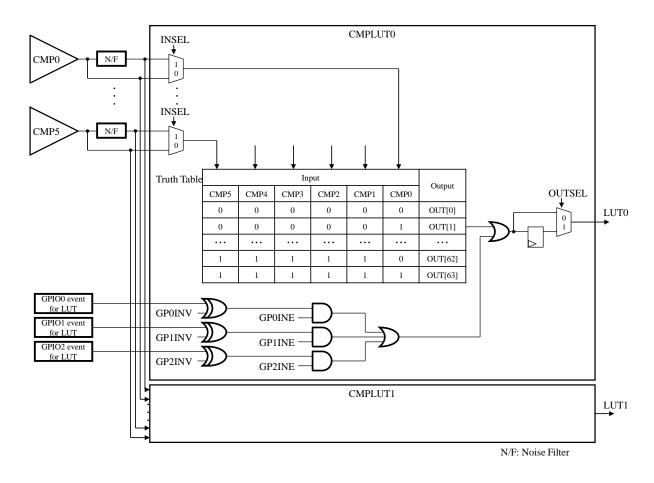


Figure 27-1. CMPLUT Block Diagram

27.2. Register Descriptions

Table 27-2. List of XDATA BUS Registers

Symbol	Name	Address	Initial Value
LUT0CR	LUT0 Control Register	0xEC80	0x00
LUT0GPCR	LUT0 GPIO Event Control Register	0xEC81	0x00
LUT0OUT0	LUT0 Output Register0	0xEC88	0x00
LUT0OUT1	LUT0 Output Register1	0xEC89	0x00
LUT0OUT2	LUT0 Output Register2	0xEC8A	0x00
LUT0OUT3	LUT0 Output Register3	0xEC8B	0x00
LUT0OUT4	LUT0 Output Register4	0xEC8C	0x00
LUT0OUT5	LUT0 Output Register5	0xEC8D	0x00
LUT0OUT6	LUT0 Output Register6	0xEC8E	0x00
LUT0OUT7	LUT0 Output Register7	0xEC8F	0x00
LUT1CR	LUT1 Control Register	0xEC90	0x00
LUT1GPCR	LUT1 GPIO Event Control Register	0xEC91	0x00
LUT1OUT0	LUT1 Output Register0	0xEC98	0x00
LUT1OUT1	LUT1 Output Register1	0xEC99	0x00
LUT1OUT2	LUT1 Output Register2	0xEC9A	0x00
LUT1OUT3	LUT1 Output Register3	0xEC9B	0x00
LUT1OUT4	LUT1 Output Register4	0xEC9C	0x00
LUT1OUT5	LUT1 Output Register5	0xEC9D	0x00
LUT1OUT6	LUT1 Output Register6	0xEC9E	0x00
LUT1OUT7	LUT1 Output Register7	0xEC9F	0x00

MD6603

27.2.1. LUTnCR (LUTn Control Register) (n = 0 to 1)

Regi	ster	r LUT0CR		LUT0 Control Register Address			0xEC80
Regi	ster	LUT1CR	t	LUT1 Control Register Addres		Address	0xEC90
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	OU	OUTSEL R/W 0 (combinational logic output) 1: LUT output selection 0: LUT output not synchronized with CLKFAST (combinational logic output) 1: LUT output synchronized with CLKFAST (flip-flop output)					
6	INSEL R/W		R/W	0	LUT input selection 0: CMP asynchronous output is input to LUT 1: CMP noise filter output is input to LUT For more details on the asynchronous output, see Section 27.3.		
5	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
4	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
3	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
2	Res	served	R	0	The read value is 0. The write value must always be 0.		
1	Res	served	R	0	The read value is 0. The write value must always be 0.		
0	Res	served	R	0	The read value is 0. The write value must	st always be 0.	

27.2.2. LUTnGPCR (LUTn GPIO Event Control Register) (n = 0 to 1)

Regi	ster	LUT0GF	PCR	LUT0 GPIO Event Control Register Address		Address	0xEC81
Regi	ster	LUT1GF	PCR	LUT1 GPI	O Event Control Register	Address	0xEC91
Bit	Bit	Name	R/W	Initial	Description		Remarks
7	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
6	GF	22INE	R/W	GPIO2 event input enable 0: The logical OR is not taken 1: The logical OR is taken 0 This bit determines whether or not to take the logical OR of the following: the LUT output and an inversion-controlled event signal.			
5	GP1INE R/W		0	GPIO1 event input enable 0: The logical OR is not taken 1: The logical OR is taken This bit determines whether or not to tak OR of the following: the LUT output and controlled event signal.			
4	GP0INE R/W		0	GPIO0 event input enable 0: The logical OR is not taken 1: The logical OR is taken This bit determines whether or not to tak OR of the following: the LUT output and controlled event signal.			
3	Res	served	R	0	The read value is 0. The write value must	st always be 0.	
2	GP	2INV	R/W	0	Inversion of GPIO2 event input 0: GPIO2 event signal is not inverted 1: GPIO2 event signal is inverted		
1	GP	'11NV	R/W	0	Inversion of GPIO1 event input 0: GPIO1 event signal is not inverted 1: GPIO1 event signal is inverted		
0	GP	POINV	R/W	0	Inversion of GPIO0 event input 0: GPIO0 event signal is not inverted 1: GPIO0 event signal is inverted		

MD6603

27.2.3. LUTnOUTm (LUTn Output Register m) (n = 0 to 1, m = 0 to 7)

Reg	gister	LUT0OU	Т0	LUT0 Outp	put Register0	Address	0xEC88
Reg	gister	LUT0OU	T1	LUT0 Outp	LUT0 Output Register1 Address		
Reg	gister	LUT0OUT2		LUT0 Outp	put Register2	Address	0xEC8A
Reg	gister	LUT0OU	Т3	LUT0 Outp	put Register3	Address	0xEC8B
Reg	gister	LUT0OU	T4	LUT0 Outp	put Register4	Address	0xEC8C
Reg	gister	LUT0OU	T5	LUT0 Outp	put Register5	Address	0xEC8D
Reg	gister	LUT0OU	T6	LUT0 Outp	put Register6	Address	0xEC8E
Reg	gister	LUT0OU	T7	LUT0 Outp	put Register7	Address	0xEC8F
Reg	gister	LUT10U	Т0	LUT1 Outp	put Register0	Address	0xEC98
Reg	gister	LUT10U	T1	LUT1 Outp	put Register1	Address	0xEC99
Reg	gister	LUT10U	T2	LUT1 Output Register2 Ad			0xEC9A
Reg	gister	LUT10U	T3	LUT1 Outp	0xEC9B		
Reg	gister	LUT10U	T4	LUT1 Outp	LUT1 Output Register4 Address		
Reg	gister	LUT10U	T5	LUT1 Output Register5 Address			0xEC9D
Reg	gister	LUT10U	T6	LUT1 Outp	0xEC9E		
Reg	gister	LUT10U	T7	LUT1 Output Register7 Addres			0xEC9F
Bit	Bit 1	Name	R/W	Initial	Description		Remarks
7	OUT[8×m+7]	R/W	0	LUT output when $CMP[5:0] = 8 \times m$	+ 7	
6	OUT[8×m+6]	R/W	0	LUT output when $CMP[5:0] = 8 \times m$	+ 6	
5	OUT[8×m+5]	R/W	0	LUT output when $CMP[5:0] = 8 \times m$	+ 5	
4	OUT[8×m+4]	R/W	0	LUT output when $CMP[5:0] = 8 \times m$	+ 4	
3	OUT[OUT[8×m+3]		0	LUT output when $CMP[5:0] = 8 \times m$	+ 3	
2	OUT[8×m+2]	R/W	0	LUT output when $CMP[5:0] = 8 \times m$	+ 2	
1	OUT[8×m+1]	R/W	0	LUT output when $CMP[5:0] = 8 \times m$	+ 1	
0	OUT	`[8×m]	R/W	0	LUT output when $CMP[5:0] = 8 \times m$		

27.3. Operation

The comparator (CMP) output is input to the CMPLUT. Each CMP has 2 outputs: the asynchronous output (output signal is not synchronized with the CLKFAST) and the noise filter output. The asynchronous output is an event masked comparator output processed by the output latch and the PWM signal in updating the DAC. The input to the CMPLUT can be determined by the LUTnCR.INSEL bit.

The LUT outputs in the truth table of 6 inputs and 1 output (see Figure 27-1) are defined by the LUTnOUTm register. The OUT[x] bit of LUTnOUTm register indicates the output when inputting from CMP[CMP5, CMP4, \cdots , CMP1, CMP0] = x. From the truth table, select the LUT output that is set to 1, and then set only the corresponding OUT[x] bit to 1.

For example, to output 1 when all comparator inputs (CMP0 to CMP5) are 1, set only the OUT[63] bit (i.e., bit 7 of the LUTnOUT7 register) to 1. Set the remained OUT[x] bits to 0.

In addition, the logical OR of the LUT output and the GPIO event signal is output to the CMPLUT. The event signals that the GPIO outputs are level types. To invert the event signal of GPIO0/1/2, set the LUTnGPCR.GPxINV bit (x = 0/1/2) to 1.

The LUTn pin operates as the CMPLUTn output. The LUTn pin signal can output to the LSI output pin, or can be used for the input events of the PWM and the POC. There are 2 outputs determined by the LUTnCR.OUTSEL bit: the LUT output that is not synchronized with the CLKFAST and the flip-flop output that is synchronized with the CLKFAST. When LUTnCR.INSEL = 1 and LUTnCR.OUTSEL = 1, a glitch pulse of the LUTn pin can be suppressed, but the output latency is increased. Although the glitch may occur in other settings, the output latency is decreased.

28. Serial Communication Interface with Debugger (SCID)

The LSI has a serial communication interface with debugger (SCID) functional module. This is a bidirectional single-wire interface, which can communicate with an external host device by the half-duplex universal asynchronous receiver transmitter (UART) method.

The SCID interfaces between the integrated development environment and the on chip debugger (OCD) incorporated in the LSI, used for program debugging by users and programming on the flash memory.

The communication functions for users and the communication functions for debugger are commonly exclusive because they use a single-wire interface. By externally preparing a debugging interface board (separately supplied), the LSI can simultaneously process communications for users and the debugger.

28.1. Overview

The purpose of the SCID is communications with an external host device (see Figure 28-1), debugging of user software, and software programming on the flash memory (erasing and writing).

The communication protocol with an external host device is based on the half-duplex UART method, which employs bi-directional single-wire signals. The single-wire signals must be operated by the open drain method so that these signals do not electrically conflict.

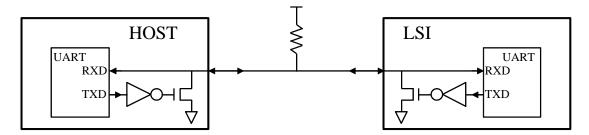


Figure 28-1. Single-wire Communications with External Host Device

Debugging of user software and software programming on the flash memory are conducted by connecting the OCD implemented on the CPU core with the external debugging interface board. Communications are performed by the half-duplex UART method, which employs bi-directional single-wire signals.

