
Working Together for a Greener Society

Future of Power Electronics and the Earth

Sine-wave Driving, High Voltage 3-phase Motor Drivers with Built-in Hall Amplifiers

SIM262xM Series

Built-in Control IC (Controller)

No external microcontroller is required for motor control. Supplied in a package, where a controller, a gate driver, the output transistors of three phases, and bootstrap diodes are highly integrated, the product reduces overall application cost.

Support for 8-pole / 10-pole Motors

The IC can output a rotation pulse signal equivalent to an 8-pole motor when a 10-pole BLDC motor is used. This allows 10-pole BLDC motors to be driven with conventional 8-pole BLDC motor systems.

Rotation Direction Switching Without Turning Power Off

Rotation direction (CW/CCW) can be switched without turning off the power when the motor is not rotating.

Various Protection Functions

The IC has various protection functions, including OVP (overvoltage protection), for safe operation even in regions with unstable input voltages.

Product Overview

■ Overview

The SIM262xM series are high voltage 3-phase motor drivers driven by a sinusoidal control, which can support Hall element and Hall IC inputs, thus offering high-efficient yet low-noise motor control. Supplied in a highly heat-dissipating DIP package, where a controller, a gate driver, the output transistors of three phases, and bootstrap diodes are highly integrated, the SIM262xM series requires only a few external components for building a motor driver. This also allows a motor driver to be highly reliable in performance and design-friendly with its compactness. You can select motor rotation directions, FG output pulses, and protections by setting input voltages applied to the ISx pin. The SIM262xM series supports both 8- and 10-pole motors with the function that outputs FG signals equivalent to 8-pole motor rotation signals even when a 10-pole motor is connected. These products can optimally control the inverter systems of low- to medium-capacity motors that require universal input standards.

■ Application

For motor drives such as:

- Fan Motor and Pump Motor for Washer and Dryer
- Fan Motor for Air Conditioner
- Fan Motor for Air Purifier and Electric Fan

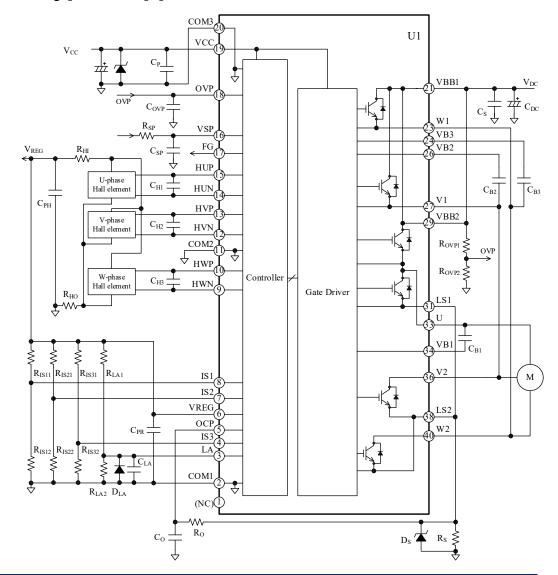
■ Package

DIP40

■ Selection Guide

Part Number	Output Transistor	V_{DSS} / V_{CES}	I _D / I _C	R _{DS(ON)} (Max.) / V _{CE(SAT)} (Typ.)
SIM2621M*	Power MOSFET	600.1/	2.5 A	2.5 Ω
SIM2622M	IGBT + FRD	600 V	5.0 A	1.75 V

^{*} Under development


Product Overview

■ Features

- Pb-free (RoHS Compliant)
- Isolation Voltage: 1500 V (for 1 min) (UL Recognition Pending)
- Low Noise, High Efficiency (Sinusoidal Current Waveform)
- Support for 8-pole/ 10-pole Motors
- Phase Advance Control (Maximum Torque Drive)
- Reduced Number of Parts Achieved by Built-in Bootstrap Diodes
- Hall Element and Hall IC Inputs
- Application-specific Optimal Settings with External Signals:
 - Motor Speed
 - Phase Advance Angle
 - Motor Direction
 - Number of Motor Poles
 - User-settable Motor Lock Detection (Enabled or Disabled)
- 5 V Reference Voltage Output (Used for Driving Hall Elements etc.)
- Various Protection Functions