When constructing a user communication system with the SCID function as shown in Figure 28-1, the software must also be debugged. When debugging the software, it is ideal that the 2 types of communication interface for users and the debugger are independent on each other as shown in Figure 28-2. However, the LSI has only one signal interface for communications. The SCID provides a function to use the system shown in Figure 28-2 by employing one single-wire communication interface as a multiplex interface for users and the debugger. The next section describes the basic policy of the SCID.

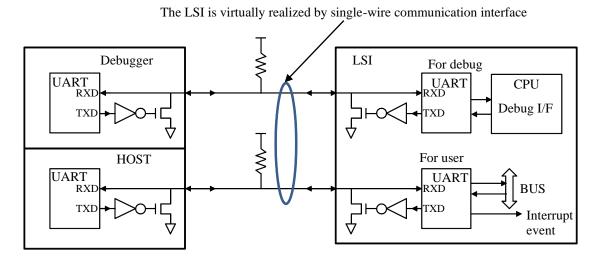


Figure 28-2. Simultaneous Use of Single-wire Communications for Users and Debugger

28.2. Basic Operation

The SCID has 2 operation modes, the UART and OCD modes.

28.2.1. Operation Mode Setting

Immediately after the LSI is reset, the SCID waits for receiving data 0x55 that is the 8N1 (8 bits, non-parity, and one stop bit length) format from outside. While the data is being received, baud rate is measured from the pulse width of the received signal waveform. Once baud rate is measured, the SCID communicates using the measured baud rate afterward.

The measured baud rate is a 16-bit value and is reflected in the UART_BAUD_H (higher 8 bits) and UART_BAUD_L (lower 8 bits) registers. The operation mode of the SCID is determined according to this value as follows.

- UART mode: When {UART_BAUD_H, UART_BAUD_L} > 48 (i.e., when baud rate is smaller than about 250 Kbps)
- OCD mode: When {UART_BAUD_H, UART_BAUD_L} ≤ 48 (i.e., when baud rate is about 250 Kbps or more)

28.2.2. UART Mode

As shown in Figure 28-3, in the UART mode, the SCID communicates with a single external host device by the single-wire half-duplex UART method. This is the mode to perform the UART communications as a normal user application program with the debugging function disabled. Users can set the UART communication format and baud rate again.

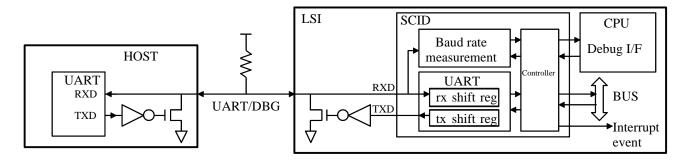


Figure 28-3. Single-wire Communications with External Host Device

28.2.3. OCD Mode

The OCD mode is used to directly connect to the OCD interface board. This board is prepared for debugging used in the integrated development environment, which is separately supplied by us. In the OCD mode, debug a normal program and erasing/programming to the flash memory.

In addition, Figure 28-4 shows a configuration to use debugger function while user communications equivalent to the UART mode. To configure the system of Figure 28-4, use the SCID dedicated interface board supplied by us. The SCID dedicated interface board has the following 3 communication ports:

• Communications with External Host Device

An external host device is connected with the SCID dedicated interface with single-wire communication signals. The protocol is the same as the communications between the external host device and the SCID in the UART mode (see Figure 28-3). When the program on the LSI changes the SCID setting registers to set the UART communication format and baud rate again, those settings are reflected in the communications between the SCID dedicated interface board and the external host device.

• Communications with Personal Computer

This is the USB interface to connect with a personal computer. The debugging and erasing/programming on the flash memory are controlled by the integrated development environment operating on the personal computer through the USB interface.

• Communications with SCID

The SCID of the LSI and the SCID dedicated interface board are connected to each other by single-wire communication signals. This baud rate is a fixed value (not disclosed). After starting up of the LSI, the SCID dedicated interface board transmits the 0x55, which is the baud rate that can select the OCD mode, to the SCID. For the baud rate to communicate with the SCID, the baud rate used when the 0x55 was transmitted is used as it is. As the format of the UART communications, 8N1 is used when the SCID receives data and 8N2 is used when the SCID transmits data. The communications used in the port is the non-disclosure dedicated protocol This is realized by the SCID and the SCID dedicated interface board which collaborate with each other.

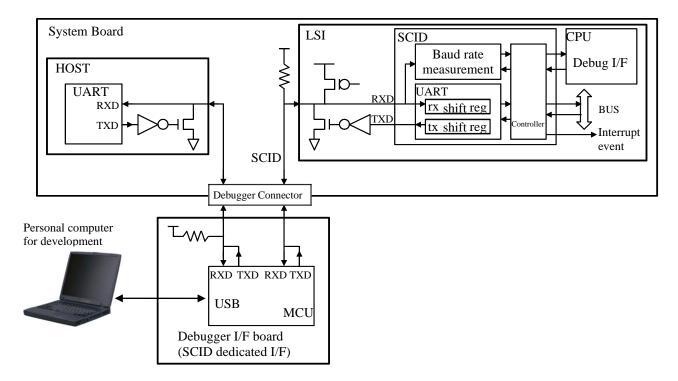


Figure 28-4. When Superimposing Debugging Communications from Integrated Development Environment on User Communications with External Host Device over Single-wire Communication Line

28.2.4. Notes for UART Operation

Regarding the communications between the external host device and the SCID, the UART mode is almost equal to the OCD mode. However, note that the communications timing and the communications latency may differ because communications are multiplexed on a single line in the OCD mode.

28.2.5. Debugging Operation and Flash Memory Programming without Communicating External Host Device

When communicating as follows, directly connect Sanken Electric's OCD interface board to the SCID: When communications are not necessary between the external host device and the SCID during debugging operation from the integrated development environment, or when only programming to the flash memory.

For using the SCID dedicated interface board, the port to communicate with the external host device can be opened (see Figure 28-5). It is not necessary to disconnect the signals between the external host device and the SCID. However, do not have the SCID communicate with the external host device.

Notes:

Section 28 describes the UART operation. The details of the operation of the OCD mode and the communication protocol that the SCID dedicated interface board uses between the personal computer and the SCID are not disclosed.

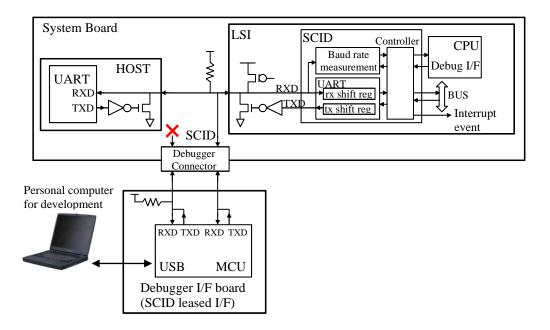


Figure 28-5. When not Communicating with External Host Device

28.3. UART Functional Descriptions in SCID

Table 28-1. UART Functional Descriptions in SCID

Item	Description
Character Format	Data length: 5 bits, 6 bits, 7 bits, or 8 bits Start bit: 1 bit Parity bit: None, even, odd, or sticky Stop bit: 1 bit or 2 bits
UART Communication Line	Bi-directional single-wire method Half-duplex Receiving operation can be masked during transmission
Baud Rate	Baud rate is automatically measured and set Baud rate can also be specified by users CLKIRC
Baud Kate	Baud rate (bps) = $\frac{\text{CLKIRC}}{N}$ Where: N is setting value of the baud rate register (N > 3)
FIFO	RXFIFO: 8 bits × 16 stages TXFIFO: 8 bits × 16 stages
Reception Ready Notification	When the number of bytes of the stacked received data in the RXFIFO reaches the specified number or more When the number of bytes of the stacked received data in the RXFIFO is smaller than the specified number and timeout occurs
Transmission Ready Notification	When the free space of the TXFIFO reaches the specified number or more
Event Flag Setting Condition	Framing error, parity error, overrun error, transmission completion, or reception break detection
Interrupt Request	Reception ready, transmission ready, or event flag Enabling can be set for each interrupt
Break Detection	Reception break can be detected
Modem Control	Not supported

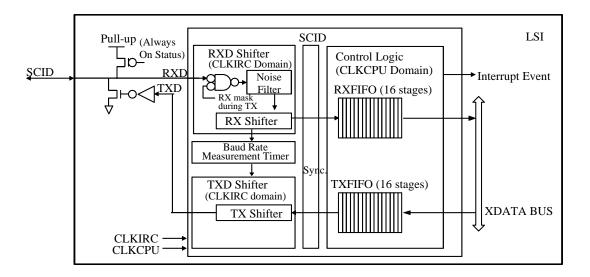


Figure 28-6. UART Functional Block Diagram in SCID

28.4. Register Descriptions

Symbol	Name	Address	Initial Value
UART_TXD	UART TX Data Register	0xE200	0x00
UART_RXD	UART RX Data Register	0xE201	0x00
UART_CR	UART Control Register	0xE202	0x03
UART_BRK	UART Break Control Register	0xE203	0x00
UART_SR	UART Status Register	0xE204	0x01
UART_IE	UART Interrupt Enable Register	0xE205	0x00
UART_TXFIFO_SR	UART TXFIFO Status Register	0xE206	0x80
UART_TXFIFO_CR	UART TXFIFO Control Register	0xE207	0x00
UART_RXFIFO_SR	UART RXFIFO Status Register	0xE208	0x80
UART_RXFIFO_CR	UART RXFIFO Control Register	0xE209	0x00
UART_RXFIFO_TO_L	UART RXFIFO Timeout Register Low	0xE20A	0x00
UART_RXFIFO_TO_H	UART RXFIFO Timeout Register High	0xE20B	0x00
UART_BAUD_L	UART Baud Rate Register Low	0xE20C	0x00
UART_BAUD_H	UART Baud Rate Register High	0xE20D	0x00
SCID_SYSR_CR	SCID System Control Register	0xE20E	0x00
SCID_STATE	SCID Internal State Register	0xE20F	0x00

MD6603

28.4.1. UART_TXD (UART TX Data Register)

Regis	ter UART_TX	TD .	UART TX Data Register		Address	0xE200	
Bit	Bit Name	R/W	Initial	Description			Remarks
7		R/W	0				
6		R/W	0				
5		R/W	0	Townshipsis and the stand to TVEIEO			
4	TXD	R/W	0	Transmission data stored to TXFIFO Write: Written transmission data			
3	IAD	R/W	0	TXFIFO			
2		R/W	0	Read: Data written previously are read			
1		R/W	0				
0		R/W	0				

28.4.2. UART_RXD (UART RX Data Register)

Regis	ster UART_R	XD	UART RX Data Register		Address	0xE201	
Bit	Bit Name	R/W	Initial	Description		Remarks	
7		R	0				
6		R	0				
5		R	0				
4	DVD	R	0	Reception data read from RXFIFO			
3	RXD	R	0	Read: Reception data is read from RX Write: No effect			
2		R	0				
1		R	0				
0		R	0				

28.4.3. UART_CR (UART Control Register)

When enabling UART by the ENBL bit, the other bits can be simultaneously set.

Regi		UART_CR		,	Control Register	Address	0xE202
Bit	В	it Name	R/W	Initial	Description		Remarks
7		ENBL	R/W	0	UART function enable 0: UART function is disabled 1: UART function is enabled		
6	R	XMASK	R/W	0	Reception mask setting during transmiss 0: Transmission data is received durin operation 1: Transmission data is not received d transmission operation (masked)	g transmissi	on
5		DADITY	R/W 0 Parity bit				
4			R/W		0	001: Odd parity 011: Even parity	
3	- PARITY		R/W	0	101: High-level parity (sticky) 111: Low-level parity (sticky) Other than above: No parity		
2		STOP	R/W	0	Stop bit length of transmission character 0: 1 stop bit 1: 2 stop bits	S	
1			R/W	1	Data length of transmission/reception ch	aracters	
0	DA	ATALEN	R/W	1	00: 5 bits 01: 6 bits 10: 7 bits 11: 8 bits		

28.4.4. UART_BRK (UART Break Control Register)

Regi	ster UA	RT_B	RK	UART	Break Control Register	Address	0xE203	
Bit	Bit Na	me	R/W	Initial	Description			Remarks
7	Reserv	red	R	0	The read value is 0. The write value must alv	vays be 0.		
6	Reserv	red	R	0	The read value is 0. The write value must always be 0.			
5	Reserved R 0 The read value is 0. The write value must always be 0.							
4	Reserv	red	R	0	The read value is 0. The write value must always be 0.			
3	Reserv	red	R	0	The read value is 0. The write value must alv	vays be 0.		
2	Reserv	ed	R	0	The read value is 0. The write value must alv	vays be 0.		
1	RXBR	 K_E	R/W	0	Reception break detection enable 0: Reception break detection is disabled 1: Reception break detection is enabled			_
0	Reserv	red	R	0	The read value is 0. The write value must alv	vays be 0.	·	

28.4.5. UART_SR (UART Status Register)

Regis	ster UART_SR		UART Status Register Address 0x			0xE204
Bit	Bit Name	R/W	Initial	Description		Remarks
7	RX_BRK	R/C	0	Reception break detection flag Read 0: Reception break is not detected Read 1: Reception break is detected Write 0: No change Write 1: The bit is cleared		
6	RX_PER	R/C	0	Reception parity error detection flag Read 0: Reception parity error is not detected Read 1: Reception parity error is detected Write 0: No change Write 1: The bit is cleared		
5	RX_FER	R/C	0	Reception framing error detection flag Read 0: Reception framing error is not de Read 1: Reception framing error is detecte Write 0: No change Write 1: The bit is cleared		
4	RX_OVR	R/C	0	Reception overrun error detection flag Read 0: Reception overrun error is not de Read 1: Reception overrun error is detecte Write 0: No change Write 1: The bit is cleared		
3	TX_DONE	R/C	0	Transmission character sending completion Read 0: Sending completion is not detected Read 1: Sending completion is detected Write 0: No change Write 1: The bit is cleared The bit is cleared even when transmission the UART_TXD register.	ed	n to
2	Reserved	R	0	The read value is 0. The write value must al-	ways be 0.	
1	RX_RDY	R	0	Reception (RXFIFO) ready state detection f Read 0: RXFIFO is not ready Read 1: RXFIFO is ready The flag just shows the state of the RXF setting of the UART_RXFIFO_CR registed directly clear the flag only.	IFO based on	
0	TX_RDY	R	1	Transmission (TXFIFO) ready state detection Read 0: TXFIFO is not ready Read 1: TXFIFO is ready The flag just shows the state of the TXF setting of the UART_TXFIFO_CR register directly clear the flag only.	IFO based on	

MD6603

28.4.6. UART_IE (UART Interrupt Enable Register)

Regis	ster	UART_IE		UART I	nterrupt Enable Register	Address	0xE205	
Bit	В	it Name	R/W	Initial	Description		Remarks	
7	IE_	_RX_BRK	R/W	0		RX_BRK interrupt request enable 0: RX_BRK interrupt request is disabled 1: RX_BRK interrupt request is enabled		
6	IE_	_RX_PER	R/W	0		RX_PER interrupt request enable 0: RX_PER interrupt request is disabled 1: RX_PER interrupt request is enabled		
5	IE_	_RX_FER	R/W	0	RX_FER interrupt request enable 0: RX_FER interrupt request is disabl 1: RX_FER interrupt request is enable			
4	IE_	RX_OVR	R/W	0	RX_OVR interrupt request enable 0: RX_OVR interrupt request is disab 1: RX_OVR interrupt request is enable	0: RX_OVR interrupt request is disabled		
3	IE_	ΓX_DONE	R/W	0	TX_DONE interrupt request enable 0: TX_DONE interrupt request is disa 1: TX_DONE interrupt request is ena			
2	R	Reserved	R	0	The read value is 0. The write value must	st always be	0.	
1	IE_	RX_RDY	R/W	0	RX_RDY interrupt request enable 0: RX_RDY interrupt request is disab 1: RX_RDY interrupt request is enable			
0	IE_	_TX_RDY	R/W	0	TX_RDY interrupt request enable 0: TX_RDY interrupt request is disab 1: TX_RDY interrupt request is enabl			

28.4.7. UART_TXFIFO_SR (UART TXFIFO Status Register)

Regis	ter UART_TXFI	FO_SR	UART T	XFIFO Status Register	Address	Address 0:	
Bit	Bit Name	R/W	Initial	Description			Remarks
7	NOT_FULL	R	1	TXFIFO Non-full state flag Read 0: TXFIFO is full Read 1: TXFIFO is not full			
6	NOT_EPTY	R	0	TXFIFO Non-empty state flag Read 0: TXFIFO is empty Read 1: TXFIFO is not empty			
5	Reserved	R	0	The read value is 0. The write value mu	st always be	0.	
4		R	0	Data bytes in TXFIFO			
3		R	0	00000: 0 byte 00001: 1 byte			
2	OCCUPATION	R	0	00010: 2 bytes			
1	R		0	01111: 15 bytes 10000: 16 bytes			
0		R	0	Other than above: None			

28.4.8. UART_TXFIFO_CR (UART TXFIFO Control Register)

Regist	ter UART_TXF	UART_TXFIFO_CR U		UART TXFIFO Control Register Address		UART TXFIFO Control Register		KFIFO Control Register Add		UART TXFIFO Control Register		0х	E207
Bit	Bit Name	R/W	Initial	Description			Remarks						
7	CLR	W	0	TXFIFO clearing Write 0: No change Write 1: TXFIFO is cleared The read value is always 0.									
6	Reserved	R	0	The read value is 0. The write value m									
5	Reserved	R	0	The read value is 0. The write value must always be 0.									
4	Reserved	R	0	The read value is 0. The write value must always be 0.									
3		R/W	0	TXFIFO ready level 0000: 1 byte									
2		R/W	0	0001: 2 bytes									
1		R/W	0	0010: 3 bytes									
0	RDY_LVL	R/W	0	1110: 15 bytes 1111: 16 bytes When the TXFIFO has free space equ the value set by the bit, set the UART to 1.									

28.4.9. UART_RXFIFO_SR (UART RXFIFO Status Register)

Regis	ter UART_RXF	FIFO_SR	UART I	RXFIFO Status Register	Address	0xE208		
Bit	Bit Name	R/W	Initial	Description		Remarks		
7	NOT_FULL	R	1	RXFIFO Non-full state flag Read 0: RXFIFO is full Read 1: RXFIFO is not full				
6	NOT_EPTY	R	0	RXFIFO Non-empty state flag Read 0: RXFIFO is empty Read 1: RXFIFO is not empty				
5	Reserved	R	0	The read value is 0. The write value mus	st always be	0.		
4		R	0	Data bytes in RXFIFO				
3		R	0	00000: 0 byte 00001: 1 byte				
2	OCCUPATION R		0	0 00010: 2 bytes				
1			0	01111: 15 bytes 10000: 16 bytes				
0		R	0	Other than above: None				

28.4.10. UART_RXFIFO_CR (UART RXFIFO Control Register)

Registe	r UART_RX	FIFO_CR	UART	RXFIFO Control Register	Address	0xE2	209
Bit	Bit Name	R/W	Initial	Description			Remarks
7	CLR	W	0	RXFIFO clearing Write 0: No change Write 1: RXFIFO is cleared The read value is always 0.			
6	Reserved	R	0	The read value is 0. The write value must always be 0.			
5	Reserved	R	0	The read value is 0. The write value must always be 0.			
4	Reserved	R	0	The read value is 0. The write value must always be 0.			
3		R/W	0	RXFIFO ready level setting			
2		R/W	0	0000: 1 byte 0001: 2 bytes 0010: 3 bytes			
1	DDA I AI	R/W	0				
0	0 RDY_LVL R/W		0	1110: 15 bytes 1111: 16 bytes When the RXFIFO has data equal to or longer than the value set by the bit, set the UART_SR.RX_RDY bit to 1.			

28.4.11. UART_RXFIFO_TO_L/H (UART RXFIFO Timeout Register Low/High)

When setting a value, make sure to write to UART_RXFIFO_TO_L and UART_RXFIFO_TO_H registers in that order.

Regis	ter UART_RX	KFIFO_TO_L	O_L UART RXFIFO Timeout Register Low Address		0xE20A	
Bit	Bit Name	R/W	Initial	Description		Remarks
7		R/W	0	RXFIFO timeout (LSB side)		
6		R/W	0	Set the lower 8 bits of RXFIFO_TOUT	that is used	in
5		R/W	0	the following equation. When the state that UART_SR.RX_I		
4		R/W		there is one byte or more in the RXF for the timeout period, the UART_SR		
3	TOUT L	R/W	0	is set even when the condition is not value determined by	ne ne	
2	_	R/W	0	UART_RXFIFO_CR.RDY_LVL bits.		
1		R/W	0	RXFIFO_TOUT + 1	JT + 1	
0		R/W	0	Timeout period (s) = $\frac{\text{RXFIFO_TOU}}{\text{Baud rate of }}$ Where the RXFIFO_TOUT is a 16-bit TOUT_L and TOUT_H bits are connected.	(bps) value that the thick the thick the thick the thick the the thick the t	ne

Regist	ter	UART_RX	FIFO_TO_H	UART RXFIFO Timeout Register High Address		UART RXFIFO Timeout Register High		0xE20B
Bit	В	Bit Name	R/W	Initial	Description		Remarks	
7			R/W	0	RXFIFO timeout (MSB side)			
6			R/W	0				
5		R/W R/W	R/W	0	in the following equation. When the state that UART_SR.RX_F			
4			R/W	0	there is one byte or more in the RXFIFO continues for the timeout period, the UART_SR.RX_RDY bit			
3	Т	OUT_H	R/W	0	is set even when the condition is not a value determined by	he he		
2		R/W		0	UART_RXFIFO_CR.RDY_LVL bits.			
1			R/W	0	RXFIFO_TOU			
0	R/W			0	Timeout period (s) = $\frac{RXFIFO_TOU}{Baud\ rate\ (s)}$ Where the RXFIFO_TOUT is a 16-bit TOUT_L and TOUT_H bits are connected.	he		

28.4.12. UART_BAUD_L/H (UART Baud Rate Register Low/High)

When setting a value, make sure to write to UART_BAUD_L and UART_BAUD_H registers in that order.