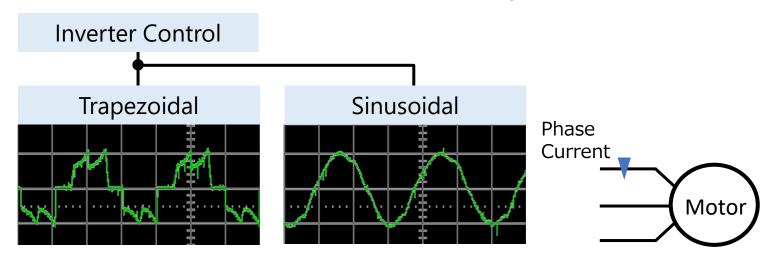
■ Typical Application

A Control IC, a gate driver IC, and output transistors are integrated into a DIP40 package — only by Sanken Electric!*

* As of November 2025, 600 V/ 5.0 A devices

DIP40 (36.0 mm × 14.8 mm ×4.0 mm)

In recent years, as applications such as home appliances have become more advanced, the number of integrated microcontrollers has increased, resulting in larger circuit scales.

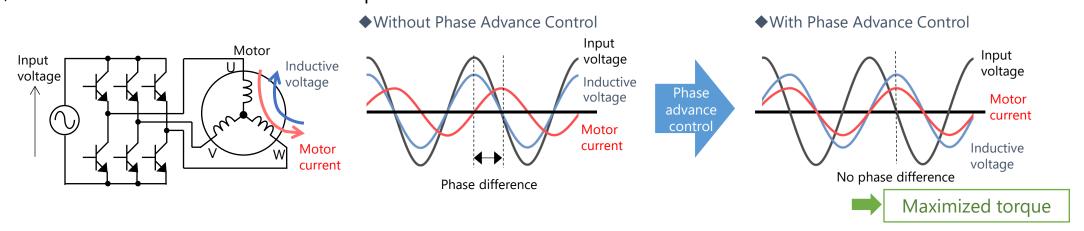

The SIM262xM series incorporates a control IC, requiring no external microcontroller for motor control. This leads not only to a smaller motor drive system but also to lower overall application cost.

Features of Sinusoidal Control

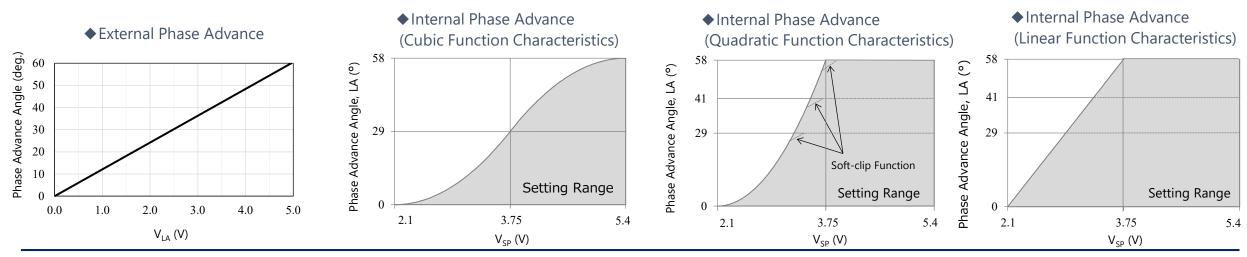
The motor driving system includes trapezoidal and sinusoidal controls.

The SIM262xM series uses the sinusoidal control that is excellent in efficiency and quietness.

The following table shows the driving controls and motor features.


Sinusoidal control is more efficient and quieter than trapezoidal control.

Driving Control	Parameters			
Driving Control	Motor Efficiency	Switching Efficiency	Quietness	Torque Ripple
Trapezoidal	High	Higher	Quiet	Large
Sinusoidal	Higher	High	Quieter	Small


Phase Advance Function

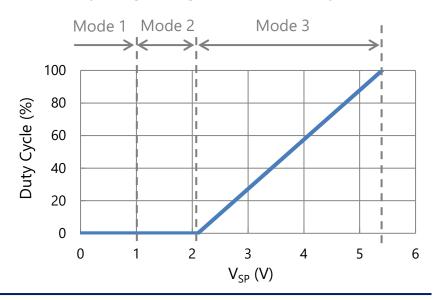
A phase of the current through the motor normally gets behind a phase of inductive voltage due to winding inductance. The SIM262xM series has the phase advance function that matches the phases of inductive voltage and motor current. As a result, the motor can run at a maximum torque.