Regis	ter UART_B	AUD_L	UART B	UART Baud Rate Register Low		0xE20C	
Bit	Bit Name	R/W	Initial	Description		Remarks	
7		R/W	0	Baud rate (LSB side)			
6		R/W	0	Set the lower 8 hits of the dividing rat	Set the lower 8 bits of the dividing ratio of the baud		
5		R/W	0	rate.			
4	DALIDI	R/W	0	CIVIDC			
3	BAUD_L R/W		0	Baud rate (bps) = $\frac{\text{CLKIRC}}{\text{N}}$			
2		R/W	0				
1	R/W		0	Where N is a 16-bit value that the BAUD_H and BAUD_L bits are connected. In addition, N must be			
0		R/W	0	set to a value larger than 3.	, 1. IIIast (

Regis	ster	UART_BA	UD_H	UART B	UART Baud Rate Register High		0xE20D
Bit	Bit	t Name	R/W	Initial	Description		Remarks
7			R/W	0	Baud rate (MSB side)		
6			R/W	0	Set the higher 8 bits of the dividing rat	io of the ba	nd
5			R/W	0	rate.		
4	D A	IID II	R/W 0				
3	BAUD_H R/W 0 Baud rate (bps) =				Baud rate (bps) = $\frac{\text{CLKIRC}}{\text{N}}$		
2			R/W	0			
1	R/W R/W			0	Where N is a 16-bit value that is the BAUD_L bits are connected. In addition		
0				0	set to a value larger than 3.		

28.4.13. SCID_SYSR_CR (SCID System Control Register)

Even when the internal state of the SCID is reset by this register, the TXFIFO and RXFIFO are not cleared. Accessing to the SCID_SYSR_CR register is not recommended. The detailed specification is not disclosed.

	Register SCID_SYSR_CR		CR register is not recommended. The detailed specification is not disclose SCID System Control Register Address				0xE20E	
Bit	Bit Name	R/W	Initial	Description			Remarks	
7	MODE	R/W	1	Forced setting of SCID operation mode Read 0: SCID operates with UART mode Read 1: SCID operates with OCD mode Write from 0 to 0: No change Write from 1 to 1: No change Write from 0 to 1: UART mode is fo OCD mode* Write 1 to 0: OCD mode is forcibly c mode* * Mode is forcibly changed regardless of th set again and the mode setting by the reception data 0x55 during the start-up.	rcibly chang hanged to U	JART that is		
6	OCD_RX_PER	R/C	0	Detection flag of reception parity error who in communication Read 0: Reception parity error is not detected. Read 1: Reception parity error is detected. Write 0: No change. Write 1: The bit is cleared. The OCD communication side does not add. bit is not set to 1.				
5	OCD_RX_FER	R/C	0	Detection flag of reception framing error when the debugger is in communication Read 0: Reception framing error is not detected Read 1: Reception framing error is detected Write 0: No change Write 1: The bit is cleared				
4	Reserved	R	0	The read value is 0. The write value must alv	ways be 0.			
3	Reserved	R	0	The read value is 0. The write value must alv	ways be 0.			
2	Reserved	R	0	The read value is 0. The write value must al	ways be 0.			
1	RESET_MODE	W	0	not changed)		hat is		
0	RESET_ROOT	W	0	The read value is always 0. Internal state resetting of SCID Write 0: No change Write 1: The internal state of the SCID is state (In the initial state, the open the state of writing for setting, a baud rate of the reception data 0x The read value is always 0.				

28.4.14. SCID_STATE (SCID Internal State Register)

Accessing to the SCID STATE register is not recommended. The detailed specification is not disclosed.

Regi	ster	SCID_STA	SCID_STATE		SCID Internal State Register Address				
Bit	В	it Name	R/W	Initial	Description		Remarks		
7			R	0					
6			R	0					
5			R	0	Internal state				
4			R	0					
3		STATE	R	0	The internal state is expressed by 16 bit. The lower 8 bits and higher 8 bits are re-	est			
2			R	0	and second reading, respectively.				
1			R	0					
0			R	0					

28.5. SCID Operation in UART Mode

28.5.1. UART Character Format

The UART character format is configured with the following elements. This format is defined by the UART_CR register. Figure 28-7 shows an example of the UART character format.

• Start Bit

One character string is transmitted from the start bit to indicate the start of transfer. The start bit becomes the low level for a period of one bit (t_{BIT}) . t_{BIT} can be calculated as the inverse of baud rate (bps).

• Data Bits

Data bits are transmitted after the start bit. The data bit length defined by the UART_CR.DATALEN bits can be selected from one of 5 to 8 bits. Data bits are transferred by the LSB first.

• Parity Bit

The parity bit can be determined by the UART CR.PARITY bits. The setting is as follows:

- No Parity

The parity bit is not added to the character format when data is transmitted. The parity is not checked when data is received. In addition, the parity error does not occur.

Odd Parity

When data is transmitted, the parity bit is set so that the number of 1 bits is odd number among the data and parity bits of each character string. Therefore, when the number of 1 bits in the data bits is even, the parity bit is set to1. When data is received, correctness of the parity is checked.

- Even Parity

When data is transmitted, the parity bit is set so that the number of 1 bits is even number among the data and parity bits of each character string. Therefore, when the number of 1 bits in the data bits is odd, the parity bit set to 1. When data is received, correctness of the parity is checked.

- High-level Parity (Sticky)

The parity bit is always set to 1 when data is transmitted, and it is checked when the data is received.

Low-level Parity (Sticky)

The parity bit is always set to 0 when data is transmitted, and it is checked when the data is received.

• Stop Bit

One or 2 stop bits are added to the end of the character according to the setting of the UART_CR.STOP bit. Regardless of the setting of the number of stop bits, the reception side checks the first stop bit only.

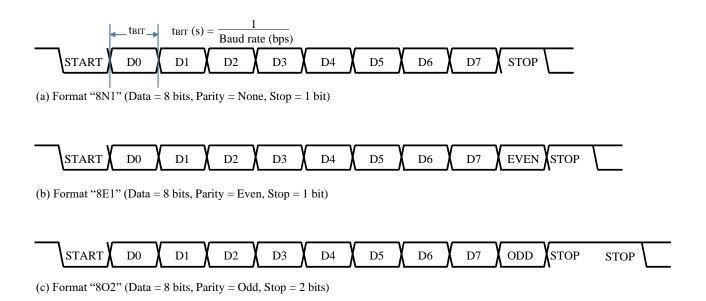


Figure 28-7. UART Character Formats Example

28.5.2. Reception Method

The UART character is received by the following sequence.

- (1) The SCID waits for starting of the start bit.
- (2) The falling edge of the start bit is detected.
- (3) When half a bit period (t_{BIT}/2) has elapsed after the falling edge of the start bit is detected, the center of the start bit is sampled. When the start bit is not the low level, it is not recognized as occurrence of the start bit, and processing returns to step (1). When it is confirmed that the start bit is the low level, processing goes to step (4).
- (4) Sampling of data bits starts at the center point of the first data bit (D0), which is one bit period (t_{BIT}) after the center point of the start bit. All data bits lasting after that are also sampled at each center point. The number of sampling times of data bits varies depending on the character format setting.
- (5) When the parity bit is added to the character format, the center point of the parity bit is sampled to check if the parity is correct. When an error is detected, a parity error is indicated.
- (6) Finally, the center point of the stop bit directly after the data bits or the parity bit is sampled. When the stop bit is not the high level, a framing error is indicated. Regardless of the number of the stop bits, processing returns to step (1) after the center of the first stop bit is sampled.

28.5.3. Reception Filter

As shown in Figure 28-6, there is a digital filter to remove short noise pulses before the register to shift the received data in the SCID. The filtering method employs simple majority decision.

28.5.4. Reception Masking

The UART employs single-wire bi-directional communications, so the data transmitted by the UART are looped back as is, and are received. The UART_CR.RXMASK bit determines whether or not to mask the receiving of the transmitted data.

28.5.5. Baud Rate

When the LSI is reset, the SCID becomes active with the initial state, and waits for receiving of the baud rate adjustment character shown in Figure 28-8 (data 0x55 that is 8N1 format). While this character is received, the interval between the rising and falling edges of the waveform is measured to calculate the corresponding baud rate. The baud rate value is automatically set to the UART_BAUD_H and UART_BAUD_L registers.

In addition, baud rate can be set at any time by rewriting of the UART_BAUD_H and UART_BAUD_L registers.

Baud rate (bps) =
$$\frac{\text{CLKIRC}}{\text{N}}$$

Where, N is the 16-bit value that the values of the UART_BAUD_H.BAUD_H (8 bits) and UART_BAUD_L.BAUD_L (8 bits) bits are connected. N must be set >3.

Example 1

Target baud rate = 115200 bps:

When CLKIRC = 12 MHz and N = $104 \text{ (UART_BAUD_H} = 0x00 \text{ and UART_BAUD_L} = 0x68)$, the actual baud rate = 115384.6 bps (error is +0.16%)

Example 2

Target baud rate = 9600 bps:

When CLKIRC = 12 MHz and N = 1250 (UART_BAUD_H = 0x04 and UART_BAUD_L = 0xE2), the actual baud rate = 9600.0 bps (error is ± 0.00)

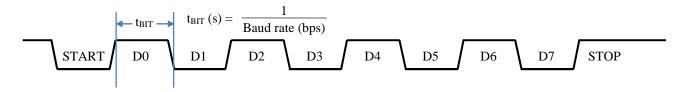


Figure 28-8. Reception Character for Baud Rate Adjustment

28.5.6. Baud Rate Setting and Operation Mode

≤48

When the SCID in the initial state receives the baud rate adjustment character, or a set value of baud rate is forcibly written to the UART_BAUD_H and UART_BAUD_L registers, the internal control logic of the SCID is initialized, and the operation mode is set according to the setting value of baud rate (see Table 28-2).