The SIM262xM series features the phase advance function that includes external advance and internal advance (with linear to cubic function operations). The phase can be optimally adjusted for the motor.

Switching of Speed and Driving Controls

The SIM262xM series switches the motor driving controls according to a frequency.

Based on a motor speed detected by the VSP pin, the IC enters the operation mode determined by the VSP pin voltage. This leads to a stable startup operation.


Driving Controls

Frequency	Driving Control	
<1 Hz	Trapezoidal	
≥1 Hz	Sinusoidal two-phase modulation	

Operation Modes (see the right graph)

	VSP Pin Voltage			
Mode Voltage Range 2.1 V to 5.4 V	Voltage Range 0.5 V to 5.4 V	Operation		
1	0 V to 1.0 V	0 V to 0.13 V	Turns off all the switching elements	
2	1.0 V to 2.1 V	0.13 V to 0.5 V	Charges the bootstrap capacitors (turns off the low-side switching elements)	
3	2.1 V to 5.4 V	0.5 V to 5.4 V	Performs PWM modulation	

◆ VSP Pin Voltage vs. Duty Cycle (Voltage Range: 2.1 V to 5.4 V)

Customizable Using Function Setting Pins (IS1/ IS2/ IS3)

■ Support for 8-pole / 10-pole Motors

The IS1 pin sets the number of motor poles and output pulses and selects which protection recovery mode to enable. This allows the IC to output a rotation pulse signal equivalent to an 8-pole motor when used with a 10-pole BLDC motor. As a result, a 10-pole BLDC motor can be used without changing the existing system for an 8-pole BLDC motor.

	Number of FO	Protection		
IS1 Pin Voltage (Typ.)	Number of Motor Poles	Number of FG Output Pulses per Motor Rotation	Recovery Mode	
0 to 1/8 V _{REG}	8 poles	3 pulses	Automatic	
$1/8 V_{REG}$ to $2/8 V_{REG}$	8 poles	3 pulses	Manual	
$2/8 V_{REG}$ to $3/8 V_{REG}$	10 poles	3 pulses	Automatic	
$3/8 V_{REG}$ to $4/8 V_{REG}$	10 poles	3 pulses	Manual	
4/8 V _{REG} to 5/8 V _{REG}	10 poles	1 pulse	Manual	
5/8 V _{REG} to 6/8 V _{REG}	10 poles	1 pulse	Automatic	
6/8 V _{REG} to 7/8 V _{REG}	8 poles	1 pulse	Manual	
7/8 V _{REG} to 8/8 V _{REG}	8 poles	1 pulse	Automatic	

Customizable Using Function Setting Pins (IS1/ IS2/ IS3)

■ Optimal phase advance angle adjustment for motors

The IS2 pin determines the phase advance control.

IS2 Pin Voltage (Typ.)	Phase Advance Function	Setting Range of Phase Advance Angle
0 to 1/8 V _{REG}	External phase advance	0° to 58°
1/8 V _{REG} to 2/8 V _{REG}	Cubic function operation	0° to 58°
$2/8 V_{REG}$ to $3/8 V_{REG}$	Quadratic function operation	0° to 29°
$3/8 V_{REG}$ to $4/8 V_{REG}$	Quadratic function operation	0° to 41°
4/8 V _{REG} to 5/8 V _{REG}	Quadratic function operation	0° to 58°
5/8 V _{REG} to 6/8 V _{REG}	Linear function operation	0° to 29°
6/8 V _{REG} to 7/8 V _{REG}	Linear function operation	0° to 41°
7/8 V _{REG} to 8/8 V _{REG}	Linear function operation	0° to 58°

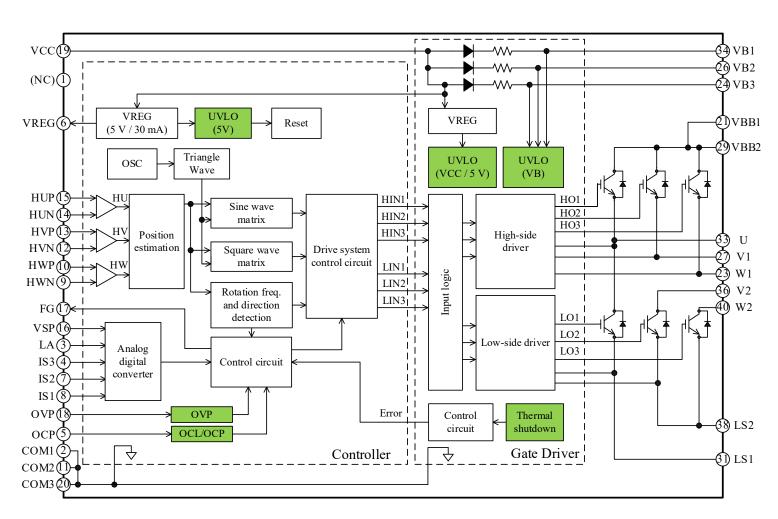
Customizable Using Function Setting Pins (IS1/ IS2/ IS3)