Value of Baud Rate Setting Register (16 bits) {UART_BAUD_H, UART_BAUD_L}	Baud Rate Value	Operation Mode
>48	Smaller than approx. 250 Kbps	UART mode

Approx. 250 Kbps or more

OCD mode

Table 28-2. Baud Rate Setting and Operation Mode

28.5.7. Transmission Data (TXD) and Transmission FIFO (TXFIFO)

To transmit data from the TXD signal line, write the transmission data to the UART_TXD register. The written transmission data is immediately buffered in the transmission FIFO (TXFIFO) of 16 stages. When the transmission shifter (TX shifter) is empty, the transmission data is transmitted from the TXFIFO to the TX shifter. The TX shifter transmits the data according to the setting value of the baud rate and the character format.

The ready state of the TXFIFO is indicated on the UART_SR.TX_RDY bit. When the free space of the TXFIFO reaches the value defined by the UART_TXFIFO_CR.RDY_LVL bits or more, the UART_SR.TX_RDY bit is set to 1.

The loading state of data into the TXFIFO is indicated on the UART_TXFIFO_SR register. If the transmission data is written to the UART_TXD register when the TXFIFO is not full, the data is transmitted to the TXFIFO as usual. Then, the transmission data can be confirmed again as needed by reading the UART_TXD register because the value transmitted to TXFIFO is left as is.

On the other hand, even if the transmission data is written to the UART_TXD register when the TXFIFO is full, the data is not transmitted to the TXFIFO. In this case, the written transmission data is left in the UART_TXD register. However, note that the data is not transmitted from the UART_TXD register to the TXFIFO even if the TXFIFO becomes not full.

The UART_TXD register operates as a window to write data to the TXFIFO (not a buffer). Therefore, while the TXFIFO is ready (i.e., UART_SR.TX_RDY = 1), write the transmission data to the UART_TXD register.

To clear the TXFIFO, write 1 to the UART_TXFIFO_CR.CLR bit.

28.5.8. Reception Data (RXD) and Reception FIFO (RXFIFO)

When the SCID receives data from the RXD signal line, the received data is input to the reception shifter (RX shifter) according to the setting value of the baud rate and the character format. The reception data is buffered in the reception FIFO (RXFIFO) of 16 stages. When RXFIFO has no free space, an overrun error (see Section 28.5.11) occurs. To read the reception data buffered in the RXFIFO, read the UART_RXD register.

The ready state of the RXFIFO is indicated on the UART_SR.RX_RDY bit. When the number of data bytes in the RXFIFO reaches the value defined by the UART_RXFIFO_CR.RDY_LVL bits or more, the UART_SR.RX_RDY bit is set to 1.

The loading state of data into the RXFIFO is indicated on the UART_RXFIFO_SR register. If the UART_RXD register is read when the RXFIFO is not empty, the reception data can be read from the RXFIFO.

If the UART_RXD register is read when the RXFIFO is empty, the RXFIFO is not operated. Therefore, the read value from this register has no meaning. Thus, while the RXFIFO is ready (i.e., $UART_SR.RX_RDY = 1$), read the reception data from the $UART_RXD$ register.

To clear the RXFIFO, write 1 to the UART RXFIFO CR.CLR bit.

The UART_SR.RX_RDY bit remains 0 if the data satisfies following condition when data of one byte or more is received: The data in the RXFIFO is not reached to the condition defined by the UART_RXFIFO_CR.RDY_LVL bits, and the data is no longer received. If an application program is monitoring the UART_SR.RX_RDY bit only, the data in

the RXFIFO is continuously ignored. To avoid the state, the UART_SR.RX_RDY bit is kept set to 1 until the RXFIFO becomes empty when both following conditions continue for the timeout period: UART_SR.RX_RDY = 0 and the data of one byte or more is contained in the RXFIFO. Where, the UART_SR.RX_RDY bit is kept set to 1 even if the condition specified by the UART_RXFIFO_CR.RDY_LVL bits is not reached. The timeout period can be calculated using the following equation.

$$Timeout period = \frac{RXFIFO_TOUT + 1}{Baud rate (bps)}$$

Where, RXFIFO_TOUT is a 16-bit value that the UART_RXFIFO_TO_H.TOUT_H (8 bits) and UART_RXFIFO_TO_L.TOUT_L (8 bits) bits are connected.

28.5.9. Detection of Reception (RX) Parity Error

When a parity error is detected in the received data, the UART_SR.RX_PER bit is set to 1. The following reception data is not transmitted to the RXFIFO: the data detected a parity error, and the data received during UART_SR.RX_PER = 1. Table 28-3 shows the setting and operation of the parity bit.

Setting of UART_CR.PARITY Bit	Description	How to Add Parity Bit for Transmission	Parity Bit Checking on Reception Side
001	Odd parity	Add so that the number of 1 bits in the data and the parity bits of the transmission characters are odd.	
011	Even parity	Add so that the number of 1 bits in the data and the parity bits of the transmission characters are even.	Check if the parity bit is added as defined in the addition rule in the left-hand column.
101	High-level parity (sticky)	Add the parity bit of 1 to the transmission characters.	in the left-hand column.
111	Low-level parity (sticky)	Add the parity bit of 0 to the transmission characters.	
Other than above	No parity	The parity bit is not added.	The parity bit is not checked.

Table 28-3. Setting and Operation of Parity Bit

28.5.10. Detection of Reception (RX) Framing Error

When the stop bit of a received character string is at the low level, a framing error is detected and the UART_SR.RX_FER bit is set to 1. The following reception data is not transmitted to RXFIFO: the data detected a framing error, and the data received during UART_SR.RX_FER bit = 1. In addition, the system does not perform receiving operation (waiting for the start bit) after a framing error is detected until the RXD signal becomes high level.

28.5.11. Detection of Reception (RX) Overrun Error

When the received characters that are constructed in the RX shifter are transmitted to the RXFIFO in the full state, an overrun error is detected and the UART_SR.RX_OVR bit is set to 1. In this case, the received data is discarded.

28.5.12. Detection of Data Transmission Completion (TX Done)

In the data transmission, if the TXFIFO is empty when data transmission of the TX shifter is completed (from the start bit to the final stop bit), it is allowed to stop the transmission and to conclude that the data transmission is completed (TX done). When this state is detected, the UART_SR.TX_DONE bit is set to 1. After that, when the next transmission data written to the UART_TXD register are transmitted to the TXFIFO, the UART_SR.TX_DONE bit is cleared.

28.5.13. Detection of Reception (RX) Break

To enable the reception (RX) break detection function, set UART_BRK.RXBRK_E =1. When the character waveform of the RXD signal satisfies the following condition, the SCID detects that the RX break is requested.

- Start bit = 0
- Data bits = 0x00
- Parity bit = 0 (if using parity bit)
- Stop bit = 0 (framing error state)

When the RX break is detected, the UART_SR.RX_BRK bit is set to 1. A framing error is also detected when the RX break is detected, so the UART_SR.RX_FER bit is set to 1. Moreover, a parity error is also detected depending on the case, and the UART_SR.RX_PER bit may be set to 1. The following reception data is not transmitted to the RXFIFO: the data detected the RX break, and the received data during UART_SR.RX_BRK = 1. Since a framing error occurs triggered by the detection of the RX break, the system does not perform receiving operation (waiting for the start bit) after the RX break is detected until the RXD signal becomes high level.

The SCID does not have a function to transmit break.

28.5.14. Interrupt Request

The interrupt request from the SCID is output according to the logical equation below. The bits used in this equation are in the UART_SR and UART_IE registers.

- Interrupt request = RX_BRK & IE_RX_BRK

| RX_PER & IE_RX_PER | RX_FER & IE_RX_FER | RX_OVR & IE_RX_OVR | TX_DONE & IE_TX_DONE | RX_RDY & IE_RX_RDY | TX_RDY & IE_TX_RDY;

The corresponding bits (flags) in the UART_SR register must be cleared in the interrupt routine.

28.5.15. Setting Procedure of UART Function

Set the UART function of the SCID as follows:

- (1) Reset the LSI.
- (2) Receive the character string with a baud rate value in the range of the UART mode (8N1, 0x55), or set a baud rate with the range of the UART mode to the UART_BAUD_H and UART_BAUD_L registers.
- (3) Set the UART_TXFIFO_CR and UART_RXFIFO_CR registers.
- (4) Set the UART_RXFIFO_TO_L and UART_RXFIFO_TO_H registers.
- (5) Set the UART_IE register.
- (6) Set the UART_CR register.

When the operation mode of the SCID is determined by the setting value of baud rate, the value in each register other than the UART_BAUD_H and UART_BAUD_L registers is not changed. Therefore, step (2) can be always set after step (1).

28.6. Precautions for Using SCID

- If the SCID signals (single-wire signals of the TXD/RXD) are forcibly set to the low level from outside while the LSI is reset, the CPU keeps in the stopping state, which is the state before executing the instruction at address zero, and the SCID enters the OCD mode. This is the debugging function provided by the SCID.
- In the above state (the CPU is not running, and the SCID is in the OCD mode), or the SCID is set in the OCD mode, the built-in oscillator, IRC, does not stop even by setting the LSI to the low power consumption mode.
- When the MCLKE0.ME_SCID bit of the system controller is cleared, not only the UART function of the SCID is stopped but also the debugging function of the LSI (OCD) is stopped. Therefore, the LSI cannot be accessed from the integrated development environment.

29. Specifications

29.1. Absolute Maximum Ratings

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Storage Temperature	T_{STG}		-40	_	125	°C
Digital Power Supply	$V_{ m DVCCAMR}$		-0.3	_	4.0	V
Analog Power Supply	V _{AVCCAMR}		-0.3	_	4.0	V
Digital Input Voltage of 5 V Tolerant Pin	V _{DIN5AMR}		-0.3	_	5.5	V
Digital Input Voltage except 5 V Tolerant Pin	V _{DIN3AMR}		-0.3	_	V _{DVCC} + 0.3 ⁽¹⁾	V
Analog Input Voltage	V _{AIN3AMR}		-0.3	_	$V_{AVCC} + 0.3^{(2)}$	V
Total Output Current of Digital Pin	$\Sigma I_{ m DOUTAMR}$			_	58	mA
Total Output Current of Analog Pin	$\Sigma I_{AOUTAMR}$		_	_	32	mA
Voltage Difference between Digital Power Supply and Analog Power Supply ⁽³⁾	V _{DVCC} - V _{AVCC}		_	_	0.3	V

 $^{^{(1)}} V_{DVCC} + 0.3 V < 4.0 V$

29.2. Recommended Operating Range

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Ambient Temperature	T_{A}		-40		110	°C
Ambient Temperature at Flash Memory Program/Erasing	T _{A_FLASH}		0		55	°C
Digital Power Supply*	V_{DVCC}		3.0	3.3	3.6	V
Analog Power Supply*	$V_{ m AVCC}$		3.0	3.3	3.6	V

^{*} $|V_{DVCC} - V_{AVCC}| \le 0.3 \text{ V}$

 $^{^{(2)}}$ $V_{AVCC} + 0.3 V < 4.0 V$

⁽³⁾ When the time occurring voltage difference is longer than 1 ms (allowable range is within 1 ms).

29.3. Electrical Characteristics

29.3.1. Package Thermal Characteristics

The junction temperature of the LSI, T_J, must be used at 125 °C or less.

 T_J is calculated by the following equation based on power loss, P_C , package thermal resistance, $R_{\theta(J-A)}$, ambient temperature, T_A .

$$T_I = T_A + P_C \times R_{\theta(I-A)}$$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OFFIXAGES AND	$R_{\theta(J\text{-}A)}$	Wind speed:0 m/s	_	40		°C/W
QFN40 Thermal Resistance	$R_{\theta(J\text{-}C)}$	Wind speed:0 m/s	_	20		°C/W

29.3.2. Consumption Current

An external load is not included in all parameters.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
DVCC Current (Active)	I_{DVCC_ACTIVE}		_	50	90	mA
DVCC Current (Sleep)	I _{DVCC_SLEEP}	CPU stop		45	80	mA
DVCC Current (Standby) ⁽¹⁾	I _{DVCC_STBY}		_	1.5	4.5	mA
DVCC Current at Flash Memory Program/Erasing	I _{DVCC_FLASH}		_	55	_	mA
DVCC Current (ADC12) ⁽²⁾	I_{DVCC_ADC12}			2	3.5	mA
AVCC Current (ADC12) ⁽²⁾	I _{AVCC_ADC12}			30	40	μΑ
AVCC Current (DAC8) ⁽²⁾	I_{AVCC_DAC8}			40	55	μΑ
DVCC Current (COMP) ⁽²⁾	I _{DVCC_COMP_H}		_	100	150	μΑ
DVCC Current (COMP Low Power Consumption Mode) ⁽²⁾	I _{DVCC_COMP_L}	When low power consumption mode is selected	_	30	60	μΑ
DVCC Current (OPAMP) ⁽²⁾	I_{DVCC_OPAMP}			1.6	4.0	mA
DVCC Current (OPAMP Low Power Consumption Mode) ⁽²⁾	I _{DVCC_OPAMP_L}	When low power consumption mode is selected	—	0.8	2.0	mA
DVCC Current (TEMP) ⁽²⁾	I_{DVCC_TEMP}		_	0.3	0.5	mA
AVCC Current (Standby) ⁽³⁾	I _{AVCC_STBY}		_	_	3.0	μΑ

⁽¹⁾ The built-in regulator, VREF, and POR consume the power even in standby mode.

29.3.3. Low Voltage Detection (LVD)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Voltage Detection Level	V_{DET}		2.7	2.9	3.0	V

⁽²⁾ The consumption current of each analog module one unit that is enabled.

⁽³⁾ The ADCC consumption current when the ADC and DAC (0x00 is set) are disabled.

29.3.4. Reset Operation

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Enternal Deset Wilds		Cold start	10	_	_	ms
External Reset Width	t _{RES}	Hot start	1	_	_	μs
DOD Detection Voltage	V_{PORH}		_	2.6	_	V
POR Detection Voltage	V _{PORL}		_	2.5	_	V
POR Detection Hysteresis Voltage	V _{POR_HYS}		_	100	_	mV

29.3.5. Clock Operation

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
IRC Oscillation Stable Time	t_{IRC}			_	100	μs
	f_{IRC_1}	$T_A = -10$ °C to 65 °C	11.76	_	12	MHz
IRC Oscillation Frequency	f_{IRC_2}	$T_A = -20$ °C to 85 °C	11.64	_	12	MHz
	f _{IRC_3}	$T_A = -40$ °C to 110 °C	11.52	_	12	MHz
PLL Oscillation Stable Time	t _{PLL_OSC}		_	_	100	μs

29.3.6. 12-bit SAR ADC

The condition of source impedance ($R_{OUT_ADC12})$ is 200 Ω or less.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	BIT_ADC12		_	12	_	bits
Input Voltage Range*	V _{IN_ADC12}		_	V_{AVSS} to V_{AVCC}	_	V
Conversion Speed (Sampling Time + Conversion Time)	t _{CONV_ADC12}	Clock: 60 MHz, sampling time: 3 cycles	250	_		ns
Absolute Accuracy	ABS_ADC12	$ V_{DVCC} - V_{AVCC} \le 0.1 \text{ V}$	-22	-4	14	LSB

^{*} V_{AVSS} and V_{AVCC} are the voltage of the AVSS power supply pin and the voltage of the AVCC power supply pin, respectively.

29.3.7. 8-bit DAC

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Resolution	BIT_DAC8		_	8	_	bits
Output Voltage Range*	V _{OUT_DAC8}		V _{AVSS}	_	V _{AVCC} – 1 LSB	V
Output Settling Time	t _{CONV_DAC8}		_	120	500	ns
Absolute Accuracy	ABS_DAC8		_	±1	_	LSB

^{*} V_{AVSS} and V_{AVCC} are the voltage of the AVSS power supply pin and the voltage of the AVCC power supply pin, respectively.

29.3.8. Op Amp (OPAMP)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input Voltage Range*	$V_{ m IN_OPAMP}$		V _{DVSS} + 0.05	_	V _{DVCC} - 0.5	V
Output Voltage Range*	$V_{ m OUT_OPAMP}$		$V_{DVSS} + 0.05$	_	V _{DVCC} - 0.5	V
Input Voltage Offset	V _{OFFSET_OPAMP}		_	±3	_	mV
Output Current	I_{OUT_OPAMP}		_	±1	_	mA
Common Mode Rejection Ratio	CMRR_OPAMP		_	70	_	dB
Power Supply Rejection Ratio	PSRR_OPAMP		_	50	_	dB
Output Noise	V _{ON_OPAMP}	1 kHz to 1 GHz	_	45	_	μVrms
Open Loop Gain	GAIN_OPAMP		_	80	_	dB
Gain Band Width Product	$ m f_{GBW_OPAMP}$		_	20	_	MHz
W.L. C.	VGAIN_OPAMP1	×1	_	1	_	_
Voltage Gain	VGAIN_OPAMP2	×4	So	ee Figure 29	-1	_
Slew Rate	V _{SR_OPAMP(R)}	Rising		15	_	V/µs
Siew Kale	V _{SR_OPAMP(F)}	Falling	_	15	_	V/µs

^{*} V_{DVSS} and V_{DVCC} are the voltage of the DVSS power supply pin and the voltage of the DVCC power supply pin, respectively.

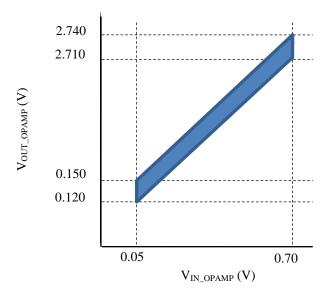


Figure 29-1. AMP Output Characteristics (setting: voltage gain ×4)

29.3.9. Comparator

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input Voltage Range ⁽¹⁾	V _{IN_COMP}		V _{DVSS} + 0.1	_	V _{DVCC} - 0.1	V
Comparison Voltage Range ⁽¹⁾	V _{IN_REF}		V _{DVSS} + 0.1		V _{DVCC} - 0.1	V
Hysteresis ⁽²⁾	V _{IN_HYS}			56	120	mV
	tresp_comp(HR)	When output signal is increased in high-speed mode		8	20	ns
D (3)	t _{RESP_COMP(HF)}	When output signal is decreased in high-speed mode	_	24	40	ns
Response Time ⁽³⁾	tresp_comp(lr)	When output signal is increased in low-speed mode	_	18	40	ns
	tresp_comp(lf)	When output signal is decreased in low-speed mode	_	50	80	ns

⁽¹⁾ V_{DVSS} and V_{DVCC} are the voltage of the DVSS power supply pin and the voltage of the DVCC power supply pin, respectively.

⁽³⁾ For the conditions of measurement timing, see Figure 29-3.

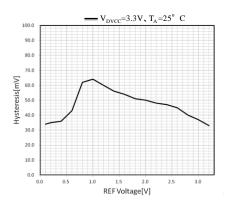


Figure 29-2. Comparator Hysteresis

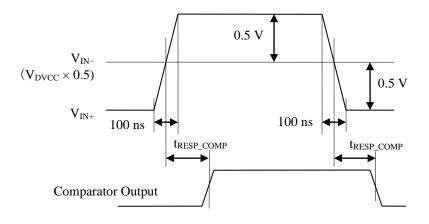


Figure 29-3. Comparator Timing

⁽²⁾ For the hysteresis characteristics, see Figure 29-2.

29.3.10. Reference Voltage (VREF)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output Voltage	V_{REF}		_	1.2	_	V

29.3.11. Temperature Sensor (TEMP)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Output Voltage (T _J = 25 °C)	V_{TEMP}		_	1.52	_	V
Temperature Characteristic Slope	V_{DTEMP}		_	4.8	_	mV/°C
Settling Time	t_{TEMP}	After enable	_	_	2	ms

29.3.12. DC Specifications of Digital Input/Output

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input Voltage High Level	V_{IH}		2			V
Input Voltage Low Level	V_{IL}		_		0.8	V
Input Voltage High Level (Schmitt)	V_{IH_S}		2	_		V
Input Voltage Low Level (Schmitt)	V_{IL_S}		_		0.8	V
Schmitt Hysteresis	$V_{\mathrm{HYS_S}}$		_	0.05	_	V
Pull-up Resistor (Excluding GPIO20 and GPIO21)	R_{PUP}		20	60	100	kΩ
Pull-up Resistor (GPIO20 and GPIO21)	R_{PUP2}		7.9	10	12.4	kΩ
Pull-down Resistor	R_{PDN}		20	90	200	kΩ
Input Leak Current	I_L		-2	±1	2	μΑ
Input Capacitance (Excluding ANEX0 to ANEX13)	$C_{\rm IN}$		_		20	pF
Input Capacitance (ANEX0 to ANEX13)	$C_{\rm IN2}$		_		30	pF
Output Voltage High Level (4 mA)	$ m V_{OH4}$	$I_{OH} = -4 \text{ mA}$	2.4	_		V
Output Voltage Low Level (4 mA) (Excluding GPIO20 and GPIO21)	V_{OL4}	$I_{OL} = 4 \text{ mA}$	_		0.4	V
Output Voltage Low Level (4 mA) (GPIO20 and GPIO21)	V_{OL42}	$I_{OL} = 4 \text{ mA}$	_	_	0.5	V
Output Voltage High Level (16 mA)	V_{OH16}	I _{OH} = −16 mA	V _{DVCC} - 0.7	_	_	V
Output Voltage Low Level (16 mA)	V_{OL16}	I _{OL} = 16 mA	_	_	0.5	V

29.3.13. AC Specifications of Digital Input/Output

29.3.13.1. PWM Timing

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Rising Time of PWM Pin (GPIO10 to GPIO17)	t _r	$C = 30 \text{ pF}$ $V_{OH} = V_{DVCC} \times 0.7$ $V_{OL} = V_{DVCC} \times 0.3$	_	2.0	_	ns
Falling Time of PWM Pin (GPIO10 to GPIO17)	t_{f}	C = 30 pF $V_{OH} = V_{DVCC} \times 0.7$ $V_{OL} = V_{DVCC} \times 0.3$	_	2.0	_	ns