■ Rotation direction switching without turning power off

The IS3 pin selects the rotation direction, enables and disables the motor lock protection, and sets the voltage range of output duty cycle control. The IS3 pin can switch the rotation direction without turning off the power when the motor is stopped.

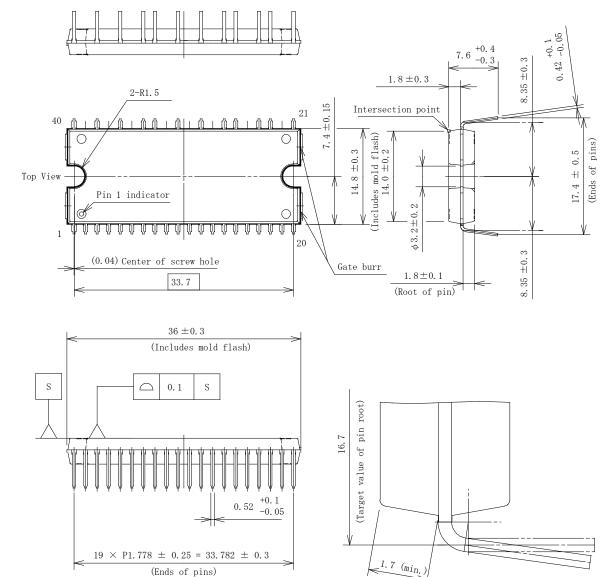
IS3 Pin Voltage (Typ.)	Rotation Direction	Motor Lock Protection*	Voltage Range of Output Duty Cycle Control*
0 to 1/8 V _{REG}	Forward (CW)	Enabled	2.1 V to 5.4 V
$1/8 V_{REG}$ to $2/8 V_{REG}$	Forward (CW)	Disabled	2.1 V to 5.4 V
$2/8 V_{REG}$ to $3/8 V_{REG}$	Forward (CW)	Enabled	0.5 V to 5.4 V
$3/8 V_{REG}$ to $4/8 V_{REG}$	Forward (CW)	Disabled	0.5 V to 5.4 V
$4/8 V_{REG}$ to $5/8 V_{REG}$	Reverse (CCW)	Disabled	0.5 V to 5.4 V
5/8 V _{REG} to 6/8 V _{REG}	Reverse (CCW)	Enabled	0.5 V to 5.4 V
6/8 V _{REG} to 7/8 V _{REG}	Reverse (CCW)	Disabled	2.1 V to 5.4 V
$7/8 V_{REG}$ to $8/8 V_{REG}$	Reverse (CCW)	Enabled	2.1 V to 5.4 V

^{*} The power must be turned off before enabling or disabling the motor lock protection or changing the voltage range of output duty cycle control.


Various Protection Functions

The IC has various protection functions, including OVP (overvoltage protection), for safe operation even in regions with unstable input voltages.

Protection Functions


- VREG Pin Undervoltage Lockout (UVLO_REG)
- Undervoltage Lockout for Power Supplies
 - VBx Pin (UVLO_VB)
 - VCC Pin (UVLO_VCC)
- Overcurrent Limit (OCL)
- Overcurrent Protection (OCP)
- Overvoltage Protection (OVP)
- Thermal Shutdown (TSD)
- Motor Lock Protection (MLP)
- Reverse Rotation Detection
- Hall Signal Abnormality Detection

Physical Dimensions

DIP40

NOTES:

- Dimensions in millimeters
- Pb-free (RoHS compliant)
- "A" represents a pin illustrated for reference only, not the actual state of a bend.
- Maximum gate burr height is 0.3 mm.