29.3.13.2. Serial Peripheral Interface (SPI) Timing

(1) Master Mode

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCK Cycle	t_{SCK}	C = 50 pF	80	_	_	ns
SO Output Delay Time	t _{DSPI}	C = 50 pF	0	_	10	ns
SI Hold Time	t _{HLSPI}		-3	_	_	ns
SI Setup Time	t _{SUSPI}		13	_	_	ns

(2) Subordinate Mode

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCK Cycle	t _{SCK}	30 MHz	33.33	_	_	ns
SO Output Delay Time	$t_{ m DSPI}$	C = 50 pF	5	_	15	ns
SI Hold Time	t _{HLSPI}		5		_	ns
SI Setup Time	$t_{ m SUSPI}$		5			ns

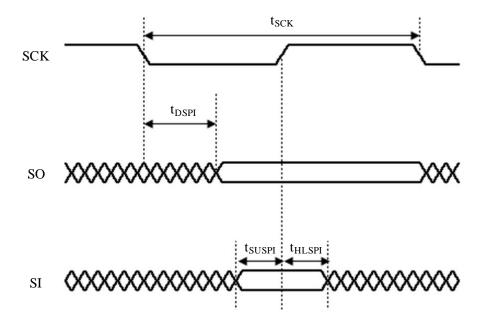


Figure 29-4. SPI Timing (Mode 0 and Mode 3)

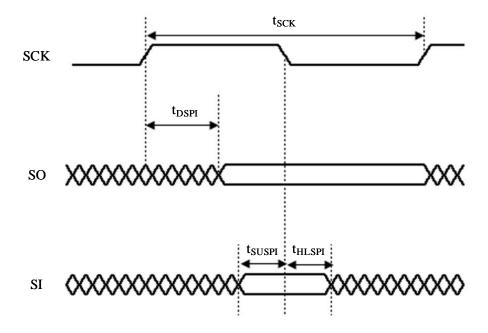


Figure 29-5. SPI Timing (Mode 1 and Mode 2)

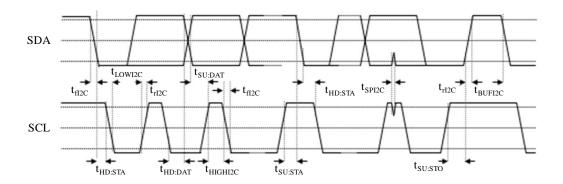
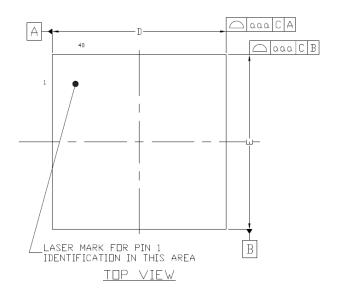
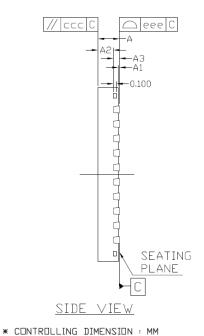
29.3.13.3. I²C Timing

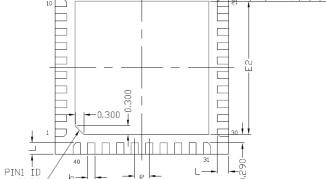
(1) Normal Mode

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCL Clock Frequency	f_{SCL}		0	_	100	kHz
Hold Time of Start Condition	$t_{ m HD:STA}$		4.0	_	_	μs
Low Level Period of SCL Clock	t _{LOWI2C}		4.7	_	_	μs
High Level Period of SCL Clock	t _{HIGHI2C}		4.0		_	μs
Setup Time of Start Condition	$t_{ m SU_STA}$		4.7	_	_	μs
Data Hold Time (I ² C Bus Device)	t _{HD_DAT}		0	_	_	μs
Data Setup Time	$t_{ m SU_DAT}$		250	_	_	ns
Rising Time of SDA and SCL Signals	t_{rI2C}		_	_	1000	ns
Falling Time of SDA and SCL Signals	$t_{ m fI2C}$		_	_	300	ns
Setup Time of Stop Condition	t _{SU_STO}		4.0	_	_	μs
Bus Free Time between Stop Condition and Start Condition	t _{BUFI2C}		4.7	_	_	μs
Capacitive Load of Each Bus Line	C_b				400	pF
Noise Margin at Low Level in Each Connection Device (Including Hysteresis)	V_{nL}		$0.1 \times V_{DVCC}$		_	V
Noise Margin at High Level in Each Connection Device (Including Hysteresis)	$V_{\rm nH}$		$0.2 \times V_{DVCC}$			V
Spike Pulse Width Suppressed by Input Filter	t _{SPI2C}		_		_	ns

(2) High-speed Mode

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
SCL Clock Frequency	f_{SCL}		0	_	400	kHz
Hold Time of Start Condition	t _{HD_STA}		0.6	_	_	μs
Low Level Period of SCL Clock	t _{LOWI2C}		1.3	_	_	μs
High Level Period of SCL Clock	t _{HIGHI2C}		0.6	_	_	μs
Setup Time of Start Condition	t _{SU_STA}		0.6	_	_	μs
Data Hold Time (I ² C Bus Device)	t _{HD_DAT}		0	_	0.9	μs
Data Setup Time	$t_{ m SU_DAT}$		100	_	_	ns
Rising Time of SDA and SCL Signals	$t_{\rm rI2C}$		20 + 0.1C _b	_	300	ns
Falling Time of SDA and SCL Signals	t _{fI2C}		20 + 0.1C _b		300	ns
Setup Time of Stop Condition	$t_{\rm SU:STO}$		0.6	_	_	μs
Bus Free Time between Stop Condition and Start Condition	t _{BUFI2C}		1.3		_	μs
Capacitive Load of Each Bus Line	C_b		_	_	400	pF
Noise Margin at Low Level in Each Connection Device (Including Hysteresis)	V_{nL}		$0.1 \times V_{DVCC}$		_	V
Noise Margin at High Level in Each Connection Device (Including Hysteresis)	$V_{\rm nH}$		$0.2 \times V_{DVCC}$			V
Spike Pulse Width Suppressed by Input Filter	t _{SPI2C}		0	_	50	ns


Figure 29-6. I²C Timing

30. Package

♦ fff M C A B -0.290 ♦ fff M C A B

BOTTOM VIEW

bbbM C A B add@ C

* CHNIKHELING DIMENSION : MM								
CVMDEI	MI	LLIME ⁻	ΓER		INCH			
SYMBOL	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.		
А			0.800			0.031		
A1	0.000		0.050	0.000		0.002		
A2		0.53	0.580		0.021	0.023		
Аз	0.2	03 RE	F.	0.0	08 RE	F.		
b	0.180	0.250	0.300	0.007	0.010	0.012		
D	6 BSC			0.236 B2C				
De	4.520	4.620	4.720	0.178	0.182	0.186		
E	6	В	SC	0.236 BSC				
E2	4.520	4.620	4.720	0.178	0.182	0.186		
L	0.300	0.400	0.500	0.012	0.016	0.020		
е	0.	500 BS	SC	0.050 B2C				
TOLE	ERANCE	S OF	FORM	AND PI	OITIZ	N		
aaa		0.150			0.006			
bbb		0.100			0.004			
CCC	0.100			0.004				
ddd	0.050			0.002				
eee	0.080			0.003				
fff		0.100		0.004				

Figure 30-1. QFN40 Physical Dimensions

Note: Do not add excessive stress to the device, after the device is mounted on a PCB, to prevent a change of characteristics.

Important Notes

- All data, illustrations, graphs, tables and any other information included in this document (the "Information") as to Sanken's products listed herein (the "Sanken Products") are current as of the date this document is issued. The Information is subject to any change without notice due to improvement of the Sanken Products, etc. Please make sure to confirm with a Sanken sales representative that the contents set forth in this document reflect the latest revisions before use.
- The Sanken Products are intended for use as components of general purpose electronic equipment or apparatus (such as home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Prior to use of the Sanken Products, please put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken. When considering use of the Sanken Products for any applications that require higher reliability (such as transportation equipment and its control systems, traffic signal control systems or equipment, disaster/crime alarm systems, various safety devices, etc.), you must contact a Sanken sales representative to discuss the suitability of such use and put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken, prior to the use of the Sanken Products. The Sanken Products are not intended for use in any applications that require extremely high reliability such as: aerospace equipment; nuclear power control systems; and medical equipment or systems, whose failure or malfunction may result in death or serious injury to people, i.e., medical devices in Class III or a higher class as defined by relevant laws of Japan (collectively, the "Specific Applications"). Sanken assumes no liability or responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, resulting from the use of the Sanken Products in the Specific Applications or in manner not in compliance with the instructions set forth herein.
- In the event of using the Sanken Products by either (i) combining other products or materials or both therewith or (ii) physically, chemically or otherwise processing or treating or both the same, you must duly consider all possible risks that may result from all such uses in advance and proceed therewith at your own responsibility.
- Although Sanken is making efforts to enhance the quality and reliability of its products, it is impossible to completely avoid the occurrence of any failure or defect or both in semiconductor products at a certain rate. You must take, at your own responsibility, preventative measures including using a sufficient safety design and confirming safety of any equipment or systems in/for which the Sanken Products are used, upon due consideration of a failure occurrence rate and derating, etc., in order not to cause any human injury or death, fire accident or social harm which may result from any failure or malfunction of the Sanken Products. Please refer to the relevant specification documents and Sanken's official website in relation to derating.
- No anti-radioactive ray design has been adopted for the Sanken Products.
- The circuit constant, operation examples, circuit examples, pattern layout examples, design examples, recommended examples, all information and evaluation results based thereon, etc., described in this document are presented for the sole purpose of reference of use of the Sanken Products.
- Sanken assumes no responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, or any possible infringement of any and all property rights including intellectual property rights and any other rights of you, users or any third party, resulting from the Information.
- No information in this document can be transcribed or copied or both without Sanken's prior written consent.
- Regarding the Information, no license, express, implied or otherwise, is granted hereby under any intellectual property rights and any other rights of Sanken.
- Unless otherwise agreed in writing between Sanken and you, Sanken makes no warranty of any kind, whether express or implied, including, without limitation, any warranty (i) as to the quality or performance of the Sanken Products (such as implied warranty of merchantability, and implied warranty of fitness for a particular purpose or special environment), (ii) that any Sanken Product is delivered free of claims of third parties by way of infringement or the like, (iii) that may arise from course of performance, course of dealing or usage of trade, and (iv) as to the Information (including its accuracy, usefulness, and reliability).
- In the event of using the Sanken Products, you must use the same after carefully examining all applicable environmental laws and regulations that regulate the inclusion or use or both of any particular controlled substances, including, but not limited to, the EU RoHS Directive, so as to be in strict compliance with such applicable laws and regulations.
- You must not use the Sanken Products or the Information for the purpose of any military applications or use, including but not limited to the development of weapons of mass destruction. In the event of exporting the Sanken Products or the Information, or providing them for non-residents, you must comply with all applicable export control laws and regulations in each country including the U.S. Export Administration Regulations (EAR) and the Foreign Exchange and Foreign Trade Act of Japan, and follow the procedures required by such applicable laws and regulations.
- Sanken assumes no responsibility for any troubles, which may occur during the transportation of the Sanken Products including the falling thereof, out of Sanken's distribution network.
- Although Sanken has prepared this document with its due care to pursue the accuracy thereof, Sanken does not warrant that it is error free and Sanken assumes no liability whatsoever for any and all damages and losses which may be suffered by you resulting from any possible errors or omissions in connection with the Information.
- Please refer to our official website in relation to general instructions and directions for using the Sanken Products, and refer to the relevant specification documents in relation to particular precautions when using the Sanken Products.
- All rights and title in and to any specific trademark or tradename belong to Sanken and such original right holder(s).