Important Notes

- All data, illustrations, graphs, tables and any other information included in this document (the "Information") as to Sanken's products listed herein (the "Sanken Products") are current as of the date this document is issued. The Information is subject to any change without notice due to improvement of the Sanken Products, etc. Please make sure to confirm with a Sanken sales representative that the contents set forth in this document reflect the latest revisions before use.
- The Sanken Products are intended for use as components of general purpose electronic equipment or apparatus (such as home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Prior to use of the Sanken Products, please put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken. When considering use of the Sanken Products for any applications that require higher reliability (such as transportation equipment and its control systems, traffic signal control systems or equipment, disaster/crime alarm systems, various safety devices, etc.), you must contact a Sanken sales representative to discuss the suitability of such use and put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken, prior to the use of the Sanken Products. The Sanken Products are not intended for use in any applications that require extremely high reliability such as: aerospace equipment; nuclear power control systems; and medical equipment or systems, whose failure or malfunction may result in death or serious injury to people, i.e., medical devices in Class III or a higher class as defined by relevant laws of Japan (collectively, the "Specific Applications"). Sanken assumes no liability or responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, resulting from the use of the Sanken Products in the Specific Applications or in manner not in compliance with the instructions set forth herein.
- In the event of using the Sanken Products by either (i) combining other products or materials or both therewith or (ii) physically, chemically or otherwise processing or treating or both the same, you must duly consider all possible risks that may result from all such uses in advance and proceed therewith at your own responsibility.
- Although Sanken is making efforts to enhance the quality and reliability of its products, it is impossible to completely avoid the occurrence of any failure or defect or both in semiconductor products at a certain rate. You must take, at your own responsibility, preventative measures including using a sufficient safety design and confirming safety of any equipment or systems in/for which the Sanken Products are used, upon due consideration of a failure occurrence rate and derating, etc., in order not to cause any human injury or death, fire accident or social harm which may result from any failure or malfunction of the Sanken Products. Please refer to the relevant specification documents and Sanken's official website in relation to derating.
- No anti-radioactive ray design has been adopted for the Sanken Products.
- The circuit constant, operation examples, circuit examples, pattern layout examples, design examples, recommended examples, all information and evaluation results based thereon, etc., described in this document are presented for the sole purpose of reference of use of the Sanken Products.

- Sanken assumes no responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, or any possible infringement of any and all property rights including intellectual property rights and any other rights of you, users or any third party, resulting from the Information.
- No information in this document can be transcribed or copied or both without Sanken's prior written consent.
- Regarding the Information, no license, express, implied or otherwise, is granted hereby under any intellectual property rights and any other rights of Sanken.
- Unless otherwise agreed in writing between Sanken and you, Sanken makes no warranty of any kind, whether express or implied, including, without limitation, any warranty (i) as to the quality or performance of the Sanken Products (such as implied warranty of merchantability, and implied warranty of fitness for a particular purpose or special environment), (ii) that any Sanken Product is delivered free of claims of third parties by way of infringement or the like, (iii) that may arise from course of performance, course of dealing or usage of trade, and (iv) as to the Information (including its accuracy, usefulness, and reliability).
- In the event of using the Sanken Products, you must use the same after carefully examining all applicable
 environmental laws and regulations that regulate the inclusion or use or both of any particular controlled
 substances, including, but not limited to, the EU RoHS Directive, so as to be in strict compliance with such
 applicable laws and regulations.
- You must not use the Sanken Products or the Information for the purpose of any military applications or use, including but not limited to the development of weapons of mass destruction. In the event of exporting the Sanken Products or the Information, or providing them for non-residents, you must comply with all applicable export control laws and regulations in each country including the U.S. Export Administration Regulations (EAR) and the Foreign Exchange and Foreign Trade Act of Japan, and follow the procedures required by such applicable laws and regulations.
- Sanken assumes no responsibility for any troubles, which may occur during the transportation of the Sanken Products including the falling thereof, out of Sanken's distribution network.
- Although Sanken has prepared this document with its due care to pursue the accuracy thereof, Sanken
 does not warrant that it is error free and Sanken assumes no liability whatsoever for any and all damages
 and losses which may be suffered by you resulting from any possible errors or omissions in connection
 with the Information.
- Please refer to our official website in relation to general instructions and directions for using the Sanken Products, and refer to the relevant specification documents in relation to particular precautions when using the Sanken Products.
- All rights and title in and to any specific trademark or tradename belong to Sanken and such original right holder(s).

DSGN-CEZ-16003