DSGN-CEZ-16003

Revision History

Numbers of sections, figures, tables, and so on may vary depending on revisions.

Revision	Date of Issue	No.	Title	Section	Description
1.1	Apr. 6, 2018		_	_	Initial release
1.2	May 25, 2021	13	SYSC	4.5	Corrected the following description: Incorrect: It is required to wait at least 2 cycles before reading the LVDCTRL.LVDIF bit immediately after the LVDCTRL.LVDIF bit is cleared. Correct: It is required to wait at least 3 cycles before reading the LVDCTRL.LVDIF bit immediately after the LVDCTRL.LVDIF bit is cleared.
		14	8051 CPU	5.7.7	Newly added the notes of the CPU and EPU simultaneous access to XDATA space.
		15	GPIO	7.2.44	Corrected the R/W column of the TMRIS[1] and TMRIS[3] bits. Incorrect: R/W Correct: R
		16	DSAC	12.3	Symbol Incorrect Correct DSACNTA12 0xF888 0xF8B0 DSACNTB12 0xF889 0xF8B1 DSASRC12 0xF88A 0xF8B2 DSADST12 0xF88B 0xF8B3 DSACNTA13 0xF88C 0xF8B4 DSACNTB13 0xF88D 0xF8B5 DSASRC13 0xF88E 0xF8B6 DSADST13 0xF88F 0xF8B7 DSACNTA14 0xF890 0xF8B8 DSACNTB14 0xF891 0xF8B9 DSASRC14 0xF892 0xF8BA DSADST14 0xF893 0xF8BB DSACNTA15 0xF894 0xF8BC DSACNTB15 0xF895 0xF8BD DSASRC15 0xF896 0xF8BF
		17	TMR	17.2	Added the TPSNF0 to TPSNF3 registers in Table 17-2.
		18	TMR	17.2	Corrected the following register addresses in Table 17-2: Symbol Incorrect Correct TBUFAH0 0xFA22 0xFA21 TBUFAL1 0xFA21 0xFA22 TBUFBH0 0xFA26 0xFA25 TBUFBL1 0xFA25 0xFA26 TBUFAH2 0xFA62 0xFA61 TBUFAH2 0xFA61 0xFA62 TBUFAL3 0xFA61 0xFA62 TBUFBH2 0xFA66 0xFA65 TBUFBL3 0xFA65 0xFA66

Revision	Date of Issue	No.	Title	Section	Description
		19	TMR	17.2	TBUFBL2 Incorrect: Timer2 Buffer A Low Correct:Timer2 Buffer B Low TBUFBL3 Incorrect: Timer3 Buffer A Low Correct: Timer3 Buffer B Low TBUFBH2 Incorrect: Timer2 Buffer B High Correct: Timer2 Buffer A High Correct: Timer3 Buffer B High TBUFBH3 Incorrect: Timer3 Buffer A High Correct: Timer3 Buffer B High Correct: Timer3 Buffer B High
		20	TMR	17.3.4	Corrected the bit setting in Figure 17-2 a): Incorrect: TOACRn.TOCMPA = 0b01, OACRn.TOCLR = 0b10 Correct: TOACRn.TOCMPA = 0b10, OACRn.TOCLR = 0b01
		21	SPI	18.2.1.2	Added the following description: In the subordinate mode (SPICR.MSTR = 0), the SPI modes 0 and 2 cannot be used (i.e., only the SPI modes 1 and 3 can be used).
		22	SPI	18.2.1.2	Corrected Table 18-3.
		23	I ² C/SMBUS	19.1	Added "Clock stretching" to Table 19-1.
		24	I ² C/SMBUS		Corrected the following description: Incorrect: Whether the data reception is completed can be confirmed by the ICSR.IRIC0 to ICSR.IRIC5 bit. Correct: Whether the data reception is completed can be confirmed by the ICSR.IRIC3 bit.
		25	I ² C/SMBUS	19.2.6	Added the following descriptions: When the ICSAR.SVA bits = 0, the IC does not judge whether or not the subordinate address matches the ICSAR.SVA bits. The ICSAR.CMD bit of the reception command is updated when the ICSAR.CMD bit matches with either of the following addresses: with the GCA when GCA = enabled; with the SAA when SAA = enabled.
		26	I ² C/SMBUS	19.2.7	Corrected the ICCLK[1:0] bit description: Incorrect: 00: t _{SCLH} /t _{SCLL} is set to 8 cycles of CLKFAST Correct: 00: t _{SCLH} /t _{SCLL} is set to 9 cycles of CLKFAST
		27	I ² C/SMBUS	19.2.7	Added "filter time"; corrected the t _{SCLH} and t _{SCL} definitions in Figure 19-3.
		28	I ² C/SMBUS	19.2.8	Corrected the ICCMD.ACK bit description: Incorrect: When the ACK response is completed, the bit is cleared. When NACK = 1, the bit is not set. Correct: The bit is not set when: • NACK = 1 • In the master mode

Revision	Date of Issue	No.	Title	Section	Description
		29	I ² C/SMBUS	19.2.10	Corrected the ICSHTR.ICSHEXP bit description: Incorrect: When not using the LSI with CLKFAST ≤ 12.5 MHz or for SMBUS, set the bit to 0. When using the LSI with CLKFAST > 12.5 MHz or for SMBUS, set the bit to 1. Correct: When using the LSI with CLKFAST ≤ 12.5 MHz or when not using the I 2 C as the SMBUS, set the bit to 0. When using the LSI with CLKFAST > 12.5 MHz and the I 2 C as the SMBUS, set the bit to 1.
		30	I ² C/SMBUS	19.2.13	Added the description of the cycle setting of the reference timing signal for the violation detection defined by the SMBUS standards.
		31	I ² C/SMBUS	19.2.15	Added the following descriptions: When the subordinate alert address defined by the ICSAIR.SAAEN bit is enabled and the received subordinate address matches the ICSAA.SAA bits, the LSI operates as the subordinate device specified by the master device. When ICSAA.SAA bits = 0, the IC does not judge whether or not the subordinate address matches the ICSAA.SAA bits. The ICSAA.CMD bit of the reception command is updated when the ICSAR.CMD bit matches with either of the following addresses regardless of enabling/disabling the SAA: with the SVA; with the GCA when GCA = enabled; with the SSA when SSA = enabled.
		32	I ² C/SMBUS	19.2.15	Corrected the ICSAA[0] bit name and description: Incorrect: Reserved Correct: CMD
		33	I ² C/SMBUS	19.4 to 19.7	Modified the following descriptions: Corrected the steps. Added the interrupt enable bits. Added the operations when the GCA and SAA are enabled.
		34	I ² C/SMBUS	19.4	Corrected the generation timing of ACK/NACK signal of SDA in Figure 19-8 b).
		35	I ² C/SMBUS	19.5	Modified Figure 19-9 b) as follows: Corrected the SCL (Subordinate output) to show its output per data transmission. Corrected the SDA (Subordinate output) to show its becoming high level after data transmission. Added the broken line to NA on the SDA (Master output).
		36	I ² C/SMBUS	19.8	 Modified the following descriptions: Added the description of the GCA. Deleted "In the slave mode, the ICSAR register can be read and be written, and the SAA register can be read only." Corrected the priority when the GCA, SAA, and ICSAR match with subordinate address. Added the description when ICSAR = 0 and SAA = 0. Deleted "Note that the address written to the slave device does not necessarily match the address indicated in the ICSAIR register." Added the way of the judgement whether the command is writing or reading.

Revision	Date of Issue	No.	Title	Section	Description
		37	POC	26.1	Corrected the LVLEVEN signal to the inverted signal of the LVLENDIS signal.
		38	POC	26.4.2	Newly added the notes of the POCCRn.EN bit.
		39	POC	26.4.3	Newly added the notes of the control delay addition.
		40	SCID	28.4	Corrected the initial value of the following registers: Symbol Incorrect Correct UART_CR 0x00 0x03 UART_TXFIFO_SR 0x00 0x80 UART_RXFIFO_SR 0x00 0x80 UART_BAUD_L/H 0xFF 0x00
1.3	Jul. 14, 2021	41	SCID	28.4.3	Corrected the initial value of the UART_CR[1:0] bits: Incorrect: 0 Correct: 1
		42	SCID	28.4.7	Corrected the initial value of the UART_TXFIFO_SR[7] bit: Incorrect: 0 Correct: 1
		43	SCID	28.4.9	Corrected the initial value of the UART_RXFIFO_SR[7] bit: Incorrect: 0 Correct: 1
		44	SCID	28.4.12	Corrected the initial value of the BAUD_L[7:0] and BAUD_H[7:0] bits: Incorrect: 1 Correct: 0
		45	SCID	28.5.5	Corrected the following description: Incorrect: Where, N is the 16-bit value that the values of the UART_BAUD_H.TOUT_H (8 bits) and UART_BAUD_L.TOUT_L (8 bits) bits are connected. N must be set >3. Correct: Where, N is the 16-bit value that the values of the UART_BAUD_H.BAUD_H (8 bits) and UART_BAUD_L.BAUD_L (8 bits) bits are connected. N must be set >3.
		46	Electrical Characteristics	29.3.13.2	Modified the following specifications: - Added the conditions of t _{SCK} . - Corrected the t _{SCK} specification: Incorrect: 80 ns Correct: 33.33 ns - Corrected the t _{DSPI} specification: Incorrect: 4 ns Correct: 5 ns
		47	ADC	22.2.1	 Corrected the ADCn[2] bit and modified the Description column: Incorrect: Reserved Correct: MODE3 Modified the Description column of the ADCn.MODE1 bit.

Revision	Date of Issue	No.	Title	Section	Description
					- Corrected the ADCn[0] bit and modified the Description column:
					Incorrect: Reserved Correct: MODE3
					- Added Table 22-4. Restricted Setting Conditions for ADCn.MODE1 and ADCn.MODE3